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摘 要： 地 震 震 相 拾 取 的 准 确 性 直 接 影 响 震 源 定 位 和 震 级 估 计 的 精 度 ，然 而 传 统 方 法 对 复 杂 地 震 信 号 的 特 征 捕 捉 能 力

有 限 . 提 出 了 一 种 融 合 多 尺 度 注 意 力 机 制 和 短 时 傅 里 叶 变 换 的 双 分 支 模 型（SEN），该 模 型 通 过 两 个 分 支 分 别 捕 获 信

号 的 时 间 特 征 和 时 频 特 征 ，并 结 合 注 意 力 机 制 实 现 多 尺 度 的 特 征 增 强 . 实 验 结 果 表 明 ，在 100 ms 的 误 差 范 围 内 P 波 震

相 拾 取 的 识 别 精 度 和 召 回 率 分 别 达 到 了 95.69% 和 88.97% ，S 波 震 相 拾 取 的 识 别 精 度 和 召 回 率 分 别 达 到 了 87.98% 和

77.25%.P 波 的 到 时 误 差 均 值 和 标 准 差 分 别 达 到 了 18.76 ms 和 27.13 ms，S 波 的 到 时 误 差 均 值 和 标 准 差 分 别 达 到 了

25.97 ms 和 36.14 ms. 同 时 模 型 的 参 数 量 仅 有 0.35 M ，计 算 开 销 为 71.38 M. 与 同 类 模 型 相 比 ，SEN 模 型 不 仅 在 性 能 上 取

得 显 著 提 升 ，同 时 在 参 数 量 和 计 算 开 销 上 具 有 一 定 优 势 ，为 地 震 监 测 的 实 时 应 用 提 供 了 有 力 的 技 术 支 持 .
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Abstract: Seismic phase picking is a critical task in earthquake monitoring, as its accuracy directly impacts the precision of 
hypocenter localization and magnitude estimation. However, traditional methods are often limited in their ability to capture the 
characteristics of complex seismic signals. This study proposes a dual-branch deep learning model that integrates a multi-scale 
attention mechanism and short-time Fourier transform (STFT). The model extracts temporal features through a time-domain 
branch and captures time-frequency representations via a frequency-domain branch, while leveraging the attention mechanism to 
enhance multi-scale features. Experimental results show that within a 100 ms error threshold, the proposed model achieves a P-

wave picking precision and recall of 95.69% and 88.97%, and an S-wave precision and recall of 87.98% and 77.25%, respectively. 
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The mean and standard deviation of arrival time error for the P-wave are 18.76 ms and 27.13 ms, while for the S-wave they are 
25.97 ms and 36.14 ms. Moreover, the model contains only 0.35 M parameters and incurs a computational cost of 71.38 M 
FLOPs. Compared with existing models, the SEN model not only achieves competitive performance but also demonstrates 
advantages in model size and computational efficiency, offering great potential for real-time seismic monitoring applications.
Key words: seismic phase picking; deep learning; convolutional neural network; attention mechanism; time series; seismology.

深 度 学 习 作 为 一 种 高 效 且 广 泛 应 用 的 方 法 ，

已 经 在 多 个 领 域 取 得 了 显 著 的 成 果（LeCun et 
al.， 2015）. 在 地 震 监 测 领 域 ，随 着 数 据 量 的 迅 速

增 长 ，处 理 工 具 更 加 高 效 、健 壮 的 需 求 日 益 增

加 ，使 得 深 度 学 习 成 为 地 震 学 领 域 学 习 和 应 用

的 热 点 . 目 前 ，地 震 信 号 的 检 测 和 震 相 拾 取 是 深

度 学 习 在 地 震 学 领 域 中 的 主 要 研 究 方 向（Ber⁃
gen et al.， 2019 ；Mousavi and Beroza ， 2022）.

