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Abstract: Seismic phase picking is a critical task in earthquake monitoring, as its accuracy directly impacts the precision of
hypocenter localization and magnitude estimation. However, traditional methods are often limited in their ability to capture the
characteristics of complex seismic signals. This study proposes a dual-branch deep learning model that integrates a multi-scale
attention mechanism and short-time Fourier transform (STFT). The model extracts temporal features through a time-domain
branch and captures time-frequency representations via a frequency-domain branch, while leveraging the attention mechanism to
enhance multi-scale features. Experimental results show that within a 100 ms error threshold, the proposed model achieves a P-

wave picking precision and recall of 95.69% and 88.97% , and an S-wave precision and recall of 87.98% and 77.25% , respectively.
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The mean and standard deviation of arrival time error for the P-wave are 18.76 ms and 27.13 ms, while for the S-wave they are

25.97 ms and 36.14 ms. Moreover, the model contains only 0.35 M parameters and incurs a computational cost of 71.38 M

FLOPs. Compared with existing models, the SEN model not only achieves competitive performance but also demonstrates

advantages in model size and computational efficiency, offering great potential for real-time seismic monitoring applications.
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A I T S IR/A /G IS A g o i< O 1}
A RCSE 43 5 ol T 2 048, H Al 2 505 R R
— %, % F LPPNL 1 Stride Z: 804 3% 5 4 8.
23 LWHER

A YA FE TR T B 5 22 T, 1Y 3 B
KRR BB SC N T e, 2B P U S 3¢
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R IV o AN A N iU e~ VI
10 T | N N R VR W i S P e S S
AT AU 5 B2 K g3 2 1k R RN B I E A Y 2R
BE J1 X T SRR PR AL L AR SR R L 1Y
g3 25 15 T IF A by e BDOKE B ( Precision ) #1 4
R (Recall ), K B2 BCHEE T T 1, AR 2% B A 38 5
B0 AR M, A Il AR T T L, D AR R A Y
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Table 1 Performance of the models
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Table 3 Parameters and FLLOPs

o Precision Recall sl i FLOPs
P i S P i S SEN 0.35 M 71.38 M
SEN 0.956 9 0.879 8 0.889 7 0.772 5 LPPNL 0.66 M 111.98 M
LPPNL 0.943 4 0.8815 0.863 2 0.720 8 EQT 2.59 M 87.91 M
EQT 0.9350 0.873 4 0.854 1 0.7027 PhaseNet 0.17M 17.06 M
PhaseNet 0.8230 0.878 2 0.764 0 0.703 0

x2 FFREHEURREE

Table 2 Mean and standard deviation of arrival time errors

x4 BEBETHEINL
Table4 Model runtime efficiency

1575 YIZRAERT (s) HEFRFERT (s)
Mean(ms) Std(ms) SEN 3972.91 4.48
Al

P i S P i S LPPNL 4 646.87 4.89

SEN 18.76 26.13 27.13 36.14 EQT 11 008.08 26.73

LPPNL 18.81 25.97 27.71 35.18 PhaseNet 2 154.90 3.70
EQT 23.90 30.62 32.76 40.11
PhaseNet 18.51 26.63 28.41 36.81

T oo P E S ARUEZE B BR300, AR oA A A
A %) T s 25 R ARG 5 A v 25 R B T O, U SRR 11y
oI e 22 A B HBORE SR ARG, BIDARC SR A AL B A ) AR
FE LA R AE A A A L v B K A 2 1) L 491 A
4 AN B B 43 28 Tk BB AE 98 UE AR b 0 BT Al 45
MEFE PR R 1AL, SEN LR ZE P A9 12 51
AR TR RS B R A Il R R B R AL X T P
W 0F R ) 5 B RYORE BB fE 08 R e b
i il 2 B0 P ICF 1 .S B A ORg B2 S IR T LPPNL,
B 143 0] 22 48 bR AH XF T LAt 3 4> X BRBE R A3 2] T
AR Tt 3 W AR SO AN X AR A RE AR Y B L fE
T35, NS YA IR Bl G it AR Y B 4 TR
LY 1) 3 I 2 A7 RE ) 5 T, P LS I B I R 25
B 247 {8 bR o 25 40 3% 2 7R  SEN BLALTE P AN S
T A B % 2% (8 7 T 5 LPPNL ., PhaseNet #H T ,
B E T EQT. 76 P U 2 B % 22 ¥ (5 )5 I, SEN W
1 T PhaseNet, {H 7€ P £ B} %R 25 i AR 25 LT
PhaseNet #1 EQT, ¥ W] 5 Z A [t SEN 7& P % 2] i
MR E M B A T4 5, {H F LPPNL R 8% 22, vl G
s TR A AE B b B OC T A TR AR ORR
16 S B B 47 b, SEN AR (15 25 34 {1 W8 &5
F LPPNL, B%{i% T PhaseNet, & & . T EQT. ifi 1£
F I 158 22 B bR o 25 LA HE T LPPNL W &7, 3X 7] 58 2
i F SEN RSB T8 29 Sk AHZR & 7 5 PERES
E ,SENTE S I 3 B b A He 34> X B AR A HL A I 3
PETV, HAEE 7 B8 1 1 BB A% 3k B BRAREAY 11 7K SF-
4ASBERY () 2 8 i (Parameters ) LA & X F 9 4%