强 噪 声 下 地 震 信 号 检 测 和 震 相 拾 取 是 地 震 监

测 中 具 有 挑 战 性 的 问 题 . 地 震 信 号 检 测 是 指 在 地

震 传 感 器 记 录 的 各 种 非 地 震 信 号 和 噪 声 中 识 别 出

地 震 事 件 ；震 相 拾 取 则 是 测 量 地 震 信 号 中 不 同 震

相（如 P 波 和 S 波）的 到 时 . 尽 管 这 两 项 任 务 极 为

相 似 ，但 目 标 并 不 完 全 相 同 . 对 于 检 测 ，主 要 目 标

是 最 小 化 漏 检 率 和 误 检 率 ；而 在 震 相 拾 取 中 ，除 了

保 证 检 测 的 准 确 性 外 ，还 需 要 尽 可 能 地 提 高 到 时

的 拾 取 精 度 ，这 将 为 后 续 的 地 震 定 位 等 任 务 提 供

有 力 支 持 . 地 震 定 位 对 地 震 波 信 号 的 到 时 测 量 极

为 敏 感 ，P 波 到 时 10 ms 的 误 差 可 能 导 致 定 位 上

出 现 数 十 米 的 偏 差（Mousavi et al.， 2020）.
深 度 学 习 以 一 种 新 的 方 式 学 习 地 震 相 位 的 波

形 特 征 ，不 再 显 式 地 定 义 特 征 函 数 ，而 是 通 过 监 督

学习从大量标记了相位的波形中自动学习特征 . 这

类方法完全由数据驱动，减少了对主观参数设置的

依 赖 . 此 外 ，深 度 学 习 模 型 可 以 提 供 可 靠 的 震 相 类

型判别（何彬等， 2024；Zhou et al.， 2019），这对地震

定位非常重要，但在传统方法中通常难以准确获得 .
目前，有不少学者在震相识别方法上已经提出

了非常优秀的模型 .Ross （2018）提出了基于卷积神

经网络（CNN）的震相检测器，该模型通过一系列卷

积层提取地震波形的时空特征，能够同时检测  P 波

和 S 波 ，其 网 络 采 用 多 层 卷 积 设 计 ，使 其 能 够 提 取

不同尺度的特征，且在南加州地震数据中的实验结

果 表 现 优 异 . Zhu and Beroza（2019）提 出 了

PhaseNet，这 是 一 种 基 于 Unet 结 构 ，使 用 三 分 量 地

震波形作为输入，并输出输入序列上每个点的 P 波、

S 波和噪声的概率分布 .Li et al.（2023）提出了一种

基 于 UNet++ 改 进 结 构 的 震 相 检 测 模 型  

CSESnet，对 四 川 ‒云 南 地 区 的 地 震 台 网 数 据 进 行

训 练 ，融 合 了 多 尺 度 特 征 以 增 强 模 型 对 P 波 的 检

测 能 力 . 四 川 泸 县 M6.0 等 强 震 中 的 测 试 表 明 ，该

模 型 在 强 震 环 境 下 亦 具 有 良 好 的 泛 化 能 力 ，表 现

出 较 强 的 实 际 部 署 潜 力 .Wang et al.（2019）开 发 了

一 种 基 于 深 度 学 习 的 地 震 到 达 时 间 拾 取 模 型 ，采

用 了 CNN 结 构 ，证 明 了 该 模 型 在 不 同 噪 声 水 平 下

均 具 有 较 高 的 到 时 拾 取 精 度 . 虽 然 前 人 的 这 些 研

究 在 方 法 以 及 结 果 上 存 在 一 定 的 差 异 ，但 普 遍 发

现 基 于 深 度 学 习 的 方 法 比 传 统 算 法 更 具 优 势

（Chen et al.， 2019；Zhu et al.， 2019；Chai et al.， 
2020；Saad and Chen， 2022；陈 国 艺 等 ， 2023；胡

进 军 等 ， 2023； Zhu et al.， 2023）. 通 过 对 比 多 种 模

型 结 构 可 以 发 现 ，多 尺 度 信 息 融 合 可 以 给 地 震 信

号 识 别 在 效 率 和 准 确 性 等 方 面 带 来 显 著 的 提 升 .
然而，这些方案在捕捉地震信号的长程依赖性

方 面 仍 存 在 局 限 . 为 了 解 决 这 一 问 题 ，前 人 引 入 了

注 意 力 机 制（Liao et al.， 2021； Li et al.， 2022， 
2024；Zhang et al.， 2023） . 近 年 来 ，深 度 学 习 领 域

的 发 展 都 偏 向 于 使 用 注 意 力 机 制 . 注 意 力 机 制 最

初 在 NLP 领 域 取 得 成 功 ，能 够 让 模 型 更 关 注 重 要

的 特 征 信 息（Vaswani et al.， 2017）. 对 于 地 震 信 号

检 测 任 务 ，地 震 信 号 的 数 量 往 往 比 噪 声 信 号 少 ，因

此 引 入 注 意 力 机 制 可 以 增 强 模 型 对 关 键 信 号 特 征

的 关 注 度 ，提 高 噪 声 和 地 震 信 号 震 相 的 识 别 能 力 .
例 如 ，Mousavi et al.（2020）提 出 的 Earthquake 
Transformer 模 型 采 用 了 基 于 自 注 意 力 机 制 的 深 度

学习框架，该模型引入了 Transformer 结构，通过捕

捉地震波形的长程依赖性，能够更好地分辨震相与

噪 声 之 间 的 微 小 差 异 . 实 验 表 明 ，Earthquake 
Transformer 能 够 显 著 提 升 地 震 波 的 识 别 精 度 .
Xiao et al.（2021）开发了 Siamese Earthquake Trans⁃
former，这 是 一 种 双 输 入 的 深 度 学 习 模 型 ，通 过 输

入相同地震台阵中的两个不同台站的波形数据，结

合 Transformer 架 构 实 现 了 地 震 检 测 和 相 位 拾 取 ，

并在地震台阵数据上表现出色 .Lan et al.（2024）提

出 的 Cross⁃Attention 模 型 是 一 种 基 于 交 叉 注 意 力

机 制 的 地 震 相 位 拾 取 模 型 . 该 模 型 利 用 多 头 交 叉
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注意力机制捕捉地震波形的关键特征，显著提高了

复 杂 地 震 环 境 中 的 相 位 拾 取 准 确 性 . 实 验 表 明 ，

该 方 法 在 噪 声 抑 制 和 弱 信 号 检 测 方 面 表 现 优 越 .
前 人 的 相 关 工 作 展 示 了 注 意 力 机 制 在 地 震

检 测 和 震 相 拾 取 中 的 多 样 化 应 用 ，然 而 传 统 注

意 力 机 制 的 计 算 开 销 过 高 . 为 了 解 决 该 问 题 ，

有 学 者 提 出 了 更 加 高 效 的 注 意 力 机 制 . 例 如 ，

Ouyang et al.（2023）提 出 了 高 效 多 尺 度 注 意 力

模 块（Efficient Multi ⁃Scale Attention ， EMA），通

过 跨 空 间 学 习 和 并 行 子 网 络 结 构 ，结 合 局 部 和

全 局 的 通 道 交 互 ，捕 获 短 程 和 长 程 的 依 赖 关 系 .
该 模 块 结 合 跨 尺 度 交 互 机 制 ，极 大 地 降 低 了 计

算 开 销 ，提 升 了 模 型 对 复 杂 信 号 的 处 理 能 力 .
地 震 信 号 是 一 种 时 频 信 息 丰 富 的 数 据 ，频 域

信 息 对 于 准 确 识 别 震 相 具 有 重 要 意 义 ，而 现 有 研

究 当 中 大 多 数 并 未 充 分 利 用 到 频 域 信 息 . 已 有 研

究 表 明 ，深 度 学 习 在 时 间 序 列 应 用 领 域 中 融 合 频

域 信 息 可 以 显 著 提 升 效 果 .Ye et al.（2024）提 出 的

ATFNet 模 型 结 合 了 时 频 域 信 息 ，通 过 自 适 应 时

频 融 合 模 块 ，提 升 了 对 复 杂 时 序 信 号 的 建 模 能

力 .FEDformer 在 处 理 长 时 间 序 列 数 据 方 面 表 现

突 出 ，其 通 过 频 率 增 强 分 解 模 块 对 时 间 序 列 的

频 率 特 征 进 行 提 取 和 建 模（Zhou et al.， 2022）.
这 些 研 究 表 明 ，对 于 时 间 序 列 任 务 而 言 ，频 域

信息是一个非常重要的部分 . 前人在时序任务中用

到的频域信息往往是基于傅里叶变换的，而傅里叶

变换获取到的是一种全局频率分布情况，对于震相

识别任务而言并无较大帮助 . 基于傅里叶变换的短

时 傅 里 叶 变 换（STFT）可 以 解 决 该 问 题（Allen， 
1977），STFT 能 够 提 供 信 号 在 不 同 时 序 切 片 上 的

频 率 分 布 情 况 . 通 过 对 地 震 数 据 的 研 究 发 现 ，ST⁃
FT 构建的时频图可以较好地描述 P、S 波到时的频

域 信 息 . 同 时 ，STFT 在 时 域 上 的 小 窗 口 也 可 以 很

好 地 将 频 域 信 息 与 时 域 信 息 结 合 ，丰 富 模 型 的 输

入 特 征 ，有 助 于 提 高 对 复 杂 信 号 的 处 理 能 力 .
综上所述，现有研究在地震震相识别方面取得

了 显 著 进 展 ，但 仍 存 在 一 些 有 待 解 决 的 问 题 . 大 多

数研究主要依赖时域特征，对频域信息的利用相对

不足，而频域信息往往在识别复杂地震信号和提升

抗 噪 性 能 方 面 具 有 重 要 作 用 . 其 次 ，现 有 网 络 结 构

通常包含大量可训练参数且计算成本较高，这限制

了其在实时监测和边缘计算设备上的应用 . 轻量化

网络不仅能够降低硬件需求和运行成本，还能够直

接部署于低成本的边缘计算设备，实现实时数据监

测 . 为此，本研究提出了一种结合短时傅里叶变换和

多 尺 度 高 效 注 意 力 的 轻 型 震 相 识 别 网 络（Short ⁃
Time Fourier Transform with Efficient Multi ⁃ Scale 
Attention Phase Picking Network，SEN），以 期 望 通

过结合时域和频域信息提升震相识别的性能 . 该网

络通过引入 EMA 注意力模块有效聚焦关键时频特

征，并结合 STFT 提取信号的频域信息，以期望增强

对 复 杂 地 震 模 式 的 捕 捉 能 力 . 与 此 同 时 ，网 络 的 设

计注重轻量化，采用深度可分离卷积等优化策略 .

1 模型设计  

1.1　多尺度注意力模块　

本研究采用 EMA 模块（Ouyang et al.， 2023）作

为注意力的计算，该模块通过在通道和空间维度上

的 交 互 ，增 强 模 型 对 特 征 的 敏 感 性 . 该 模 块 具 有 多

尺度并行结构，能够在保持多尺度特征表达的前提

下，有效减少模型深度、降低顺序处理的计算开销 .
其 使 用 1×1 卷 积 和 3×3 卷 积 构 建 了 两 个 并 行 分

支， 分别用于获取全局和局部注意力，模型具体结

构如图 1 所示 .EMA 模块首先将输入特征按通道进

行分组，以减少计算量 . 在 1×1 卷积分支中，首先对

分 组 后 的 特 征 图 在 两 个 空 间 维 度 分 别 进 行 全 局 平

均 池 化 操 作 ，生 成 一 个 包 含 空 间 信 息 的 特 征 图 . 然

后，将该特征图通过一个共享的 1×1 卷积层，用以

提 取 局 部 的 空 间 信 息 ，生 成 空 间 注 意 力 矩 阵 ，该 矩

阵用于描述特定位置的重要性 . 随后，对 1×1 卷积

分 支 的 输 出 进 行 一 次 全 局 池 化 后 通 过 归 一 化 指 数

函 数（softmax）将 向 量 转 化 为 概 率 分 布 ，生 成 通 道

注 意 力 权 重 ，完 成 对 不 同 通 道 的 重 要 性 调 整 . 再 将

该 通 道 注 意 力 作 用 于 3×3 卷 积 的 结 果 ，实 现 跨 空

间 学 习 . 在 3×3 卷 积 分 支 中 ，首 先 通 过 3×3 卷 积

捕 获 输 入 特 征 的 空 间 局 部 信 息 ，得 到 空 间 特 征 图 .
然 后 ，对 该 特 征 图 进 行 全 局 池 化 ，将 空 间 信 息 压 缩

到 通 道 维 度 上 ，生 成 通 道 注 意 力 矩 阵 后 再 将 其 作

用 于 1×1 卷 积 分 支 的 结 果 . 最 终 ，将 两 个 分 支 生

成 的 注 意 力 矩 阵 相 加 ，并 通 过 S 形 激 活 函 数（sig⁃
moid）生 成 多 尺 度 的 全 局 注 意 力 矩 阵 ，作 用 于 原 始

输入，实现对关键通道和空间位置的多尺度增强 .
相 比 于 其 他 复 杂 的 注 意 力 机 制 ，EMA 模 块

通 过 多 尺 度 并 行 结 构 和 轻 量 级 的 卷 积 操 作 ，显

著 降 低 了 计 算 开 销 . 这 对 于 处 理 高 维 度 的 地 震

信 号 数 据 尤 为 重 要 ，可 以 保 证 模 型 的 实 时 性 和
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可 扩 展 性 . 同 时 提 供 了 跨 空 间 、跨 通 道 的 多 尺 度

注 意 力 ，这 种 多 尺 度 的 注 意 力 可 以 显 著 提 高 对

于 地 震 信 号 这 类 复 杂 信 号 模 式 的 感 知 能 力 .
1.2　短时傅里叶变换模块　

目 前 引 入 频 域 信 息 的 相 关 研 究 大 多 基 于

离 散 傅 里 叶（DFT）或 快 速 傅 里 叶 变 换（FFT）

以 及 其 变 种 以 获 取 到 频 率 信 息 ，如 前 文 所 提 到

的 ATFNet 等 . 但 这 种 方 式 获 取 到 的 是 信 号 的

全 局 频 率 信 息 ，对 于 地 震 信 号 而 言 ，往 往 更 需

要 关 注 某 一 段 时 间 的 频 率 分 布 情 况 ，而 短 时 傅

里 叶 变 换（STFT）便 是 将 信 号 切 分 为 若 干 个 时

间 切 片 ，随 后 对 每 个 切 片 计 算 得 到 信 号 整 体 的

时 频 谱 ，计 算 方 法 如 下 所 示 ：

STFT ( t,f )= ∫
-∞

+∞

[ h (u) g (u - t ) ] e- j2πfu du,         (1)

式 中 g (u - t ) 代 表 移 位 窗 函 数 ，h (u) 为 原 始 信

号 . 但 STFT 受 限 于 时 间 窗 口 的 大 小 限 制 ，当 窗

口 较 小 时 ，时 间 分 辨 率 较 高 ，但 频 率 分 辨 率 较 低 .
为 了 兼 顾 时 间 分 辨 率 以 及 频 率 分 辨 率 ，本 次 研 究