iy A B IF A & (FLOPs) 40 3 3 B 7x .SEN £ &l
AH T LPPNL #1 EQT 4 3 & &= 48 A Ar wi b,
i 2 K F PhaseNet, {H 45 & 0 #0497 5 55 28
£ §8 3k F , SEN #H It PhaseNet 75 iR % 14 8 5 1=
W AR ERS, BOR RS S
F1 . E BN S B R 4 s Ok UE L RE 0 X
FEIF O I SZ BRI 3 5, X T A i &
A5 N iR AT TR A9 SR I L Ak B
KB HENELREKR A A ELMNME .

4 AN A5 ARY (Y I S BsF (6] R0 R R R) A 4 TR
S8 I SR FH B9 B 4o NVIDIA RTX 2070(8 GB 2
AF ) HE 3R ] B8 3 Ay A A Ak B 4 O O AR A AR
(£ 59 904 2% ) (9 B AE I, AT S8 A dz A7 ) ], HE
R T R WA B L/O I # A AR A O B, DU ]
AE T BR CPU 4 A7 o H 45 A1 38 DR 28 % 2 Ak 25 SR 1
TP, DT B 0 b Sz B AR AR AR B i SRR %

MYNZRFERT KB, SEN #E 7 75 58 4 I i ad 7 op
FEMF o 3 972.91 s, {8 T LPPNL M1 EQT, {H A4 T
4 i /D 1) PhaseNet /5 & I — £ . B AR I ZRFE
i} %% PhaseNet K, {H SEN /5 44 43 35 — B AR I
ZRAEI B OK -, JF ELRE 08 AR 45 1m0y R R E S
FE M, R R A R 5 Eaedr b ge

7 B B B, SEN A58 5 FE 1] 4.48 s 58 B 4
ML LR HE R I T EQT, 5 LPPNL MY, & F
PhaseNet. i #& 76 #f BE A [6) |38 A B A 2, {0 45
G S8R UL K oy 2R E AL RE T 43 B, SEN AT LA
FE7F B 5 U S BN B g B0 R A5 B 4E Y o
KMENMPERE, H &R B A A S [t B A
FE % Tl X S B M SR B 0 b AR R AE 55
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ZE B TR A SCHR Y SEN B AR 43 2 1 fig A
) B 72 VA BE 7 T8 A GO T LA X BB RS AR SO
RITE P b HA TS A 40 B PERE , B2 1 e T RE 18
K B 0 HE B R A K F fE S U B B B E R TR 4
KVERE , H OB TE4E 55 i 20 20K B2 00 [) 1, A 4 b 4%
il 30 B 3% 22 1 U S Y TR A Bl T AR T I 22 b AR E A
AR B A AR E PE . BUSR A HE PhaseNet 16 5 & 1k I
HA —ZE WA R, 0 SEN # & 41 1t LPPNL L &
EQT A 75 2 $ i Jy 1 5 3 B AIG, BRI T X H 50
P8 0 BESR AR T T8 O T AT — o AR A X
EOR A LR ORI = RS B B R T, AR SOBE R HAT P
I 2 PR HE 3 DL K e R o AR A O 5, AT Ry K
R by 5 A A 5 S A A B A D R S
24 HEAXE

9 B UE EMA BB R STET A5 B X 4 51 1 fig
SR I s A . a0 W 7 N il N T N
PERER I AW LI IL B T A BIA A S, HAK
Jga (1) FEAMEAY . AE B B BR T 1 ML
FSTET A B (PR B A 1 W 45 25 1, F 42 B
B8 M5 5 B RRAE . (2) A A VR B ) BB A AR
BRI LRl E L A EMA 13 R e, B A B 1
T D7 B G A A P RE A 4R TR (3N A STFT £
He AR AR f A STFT A& B LA 2 B ol 45
fIE AR A 3 T ML DAk s 08 { B X A5E 7R
S L (4) 58 BE AT RD . BVAS SCHE I AR R | [ i 4 G
T EMA JEE S HLEI A STFT &8k, B 76 78 4> # 1
I Sl R B A A, 4 A R M

TEAR A 24 R, % LA B 4 o U gk 45 T I 5 N
D3, g A5 AU T )1 AR ) o B, BT P AR ) 9 %k
it A 9E A7 90 0E T 58 X 45 BB A 43 25 M g (Preci-
sion Recall) I () R B HE AT L85, SR I 520 Br e o2
A A BE CF) B i 22 {8 5 AR o 22 ) 5 T A 22 7

& 5 R AR R RY 1) 43 2 Pk BB T LA 10, 4 S B A
P RUIATE 55 RS BEARGA 2] T 0.95 2247, & ]
BEALE F P O A SUNRS B B 2R B T R KR,

#£5 HRRBHELTH

Table 5 Evaluation of ablation study models

" Precision Recall
T e - - - ‘
P S P i Sk
LA A 0.948 1 0.845 1 0.8418 0.681 2
AUMA RN 0.953 2 0.879 3 0.868 9 0.732 6
{LIMA STFT 0.963 6 0.882 1 0.870 1 0.717 0
56 HE A A 0.957 9 0.879 8 0.889 7 0.772 5

F6 HEMLKEERFIMNIRE

Table 6  Arrival time errors of ablation study models

. Mean(ms) Std(ms)
T e - - - -
P ik S P ik S
FEAAE Y 20.67 27.77 29.04 36.36
AUMAERE N 19.53 27.53 28.83 36.03
LA STFT 16.09 27.39 23.53 36.24
56 4% A5 A 18.76 26.13 27.13 36.14

M 1] R A RE % G R 3 1 P, AR T 4
ABERIXE TS Y0 R B A B 2 AR AE P
WA R AR AR EEARE WG T RS K B
TE—EPRTF 25 8] AEHEAKLRL oo ATE I BLH s, P g
IS P A 1] AHRAT Fr $ T 3 Fh 2 THAR AT e 2 i T
EMA T 5L REAE 5 i Hi A 5 v 19 5 ]
A, foft A5 7R A TRUI S Bt 52 R AR e Pk B S o 5 AR 2 T
BRI P STET BB 5 , PSSR A [0 45 b
WA B I, I o 5 A AR S B ) 2
2 JIE A5 S R AE P R I B 5 X3 R AR A, DA T £
P I PERE . SE AR AR A TR AR EAR B T 2
FETV, UL 5 i Jel 5 SRR 45 5 T T PR A 5]
Je AT B B o T RO A S (EDRS BEAH EE AU
A STET AR BRI T 75 0 (50T o A AT 75 R Tl
5 STET BEH A A HIFE 73 R RE B2 T B A
RO AR S P BE IR 21 T 2 2 Tt

2 6 9 AN R T 7= AH F B 2 7R B B9 X e s
B A B A R B, PO S U Y B B R 25 B (E
5 b v 22 R X SR, 3 WA TR 7 7R R B I 3 T T
FETEBER AN B E VRN 22 3 sh M AR IS,
o AR B N F) R 22 4% (M o 2 A0 AT — 5 T R A
X T R A A T A R R B R AR RE T 7 I B
LA R AT BT 3 55, AT A R 07 4R iE 12 3B T IR
980 TR E LR 2E M BBl AU STET #4
B ity 455 700 o [) A AR AR 5 AR 30 I 6 2% 22 1 B4
FIARE2E , B PR E A2 BE 175 3 T R 271, 78
S P rE A1 T7 R B AU AR T 7 BB B AR 2, 3%
B A STET A5 B i A6 20 m] LM 73 Bk H
SE 7 A BB T R AL DA T BEA A A 2 R A R A
AL E A 3 I P B T SR AR e R p P
T 1) o AV 15 25 1) 249 B RN 1 25 38 K TAUMA ST -
FT RS iR 6 52 B AR 1 B 5 2
ATREAPE T — B A R IR RE T e o T
ZACH) R BT AR T 1 X B R A A X A A
JI Rz AL RE T . TR Ak B L 51T B i Y 3
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A WORE R BRI EE G T R Ak 2 RO T AL
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A 2 B8 0 A7 B Y ] B Sk 5] A RS AR,
B AL BE A% A 7 B 0 SR A S Y R AR JF
EMA & Jexf 56 B 45 Ak #F 47 2 ROZ s Ak, DA 4
Th 7% A B0 R BE RN TR e A R R, A
SCHR A AR B TR ROy ZRORS LA IRl K E A
R 22 A5 7 T4 3R B BAE I ROR T HAE
PO N T R R Y B
32 REIE