中 窗 口 大 小 设 置 为 64，再 通 过 最 邻 近 插 值 的 方 式

对 时 频 图 进 行 上 采 样 以 匹 配 张 量 的 尺 寸 .
1.3　整体模型设计　

本 文 模 型 的 整 体 模 型 结 构 如 图 2 所 示 . 该 模

型 采 用 双 分 支 架 构 ，将 地 震 信 号 的 时 域 和 频 域

信 息 融 为 一 体 ，以 提 升 震 相 识 别 的 准 确 度 和 鲁

棒 性 . 具 体 而 言 ，模 型 分 为 处 理 原 始 波 形 的 时 域

图 1　EMA 模块结构

Fig.1　Structural of the EMA module
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分 支 与 利 用 STFT 提 取 频 域 特 征 的 频 域 分 支 .
两 个 分 支 在 各 自 的 空 间 中 对 信 号 特 征 进 行 提

取 ，并 通 过 注 意 力 机 制 突 出 关 键 特 征 ，随 后 在 通

道 维 度 上 融 合 . 最 终 ，融 合 特 征 通 过 两 个 卷 积 层

输 出 震 相 分 类 结 果 与 时 间 偏 移 的 回 归 预 测 .
为 有 效 降 低 计 算 成 本 并 保 持 特 征 提 取 的 有 效

性 ，模 型 中 所 有 卷 积 运 算 均 采 用 深 度 可 分 离 卷 积 .
该 卷 积 方 式 将 标 准 卷 积 分 解 为 深 度 卷 积 与 逐 点 卷

积 两 个 步 骤 ，由 此 显 著 减 少 参 数 量 与 计 算 开 销 . 在

频 域 分 支 中 ，首 先 对 三 通 道 的 地 震 波 形 序 列 进 行

STFT，获 取 相 应 的 时 频 图 ，STFT 能 够 捕 获 信 号

在时间和频率上的局部变化特征，为识别瞬态震相

特 征 提 供 有 力 支 持 ；之 后 ，对 得 到 的 时 频 图 进 行 上

采 样 以 统 一 特 征 尺 度 ，并 在 频 率 维 度 上 执 行 n×1
卷积，以提取每个时间步对应的频率特征；紧接着，

通过注意力模块对频率特征进行加权，使模型更关

注 对 震 相 识 别 具 有 重 要 贡 献 的 位 置 ；最 后 ，频 域 分

支通过编码‒解码结构扩大感受野并提取时频空间

的 全 局 特 征 ，为 后 续 与 时 域 信 息 的 融 合 做 好 准 备 .
在时域分支中，首先利用残差卷积加步长为 2 的深

度 可 分 离 卷 积 对 原 始 三 通 道 时 序 信 号 进 行 特 征 提

取，以便从信号的时间序列中捕获局部特征；随后，

通过注意力模块对特征进行加权，使模型在时间维

度上聚焦于更重要的位置，从而提升对关键震相位

置 的 辨 识 能 力 ；最 后 ，该 分 支 同 样 利 用 编 码 ‒解 码

结 构 扩 大 感 受 野 并 捕 捉 全 局 时 序 特 征 . 融 合 阶 段 ，

将 频 域 与 时 域 两 个 分 支 的 输 出 以 及 其 局 部 关 键 特

征 在 通 道 维 度 上 进 行 整 合 . 这 种 多 模 态 融 合 主 要

利 用 时 域 信 息 对 信 号 形 态 和 振 幅 变 化 的 敏 感 性 以

及 频 域 信 息 对 频 谱 结 构 的 洞 察 力 获 得 更 全 面 、更

具 判 别 力 的 特 征 表 示 . 经 过 融 合 后 ，模 型 最 终 通 过

两 个 标 准 卷 积 层 生 成 震 相 类 别 和 补 偿 值 预 测 ，从

而 实 现 对 震 相 类 型 与 到 时 偏 差 的 高 精 度 估 计 .
总 体 而 言 ，该 双 分 支 架 构 整 合 了 时 域 和 频

域 特 征 ，辅 以 注 意 力 机 制 和 多 尺 度 特 征 提 取

策 略 ，在 保 持 较 低 计 算 成 本 的 前 提 下 ，显 著 增

强 了 震 相 识 别 的 精 度 与 稳 定 性 ，为 后 续 地 震

事 件 分 析 和 定 位 奠 定 了 坚 实 的 基 础 .

2 实验结果与分析  

2.1　数据集设计　

本文研究的数据集来源于 Mousavi et al.（2019）
公开的 STanford EArthquake Dataset （STEAD），从

中随机抽取了 10 万条纯噪声记录以及 20 万条地震

记录 . 地震数据为采样率为 100 Hz 的三分量（EW、

NS、UD）数据，其中还包含 P、S 波到达时间 . 地震事

件的震中距分布范围较广，数据信噪比（SNR）差别

较大，在随机抽取的数据中，地震事件数据的信噪比

以及震中距情况如图 3 所示 . 从图 3 中可以看到，数

据整体的信噪比较低，在这种高噪声水平下地震事

件震相的准确识别具有较大挑战，但这也更符合真

实 情 况 ，训 练 出 来 的 模 型 也 具 有 更 好 的 鲁 棒 性 .
随 机 抽 取 数 据 的 观 测 设 备 及 地 震 事 件 的 分

布 如 图 4 所 示 ，图 中 红 点 为 观 测 设 备 位 置 ，黑 点

为 地 震 事 件 位 置 . 由 图 4 可 知 ，观 测 设 备 和 地 震

事 件 的 分 布 范 围 较 广 ，基 本 涵 盖 各 类 地 质 条 件 .
在 数 据 预 处 理 方 面 ，为 了 增 强 模 型 的 泛 化 能

力 以 应 对 更 复 杂 的 噪 声 环 境 ，首 先 对 所 有 数 据 样

本 添 加 了 随 机 噪 声 ，随 后 进 行 了 标 准 化 处 理 ，并

引 入 了 随 机 平 移 操 作 .
对 于 每 一 条 非 地 震 记 录 ，截 取 数 据 的 起 点 随

机，若终点超出了数据长度则补 0；对于地震记录而

言，每一条输入数据至少包含一个 P 波到时或一个

图 2　SEN 模型结构

Fig.2　Structural of the SEN module
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S 波 到 时 . 首 先 随 机 选 择 S 波 或 P 波 作 为 目 标 点 ，

每 一 个 目 标 点 必 须 包 含 到 当 前 输 入 中 ，在 保 证 目

标 点 包 含 在 当 前 输 入 的 情 况 下 ，加 入 随 机 平 移 ，

即 该 输 入 的 数 据 起 点 在 目 标 点 前 n（n<               
2 048）个 点 中 随 机 选 择 ，若 起 止 点 超 出 的 数 据 记