A AT 5 78 72 AH EUIRS BE A B ROR O T
WoAs 7 ke B P A )R ok
1 CAE AT L PATR JUAS 5 T AT R AR E

(DY e 21 T 5 2% (0 0000 R 455 < >4 i 52 6 =
T STEAD M2 T MR B8 IXA L AR B
F BL S M R L Tiang ez al.(2021) L # T PhaseNet 5
EQT 7 Uk i A 22 M 52 77 47 vp (4G U 68 ), & B 3X
PR S AR A S e e o LTS [ R 9 A ()
PRI 3t o Sk 78 S Br W AT , A58 B8 7 B R RLRE B A
2 LI P 5 7 ) A AR v I R AT, DA HIE H
& FHPEFZ AL RE 7 . 48 il 2 75 A [F] 7% 5 28 AU A A
MR S5 A Y R AT B T — 2D PR A

(2) Bk A0 Sl IE 2 OB B < B 9K STFT 42 4t
T AR EAE B A AR AATE R 1R/
GRS 2 T Sl TR 1 S D E 73 S R T
BT 7 5, AN /N I AR 4 Ty 1 B S N G STET 19 2
B E, DLk — 2B 3R T X 5 2 5 S AR R i S RE O

(3) Z AT 55 Bk & B . H A 9 B R 32 22 W
TR AR I Oy T, AR S8 e rh B AL R R A A R
55, PRI AT LR AR R 22 1> A A 4 ) W D AN T)
TR AT B0 5 M DO [) — = 3] G o R 4 (2024)
BEO6F 24 2 U R R A n R BCUE M R A e 1Y

] &, £ T PhaseNet £& i 7 P /> 43 %l i e 3 B
55 R 0 SR B B RS O A T S8 R Y LR A
Bl Ak B RE , FE BT VT K P S B A2 P S T
3.8 T N T H s 0y I L = . oK R 8 AT DL 2% IR
W 72 A 45 B A 1 7R A AT 55 (A 2 5 o R
fli 48 ) BEATHR A AR IR A BI ALY 2R 5 TR BE L X
RN T % £ 1 Hb = 5 1R R I A o B M GE T
LA Ry 52 J5 43 B R0 Ao 7 it ik B4 T Y S A
(4) 18 AU IS 3E 5 S I H < o 7 A 8E A 3
S B S R NI N7 S v e PR /1 o
14 41 I 0GR W R TH R A R O 7R S i B
i TR PR N B8 ) . IR EE B X & B B
B R 8 AT DL GE o AL R 4 RO R He R, i
— 2 BEAR T B TF 4, 48 AR A A S B N p R
SR D, AR SCHE Y SEN R R £ b S
H 3l 4k 1R 1) 5 b B 5 T Sl R A A R A T R
(9 S8 R L R SRR L BB T 2 B 0 AR R Rk
1A W D0 Ak, R o i 85 7 A7 B8 7 S B N G
TE S B AR I R R R R e b kAR

References

Allen, J.B., 1977. Short Term Spectral Analysis, Synthe-
sis, and Modification by Discrete Fourier Transform.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(3): 235—238. https://doi.org/10.1109/
TASSP.1977.1162950

Bergen, K. J., Johnson, P. A., de Hoop, M. V., et al.,
2019. Machine Learning for Data - Driven Discovery in
Solid Earth Geoscience. Science, 363(6433): eaau0323.
https://doi.org/10.1126/science.aau0323

Chai, C. P., Maceira, M., Santos-Villalobos, H. J., et al.,
2020.Using a Deep Neural Network and Transfer Learn-
ing to Bridge Scales for Seismic Phase Picking.Geophysi-
cal Research Letters, 47(16): e2020G1.088651. https://
doi.org/10.1029/2020G1.088651

Chen, G. Y., Yang, W., Tan, Y. Y., et al., 2023. Auto-
matic Phase Detection and Arrival Picking for Micro-
seismic Events in Hydraulic Fracturing Based on Ma-
chine Learning and Array Correlation. Chinese Journal
of Geophysics, 66(4): 1558—1574 (in Chinese with
English abstract).

Chen, Y. K., Zhang, G. Y., Bai, M., et al., 2019.Auto-
matic Waveform Classification and Arrival Picking
Based on Convolutional Neural Network. Earth and
Space Science, 6(7): 1244—1261. https://doi. org/
10.1029/2018EA 000466



114 HERFF=  http://www .earth-science.net

51 %

He, B., Zhou, Y. Y., Li, Y. Q., 2024. Seismic First
Break Picking Algorithm Combining U-Net and FPN.
Journal of Geomatics, 49(1): 82—87 (in Chinese with
English abstract).

Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-
Time Seismic Intensity Prediction Model Based on Long
Short-Term Memory Neural Network.Earth Science, 48
(5): 1853— 1864 (in Chinese with English abstract).

Jiang, C., Fang, L. H., Fan, L. P., et al., 2021.Compari-
son of the Earthquake Detection Abilities of PhaseNet
and EQTransformer with the Yangbi and Maduo Earth-
quakes. Earthquake Science, 34(5): 425—435. https://
doi.org/10.29382/eqs-2021-0038

Jiang, C., Lu, Z. Y., Fang, L. H., 2024. Earthquake
Detection Model Trained on Velocity and Accelera-
tion Records and Its Application in Xinfengjiang Res-
ervoir. FEarth Science, 49(2): 469—479 (in Chinese
with English abstract).

Lan, B., Zhao, S. G., Zeng, H., et al., 2024. Seis-
mic Phase Picking Using a Cross - Attention Net~
work on NVIDIA Jetson Xavier NX.IEEE Access,
12:  145511—145521. https://doi. org/10.1109/AC-
CESS.2024.3471848

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning.
Nature, 521(7553): 436—444. https://doi.org/10.1038/
naturel4539

Li, B. R., Fan, L. P., Jiang, C., et al., 2023.CSESnet: A
Deep Learning P-Wave Detection Model Based on UN-
et++ Designed for China Seismic Experimental Site.
Frontiers in Earth Science, 10: 1032839. https://doi.
org/10.3389/feart.2022.1032839

Li, H Y., Li, J. H., Li, X. G., et al., 2024. Seismic Pick-
ing Attention Module.IEEE Transactions on Geoscience
and Remote Sensing, 62: 5930816. https://doi. org/
10.1109/TGRS.2024.3476329

Li, W., Chakraborty, M., Fenner, D., et al., 2022.
EPick: Attention-Based Multi-Scale UNet for Earth-
quake Detection and Seismic Phase Picking. Frontiers
in Earth Science, 10: 953007. https://doi. org/
10.3389/feart.2022.953007

Liao, W.Y., Lee, E. J., Mu, D. W., et al., 2021. ARRU
Phase Picker: Attention Recurrent-Residual U-Net for
Picking Seismic P- and S- Phase Arrivals. Seismological
Research Letters, 92(4): 2410—2428. https://doi. org/
10.1785/0220200382

Lin, T. Y., Goyal, P., Girshick, R., et al., 2017. Focal
Loss for Dense Object Detection.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(2): 318—

327. https://doi.org/10.1109/1CCV.2017.324

Mousavi, S. M., Beroza, G. C., 2022. Deep-Learning Seis-
mology.Science, 377(6607): eabm4470. https://doi.org/
10.1126/science.abm4470

Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al.,
2020. Earthquake Transformer—An Attentive Deep -
Learning Model for Simultaneous Earthquake Detection
and Phase Picking. Nature Communications, 11: 3952.
https://doi.org/10.1038/s41467-020-17591-w

Mousavi, S. M., Sheng, Y. X., Zhu, W. Q., et al.,
2019. STanford EArthquake Dataset (STEAD): A
Global Data Set of Seismic Signals for Al. IEEE Ac-
cess, 7T: 179464—179476. https://doi. org/10.1109/
ACCESS.2019.2947848

Ouyang, D. L., He, S., Zhang, G. Z., et al., 2023.Effi-
cient Multi-Scale Attention Module with Cross-Spatial
Learning. In: 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, Rhodes Island, 1—5. https://doi.org/10.1109/
icassp49357.2023.10096516

Ross, Z. E., Meier, M. A., Hauksson, E., et al.,
2018. Generalized Seismic Phase Detection with
Deep Learning. Bulletin of the Seismological Society
of America, 108(5A): 2894—2901. https://doi.org/
10.1785/0120180080