录 长 度 或 序 列 长 度 不 足 2 048 点 时 则 对 超 出 部 分

或 不 足 部 分 补 0. 通 过 上 述 预 处 理 步 骤 ，生 成 的 输

入 数 据 不 仅 包 含 必 要 的 地 震 信 号 特 征 ，还 具 备 一

定 的 随 机 性 和 鲁 棒 性 ，以 提 升 模 型 的 泛 化 能 力 .
在本次研究中，对于标签的设计，将 2 048 个点

按 照 步 长 为 8 的 方 式 缩 小 ，即 输 出 和 标 签 长 度 为

256，从 而 直 接 减 少 计 算 开 销 . 但 对 于 每 一 个 目 标

点而言不一定都可以被 8 整除，因此为了获取准确

的到时位置需要添加一个补偿，用于描述缩小尺寸

后 的 到 时 点 与 真 实 到 时 点 之 间 的 距 离 . 因 此 模 型

标 签 包 含 分 类 标 签 以 及 补 偿 标 签 ，分 类 标 签 用 于

区 分 噪 声 、P 波 、S 波 ，补 偿 标 签 用 于 标 记 当 前 到 时

距 离 与 真 实 到 时 之 间 的 点 数 . 在 分 类 标 签 中 ，将 当

前 输 入 的 震 相 到 时 点 处 设 置 为 类 别 1，前 后 一 个

点 处 设 置 为 -1，即 在 损 失 计 算 中 忽 略 该 点 的 损

失 . 在 补 偿 标 签 当 中 ，将 当 前 输 入 的 震 相 到 时 点

设 置 为 距 离 真 实 到 时 点 的 差 值 ，具 体 如 下 所 示 .

图 3　数据集信噪比及震中距分布

Fig.3　Distribution of lg(SNR) and epicentral distance of the dataset

图 4　地震事件分布

Fig.4　Distribution of seismic events
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式中：labelclass 代表分类标签，labeloffset 代表补偿标签，i

代表标签数据中的第 i 个点，Pidx 代表地震记录中的 P
波到时点，Sidx 代表地震记录中的 S 波到时点，Startidx

为 地 震 记 录 中 的 随 机 起 点 ，mod 表 示 取 模 运 算 .
2.2　实验设置　

本 研 究 中 模 型 基 于 Python 中 的 pytorch 库 实

现 ，输 入 尺 寸 设 计 为 2 048，（批 次 大 小）batch_size
设 置 为 64，优 化 器 采 用 adamw 优 化 器 ，学 习 率 设

置 为 0.000 1，采 用 余 弦 退 火 算 法 进 行 学 习 率 的 下

降 从 而 避 免 过 拟 合 .
在损失函数的选择上，考虑到地震波到时点相

对稀少，到时数据样本的数量与噪声相比存在显著

的 不 平 衡 ，而 焦 点 损 失（Focal Loss）能 够 有 效 减 少

易 分 类 样 本 的 损 失 贡 献 ，增 强 模 型 对 少 数 类（P 波

和 S 波）的 学 习 能 力 ，因 此 采 用 Focal Loss 用 于 分

类 的 损 失 计 算 . 对 于 单 个 序 列 中 的 每 一 个 时 间 点  
i ( i = 1，2，…，n )，焦点损失表示如下所示：

       Focal Loss (cx,C )= -∑
i

αCj(1 -

ecxi,Cj

∑k
ecxi,k ) γ

lg ( )ecxi,Cj

∑k
ecxi,k

,                                          (4)

式中：cx 代表模型输出中每个点被分类为 Cj 的概率

分布，C 代表该输出序列中每个点的真实分类，k 代

表 存 在 k 个 类 别 ，α 代 表 每 个 类 别 的 权 重 . 对 于 α 权

重的设置，本文根据抽取的样本分布情况设置为 1、

4、4.γ 是对于难以识别样本的调节因子，设置越大则

难以识别样本偏差较大时产生的损失就越大，本文

设置与 Focal Loss 的论文一致（Lin et al.， 2017）.
对 于 补 偿 值 的 训 练 是 一 个 回 归 任 务 ，故 而 采

用 均 方 误 差（MSE）计 算 损 失 ，MSE 主 要 用 于 衡

量 预 测 补 偿 值 与 真 实 补 偿 值 之 间 的 差 异 . 为 了 只

针 对 关 键 点 进 行 计 算 ，引 入 了 一 个 符 号 函 数

t ( i)，当 第 i 个 点 的 真 实 类 别 为 P 波 或 S 波 时 为 1，

否 则 为 0. 方 法 如 式（5）所 示 ：

      Offset Loss ( tx,T )= ∑
i

t ( i) ( txi - Ti) 2,           (5)

txi 代 表 模 型 输 出 中 每 个 可 能 为 震 相 到 时 点 的 补 偿

值，T 代表该输出序列中每个点的真实补偿值，t ( i)
是一个符号函数 . 最终的损失函数如下所示：

        
Loss (cx,tx,C,T )=
Focal Loss (cx,C )+ Offset Loss ( tx,T ),       (6)
本 文 采 用 焦 点 损 失 函 数 和 均 方 误 差 损 失 函

数 进 行 组 合 的 方 式 ，使 模 型 能 够 在 分 类 任 务 和 回

归 任 务 之 间 实 现 有 效 的 权 衡 ，提 升 整 体 性 能 .
本 次 对 比 实 验 中 基 线 模 型 选 择 为 LPPNL、

EQT 以 及 PhaseNet.LPPNL 模 型 是 Yu and Wang 
（2022）提 出 的 一 种 轻 量 化 震 相 识 别 模 型 ，在 保 持

较 小 计 算 开 销 和 模 型 参 数 量 的 同 时 保 证 了 较 高

的 识 别 精 度（Yu et al.， 2023）. EQT 模 型 是

Mousavi et al.（2020）提 出 的 一 种 基 于 Transformer
结 构 的 震 相 识 别 模 型 ，该 模 型 通 过 结 合 自 注 意 力

机 制 ，在 多 种 地 震 数 据 集 上 表 现 出 色 .PhaseNet
模 型 是 震 相 识 别 领 域 的 经 典 模 型 ，由 Zhu and 
Beroza（2018）提 出 的 一 种 基 于 Unet 结 构 的 震 相

识 别 模 型 . 为 了 实 现 公 平 对 比 ，这 三 个 模 型 的 输

入 尺 寸 全 部 调 整 为 了 2 048，其 他 参 数 与 原 模 型

一 致 ，对 于 LPPNL 的 Stride 参 数 本 文 设 置 为 8.
2.3　实验结果　

本 次 研 究 中 对 于 到 时 误 差 T error 的 计 算 具 体 如

下，将模型输出的到时点记为 T predict，实际 P 波或 S 波

到时记为 T true，到时误差 Terror的计算方式如下所示：

       T error = T predict - T true .                                                (7)
对 于 每 一 个 |T error |<=100 ms 的 样 本 被 认 为

正 确 识 别 ，对 于 |T error |>100 ms 的 样 本 则 认 为 被

识 别 为 了 噪 声 .
对 于 震 相 拾 取 任 务 而 言 ，不 仅 需 要 模 型 能

够 准 确 识 别 出 P 波 、S 波 等 不 同 震 相 的 类 型 ，同

时 要 保 证 到 时 识 别 的 精 确 性 ，因 此 评 价 震 相 拾

取 模 型 需 要 考 虑 其 分 类 性 能 和 到 时 定 位 的 综 合

能 力 . 对 于 分 类 性 能 的 评 估 ，本 文 采 用 常 见 的

分 类 模 型 评 价 标 准 即 精 度（Precision）和 召 回

率（Recall），精 度 越 接 近 于 1 ，则 代 表 模 型 识 别

准 确 率 越 高 ，召 回 率 越 接 近 于 1 ，则 代 表 模 型

识 别 得 越 全 面 . 对 于 定 位 能 力 本 文 主 要 考 虑
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T error 的均值与标准差，均值越接近于 0，则代表模型整

体的预测偏差越低；标准差越接近于 0，则代表模型的

预 测 偏 差 的 离 散 程 度 较 低 ，即 代 表 模 型 更 加 的 稳

定，也代表在模型输出中出现较大偏差的比例越低 .
4 个 模 型 的 分 类 性 能 在 验 证 集 上 的 评 估 结 果

如 表 1 所 示 . 由 表 1 可 见 ，SEN 模 型 在 P 波 的 识 别

上 取 得 了 较 高 的 精 度 和 召 回 率 ，表 明 模 型 对 于 P
波 事 件 的 识 别 具 有 较 高 的 精 确 度 ，能 够 稳 定 地

检 出 多 数 P 波 事 件 .S 波 的 精 度 略 低 于 LPPNL ，

但 召 回 率 指 标 相 对 于 其 他 3 个 对 照 模 型 得 到 了

显 著 提 升 ，表 明 本 文 模 型 对 震 相 特 征 的 提 取 能

力 较 强 ，对 S 波 的 识 别 相 比 其 他 模 型 更 加 全 面 .
模型的到时定位能力方面，P 波、S 波到时误差

的 均 值 和 标 准 差 如 表 2 所 示 .SEN 模 型 在 P 波 和 S
波的到时误差均值方面与 LPPNL、PhaseNet 相近，

显著优于 EQT. 在 P 波到时误差均值方面 ，SEN 略

高于 PhaseNet，但在 P 波到时误差的标准差上低于

PhaseNet 和 EQT，说 明 与 之 相 比 SEN 在 P 波 到 时

的稳定性上有所提高，但比 LPPNL 表现略差，可能

是 由 于 模 型 在 设 计 上 更 加 关 注 召 回 率 和 精 度 .
在 S 波到时定位上，SEN 模型的误差均值略高

于 LPPNL，略 低 于 PhaseNet，显 著 优 于 EQT. 而 在

到时误差的标准差上相比于 LPPNL 略高，这可能是

由于 SEN 识别到了更多的 S 波 . 但综合分类性能来

看，SEN 在 S 波拾取上相比 3 个对照模型具有显著

提升，且在定位能力上能够达到对照模型的水平 .
4 个 模 型 的 参 数 量（Parameters）以 及 对 于 单 条

输 入 的 计 算 量（FLOPs）如 表 3 所 示 .SEN 模 型

相 比 于 LPPNL 和 EQT 的 计 算 量 都 有 所 减 少 ，

显 著 大 于 PhaseNet ，但 结 合 前 面 的 定 位 与 分 类

性 能 来 看 ，SEN 相 比 PhaseNet 在 识 别 性 能 与 误

差 控 制 上 有 显 著 提 升 ，显 示 出 较 强 的 综 合 竞 争

力 . 同 时 从 参 数 量 的 绝 对 数 量 上 来 讲 也 能 够 支

持 计 算 资 源 受 限 的 应 用 场 景 ，这 对 于 利 用 边 缘

设 备 对 地 震 进 行 更 精 确 的 实 时 监 控 、快 速 处 理

大 量 地 震 数 据 的 在 线 系 统 将 具 有 重 要 价 值 .
4 个 模 型 的 训 练 时 间 和 推 理 时 间 如 表 4 所 示 ，

实 验 所 采 用 的 硬 件 为 NVIDIA RTX 2070（8 GB 显

存）. 推 理 时 间 统 计 为 模 型 处 理 全 部 测 试 集 样 本

（共 59 904 条）的 总 耗 时 ，仅 计 算 模 型 运 行 时 间 ，排

除 了 数 据 预 处 理 、I/O 加 载 等 非 核 心 环 节 ，以 尽 可

能 消 除 CPU、内 存 占 用 等 外 部 因 素 对 评 估 结 果 的

干 扰 ，从 而 更 加 客 观 地 反 映 模 型 本 身 的 计 算 效 率 .
从训练耗时来看，SEN 模型在完整训练过程中

耗 时 为 3 972.91 s，低 于 LPPNL 和 EQT，但 相 较 于

参数量最少的 PhaseNet 仍高出近一倍 . 虽然训练耗

时 较 PhaseNet 更 长 ，但 SEN 仍 然 保 持 一 个 较 低 训

练 耗 时 的 水 平 ，并 且 能 够 获 得 更 高 的 识 别 精 度 与

稳 定 性 ，展 现 出 良 好 的 训 练 效 率 与 性 能 折 中 能 力 .
在 推 理 阶 段 ，SEN 模 型 耗 时 4.48 s 完 成 全 部

测 试 集 的 推 理 ，优 于 EQT ，与 LPPNL 相 当 ，高 于

PhaseNet. 虽 然 在 推 理 时 间 上 还 有 所 不 足 ，但 结

合 参 数 量 以 及 分 类 和 定 位 能 力 分 析 ，SEN 可 以

在 计 算 资 源 占 用 较 小 的 情 况 下 得 到 更 好 的 分

类 和 定 位 性 能 ，且 每 秒 推 理 样 本 数 量 上 也 基 本

能 够 满 足 对 实 时 性 要 求 较 高 的 地 震 监 测 任 务 .