Saad, O. M., Chen, Y. K., 2022. CapsPhase: Capsule
Neural Network for Seismic Phase Classification and
Picking. IEEE Transactions on Geoscience and Re-
mote Sensing, 60:5904311. https://doi. org/10.1109/
TGRS.2021.3089929

Vaswani, A., Shazeer, N., Parmar, N., et al., 2017. Atten-
tion is all You Need. arXiv: 1706.03762. https://doi.
org/10.48550/arXiv.1706.03762

Wang, J., Xiao, Z. W., Liu, C., etal., 2019.Deep Learning
for Picking Seismic Arrival Times.Jowrnal of Geophysi-
cal Research: Solid Earth, 124(7): 6612—6624. https://
doi.org/10.1029/2019JB017536

Xiao, Z. W., Wang, J., L, C.,

Earthquake Transformer: A Pair-Input Deep-Learning

et al., 2021. Siamese

Model for Earthquake Detection and Phase Picking on
a Seismic Array. Journal of Geophysical Research:
Solid Earth, 126(5): ¢2020JB021444. https://doi.org/
10.1029/2020JB021444

Ye, H. Y., Chen, J. D., Gong, S.J., etal., 2024. ATFNet:
Adaptive Time-Frequency Ensembled Network for L.ong-
Term Time Series Forecasting. arXiv: 2404.05192.
https://doi.org/10.48550/arXiv.2404.05192

Yu, Z. Y., Wang, W. T., 2022. LPPN: A Lightweight Net-



H1MW T MG A A S I R A A T O Y R A R A R 115

work for Fast Phase Picking. Seismological Research
Letters, 93(5): 2834—2846. https://doi. org/10.1785/
0220210309

Yu, Z. Y., Wang, W. T., Chen, Y. N., 2023. Benchmark
on the Accuracy and Efficiency of Several Neural Net-
work Based Phase Pickers Using Datasets from China
Seismic Network. Earthquake Science, 36(2): 113—
131. https://doi.org/10.1016/j.eqs.2022.10.001

Zhang, J., Li, Z. F., Zhang, J., 2023. Simultaneous Seismic
Phase Picking and Polarity Determination with an Attention-
Based Neural Network.Seismological Research Letters, 94
(2A): 813—828. https://doi.org/10.1785/0220220247

Zhou, T., Ma, Z.Q., Wen, Q. S., etal., 2022.FEDformer:
Frequency Enhanced Decomposed Transformer for
Long-Term Series Forecasting. In: International Confer-
ence on Machine Learning. PMLR, New York.

Zhou, Y. J., Yue, H., Kong, Q. K., et al., 2019. Hybrid
Event Detection and Phase - Picking Algorithm Using
Convolutional and Recurrent Neural Networks. Seismo-
logical Research Letters, 90(3): 1079—1087. https://
doi.org/10.1785/0220180319

Zhu, L. J., Peng, Z. G., McClellan, J., et al., 2019. Deep
Learning for Seismic Phase Detection and Picking in the
Aftershock Zone of 2008 Mw7.9 Wenchuan Earthquake.

Physics of the Earth and Planetary Interiors, 293:
106261. https://doi.org/10.1016/}.pepi.2019.05.004

Zhu, W. Q., Beroza, G. C., 2018. PhaseNet: A Deep-Neural-
Network-Based Seismic Arrival-Time Picking Method.
Geophysical Jowrnal International, 216(1): 261—273.
https://doi.org/10.1093/gji/ggy423

Zhu, W. Q., Biondi, E., Li, J. X., et al., 2023. Seismic
Arrival - Time Picking on Distributed Acoustic Sensing
Data Using Semi-Supervised Learning. Nature Commu-
nications, 14: 8192. https://doi. org/10.1038/s41467 -
023-43355-3

W 325 % Tk

FRE 2, #3c, ER, %, 2023, 3T WL 22 ) M & B AR 56
PRI 7K ) 240 Hb 72 = 18 13 2 TR0 B B B A . b Bk
YyHE4R ,66(4): 1558—1574.

M, I, Bk, 2024, 454 U-net 5 FPN (4 b 52 %)
YA EETE I S B, 49(1): 82— 87.

WIBEZE, TR, JM, %, 2023, 5T KA WD 2 19 4%
M SCOR M R Z R T ORE AU . M Bk BL 2% 48(5):
1853—1864.

Vs, BAESE, Brarte, 2024, b4 ib TH 5 3 000 5 B T
V14 . 52 G 00 A8 80 R HG A I = VT K R 0, P . s R} 2
49(2): 469—479.