表 4　模型运行效率对比

Table 4　Model runtime efficiency

模型

SEN
LPPNL

EQT
PhaseNet

训练耗时(s)
3 972.91
4 646.87

11 008.08
2 154.90

推理耗时(s)
4.48
4.89

26.73
3.70

表 3　模型参数量与计算量对比

Table 3　Parameters and FLOPs

模型

SEN
LPPNL

EQT
PhaseNet

参数量

0.35 M
0.66 M
2.59 M
0.17 M

FLOPs
71.38 M

111.98 M
87.91 M
17.06 M

表 1　模型各项指标

Table 1　Performance of the models

模型

SEN
LPPNL

EQT
PhaseNet

Precision
P 波

0.956 9
0.943 4
0.935 0
0.823 0

S 波

0.879 8
0.881 5
0.873 4
0.878 2

Recall
P 波

0.889 7
0.863 2
0.854 1
0.764 0

S 波

0.772 5
0.720 8
0.702 7
0.703 0

表 2　到时误差均值以及标准差

Table 2　Mean and standard deviation of arrival time errors

模型

SEN
LPPNL

EQT
PhaseNet

Mean（ms）
P 波

18.76
18.81
23.90
18.51

S 波

26.13
25.97
30.62
26.63

Std（ms）
P 波

27.13
27.71
32.76
28.41

S 波

36.14
35.18
40.11
36.81
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综上所述，本文提出的 SEN 模型在分类性能和

到时定位精度方面相对优于几个对照模型 . 本文模

型在 P 波上具有更高的分类性能，且定位能力能够

达到对照模型的水平，在 S 波上具有显著提升的分

类 性 能 ，且 能 在 维 持 高 分 类 精 度 的 同 时 ，较 好 地 控

制到时误差的波动范围，有助于提升后续地震定位

的 精 度 和 稳 定 性 . 虽 然 相 比 PhaseNet 在 轻 量 化 上

具 有 一 定 的 不 足 ，但 SEN 模 型 相 比 LPPNL 以 及

EQT 模型在参数量方面显著降低，降低了对计算资

源的要求，在计算开销方面也有一定程度的减少 . 这

意味着在保证高精度的前提下，本文模型具有快速

训练、快速推理以及资源占用更低的优势，可为大规

模 地 震 相 检 测 与 实 时 分 析 提 供 有 力 的 技 术 支 持 .
2.4　消融实验　

为 验 证 EMA 模 块 和 STFT 模 块 对 模 型 性 能

的 影 响 ，设 计 了 消 融 实 验 ，对 比 不 同 模 型 配 置 下 的

性 能 表 现 . 本 次 实 验 共 设 置 了 4 个 模 型 配 置 ，具 体

为 ：（1）基 本 模 型 ：在 此 模 型 中 ，移 除 了 注 意 力 机 制

和 STFT 模 块 ，仅 保 留 基 本 的 网 络 结 构 ，用 于 提 取

时 域 信 号 的 特 征 .（2）仅 加 入 注 意 力 模 块 ：在 基 本

模 型 的 基 础 上 ，加入 EMA 注意力模块，旨在验证注

意 力 机 制 对 模 型 性 能 的 提 升 .（3）仅 加 入 STFT 模

块 ：在 基 本 模 型 中 ，加 入 STFT 模 块 以 提 取 频 域 特

征，但不使用注意力机制，评 估 时 频 信 息 对 模 型 的

影 响 .（4）完 整 模 型 ：即 本 文 提 出 的 模 型 ，同 时 结 合

了 EMA 注 意 力 机 制 和 STFT 模 块 ，旨 在 充 分 利 用

时域和时频信息，提升模型性能 .
在相同条件下，对以上 4 种模型进行了训练和

测 试 ，每 个 模 型 均 训 练 相 同 次 数 ，且 使 用 相 同 的 数

据 集 进 行 验 证 . 首 先 对 各 模 型 在 分 类 性 能（Preci⁃
sion、Recall）上的表现进行比较，然后再分析其在定

位 精 度（到 时 误 差 均 值 与 标 准 差）方 面 的 差 异 .
表 5 为不同模型的分类性能对比情况，4 个模型

在 P 波识别任务上的精度都达到了 0.95 左右，表明

模型对于 P 波的识别精度已经达到了较高的水平，

从 召 回 率 上 看 也 能 够 检 测 出 大 部 分 的 P 波 ，然 而 4
个模型对于 S 波的表现均相对较差 . 基本模型在 P
波召回率指标上虽然已经取得了较高水平，但仍存

在一定提升空间 .在基本模型中加入注意力机制后，P波

和 S 波的召回率都有所提升 . 这种提升很可能是由于

EMA 注意力机制能够突出输入信号中的关键时域特

征，使模型在识别关键震相特征时更为准确和全面 .
基本模型中仅加 STFT 模块后，P、S 波的召回率指标

也均有所提升，说明通过引入频域信息，模型可从多

维度信号特征中提取出更易区分震相的模式，从而提

高分类性能 . 完整模型在各项指标上得到了进一步的

提升，说明当时域与频域特征结合注意力机制的引导

后模型能够更加全面地识别震相事件，但精度相比仅加

入 STFT模块的模型而言略微下降 .整体而言注意力机

制与 STFT 模块的联合使用在分类性能上起到了互补

的效果，使得模型识别 S 波的能力得到了显著提升 .
表 6 为不同模型下震相到时定位精度的对比情

况 . 在 使 用 基 本 模 型 时 ，P 波 、S 波 的 到 时 误 差 均 值

与标准差相对较大，表明模型在震相到时定位方面

存 在 较 大 的 不 确 定 性 和 误 差 波 动 . 加 入 注 意 力 后 ，

震相到时的误差均值和标准差都有一定程度降低，

这 意 味 着 模 型 在 重 要 时 序 片 段 的 聚 焦 能 力 方 面 较

基本模型有所增强，从而在定位特征提取上更加精

准 ，减 少 了 整 体 定 位 误 差 的 波 动 . 仅 加 入 STFT 模

块 的 模 型 也 同 样 降 低 了 震 相 到 时 定 位 误 差 的 均 值

和标准差，且对 P 波的定位能力得到了显著提升，在

S 波定位方面表现与仅加入注意力的模型相当，表

明 仅 加 入 STFT 模 块 后 模 型 可 以 从 频 域 分 辨 出 特

定震相的频谱特征，从而更精确地捕捉震相起始点

位置，使到时预测更接近真实值 . 在完整模型中，P
波到时定位误差的均值和标准差均大于仅加入 ST⁃
FT 模块的模型，说明完整模型在整合多个模块时，

可能牺牲了一部分对特定模式的识别能力，转为更

泛化的发现异常，提升了对整体震相模式的建模能

力和泛化能力 . 同时注意力机制引入了更强的通道

表 6　消融实验模型到时误差

Table 6　Arrival time errors of ablation study models

模型配置

基本模型

仅加入注意力

仅加入 STFT
完整模型

Mean（ms）
P 波

20.67
19.53
16.09
18.76

S 波

27.77
27.53
27.39
26.13

Std（ms）
P 波

29.04
28.83
23.53
27.13

S 波

36.36
36.03
36.24
36.14

表 5　消融实验模型评价

Table 5　Evaluation of ablation study models

模型配置

基本模型

仅加入注意力

仅加入 STFT
完整模型

Precision
P 波

0.948 1
0.953 2
0.963 6
0.957 9

S 波

0.845 1
0.879 3
0.882 1
0.879 8

Recall
P 波

0.841 8
0.868 9
0.870 1
0.889 7

S 波

0.681 2
0.732 6
0.717 0
0.772 5
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间 依 赖 关 系 ，也 可 能 在 特 定 情 形 下 弱 化 了 模 型

对 P 波 局 部 突 变 特 征 的 直 接 响 应 . 但 结 合 分 类

性 能 来 看 ，完 整 模 型 在 S 波 的 精 度 与 召 回 率 上 有

显 著 提 升 ，其 在 定 位 精 度 与 分 类 稳 定 性 之 间 实 现

了 较 好 的 平 衡 . 在 实 际 应 用 中 ，特 别 是 在 高 噪 声 、

复 杂 波 形 环 境 中 ，这 种 综 合 性 能 更 为 重 要 .

3 结论与展望  

3.1　总结　

本 文 提 出 了 一 种 基 于 深 度 学 习 的 地 震 震 相

拾 取 模 型 ，该 模 型 结 合 了 高 效 多 尺 度 注 意 力 机 制

和 短 时 傅 里 叶 变 换 ，有 效 解 决 了 传 统 方 法 在 处 理

地 震 信 号 时 频 域 信 息 利 用 不 足 和 复 杂 模 式 下 震

相 捕 捉 能 力 有 限 的 问 题 . 通 过 引 入 双 分 支 架 构 ，

模 型 能 够 独 立 提 取 时 域 和 频 域 的 特 征 ，并 通 过

EMA 模 块 对 关 键 特 征 进 行 多 尺 度 强 化 ，从 而 提

升 震 相 识 别 的 精 度 和 召 回 率 . 实 验 结 果 表 明 ，本

文 提 出 的 模 型 在 震 相 分 类 精 度 、召 回 率 及 定 位

误 差 等 方 面 均 表 现 出 较 好 的 效 果 ，尤 其 在 高 噪

声 环 境 下 展 现 了 较 强 的 鲁 棒 性 .
3.2　未来工作　

尽 管 本 研 究 在 震 相 识 别 精 度 和 计 算 效 率 方 面

取 得 了 显 著 进 展 ，但 仍 有 进 一 步 优 化 的 空 间 . 未 来

的 工 作 可 以 从 以 下 几 个 方 面 进 行 深 入 探 索 ：

（1）扩展到更复杂的观测环境：当前实验主要基

于 STEAD 的公开地震数据集，这不足以应对更丰富

的 真 实 地 震 . Jiang et al.（2021）比 较 了 PhaseNet 与

EQT 在漾濞和玛多地震序列中的检测能力，发现这

两个模型在实践中出现了不同程度的泛化性问题 .
因 此 未 来 在 实 际 应 用 前 ，模 型 应 在 更 大 规 模 、更 复

杂观测环境产出的数据集中训练和测试，以验证其

适用性和泛化能力 . 特别是在不同震源类型和复杂

噪声条件下，模型的表现可能需要进一步评估 .
（2）改 进 频 域 特 征 提 取 模 块 ：虽 然 STFT 提 供

了有效的时频信息，但它仍然存在窗口大小选择和

频率分辨率的折中问题 . 未来可以探索其他时频分

析方法，如小波变换方法或自适应改进 STFT 的参

数设置，以进一步提升对复杂信号特征的捕捉能力 .
（3）多 任 务 联 合 建 模 ：目 前 的 模 型 主 要 应 用

于 震 相 识 别 方 面 ，而 在 实 践 中 模 型 性 能 往 往 较

弱 ，因 此 可 以 采 用 集 成 多 个 模 型 分 别 监 测 不 同 物

理 量 从 而 联 合 监 测 同 一 事 件 . 例 如 蒋 策 等（2024）

针 对 当 前 主 流 模 型 在 加 速 度 数 据 上 性 能 较 弱 的

问 题 ，基 于 PhaseNet 提 出 了 两 个 分 别 适 配 速 度

与 加 速 度 记 录 的 模 型 ，并 构 建 了 完 整 的 地 震 自

动 处 理 流 程 ，在 新 丰 江 水 库 实 际 地 震 中 取 得 了

3.8 倍 于 人 工 目 录 的 检 测 数 量 . 未 来 还 可 以 尝 试

将 震 相 拾 取 与 其 他 地 震 学 任 务（如 震 源 定 位 、震 级

估 计 等）进 行 联 合 建 模 ，提 升 模 型 的 综 合 性 能 . 这

样 不 仅 能 够 提 高 地 震 事 件 检 测 的 准 确 性 ，还 可

以 为 震 后 分 析 和 应 急 响 应 提 供 更 全 面 的 支 撑 .
（4）模 型 部 署 与 实 时 应 用 ：为 了 使 模 型 适 应

实 际 的 地 震 监 测 需 求 ，未 来 还 需 进 一 步 优 化 模 型

的 推 理 速 度 和 计 算 资 源 消 耗 ，确 保 其 在 实 时 数 据

流 中 的 快 速 响 应 能 力 . 同 时 ，针 对 边 缘 计 算 平 台

的 部 署 ，还 可 以 通 过 模 型 压 缩 和 加 速 技 术 ，进

一 步 降 低 计 算 开 销 ，提 高 模 型 的 实 际 应 用 价 值 .
总 的 来 说 ，本 文 提 出 的 SEN 模 型 在 地 震 信 号

自 动 化 识 别 与 处 理 方 面 为 地 震 学 研 究 提 供 了 新

的 思 路 和 技 术 支 持 . 随 着 更 多 数 据 的 积 累 和 算 法

的 不 断 优 化 ，未 来 该 模 型 有 望 在 实 际 应 用 尤 其

在 实 时 地 震 监 测 和 早 期 预 警 系 统 中 发 挥 作 用 .
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