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摘 要： 中国地震仪器烈度预测对我国地震预警和减灾至关重要，但传统方法存在精度不足、多源数据融合不充分等问题 . 本

研究旨在构建一种多模态深度学习模型，探索在中国地区对于地震仪器烈度预测的可行性，提升地震预警中仪器烈度预测的

准确性和鲁棒性 . 建立多模态中国仪器烈度预测网络（MCIINet），采用中国地震台网记录的地震事件对 MCIINet 进行训练和

测 试 . 实 验 表 明 ：在 测 试 数 据 集 上 ，P 波 触 发 后 3 s，和 基 线 模 型 相 比 ，MCIINet 对 于 仪 器 烈 度 预 测 的 MAE 和 RMSE 分 别 降

低 了 9.03% 和 8.67% 、R2 和 准 确 率 分 别 提 升 了 9.10% 和 2.51%.MCIINet 通 过 多 模 态 深 度 特 征 融 合 有 效 提 升 了 仪 器 烈 度

预 测 精 度 ，验 证 了 多 模 态 深 度 学 习 对 于 我 国 地 震 仪 器 烈 度 预 测 的 可 行 性 ，可 为 地 震 预 警 中 仪 器 烈 度 预 测 提 供 技 术 支 撑 .
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Abstract: The Chinese seismic instrument intensity prediction is crucial for earthquake early warning (EEW) and hazard mitigation 
in China, but traditional methods suffer from issues such as insufficient accuracy and insufficient fusion of multi-source data. This 
study aims to construct a multimodal deep learning model, explore its feasibility for predicting seismic instrument intensity in 
China, and improve the accuracy and robustness of instrument intensity prediction for EEW. A Multimodal Chinese Instrument 
Intensity prediction Network (MCIINet) is proposed, which is trained and tested by the seismic events recorded by China 
Earthquake Networks Center. Experiments have shown that on the test dataset, compared to the baseline model at 3 s after P-

wave triggering, MCIINet reduced MAE and RMSE of instrument intensity prediction by 9.03% and 8.67%, respectively, and 
improved R2 and accuracy by 9.10% and 2.51%, respectively. MCIINet has effectively improved the accuracy of intensity 
prediction through multimodal deep feature fusion, verifying the feasibility of multimodal deep learning for seismic instrument 
intensity prediction in China, and providing technical support for instrument intensity prediction in EEW.
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0 引言  

地 震 作 为 最 具 破 坏 性 的 自 然 灾 害 之 一 ，对 人

类 生 命 财 产 安 全 和 社 会 稳 定 构 成 严 峻 威 胁 . 地 震

预 警 作 为 减 轻 地 震 灾 害 的 重 要 手 段 之 一 ，地 震 预

警 系 统 在 破 坏 性 地 震 波 到 达 目 标 场 地 之 前 预 测 地

震 可 能 造 成 的 破 坏 程 度 ，并 向 公 众 发 布 预 警 信 息

（李 山 有 等 ， 2004； 马 强 等 ， 2008； Allen and Mel⁃
gar， 2019）. 目 前 ，许 多 地 震 频 发 的 国 家 和 地 区 都

已 开 始 运 行 或 测 试 地 震 预 警 系 统 ，并 进 一 步 验 证

地 震 预 警 对 于 地 震 减 灾 的 重 要 性（Erdik et al.， 
2003； Peng et al.， 2020； Wu et al.， 2021； 吕 帅

等 ， 2024； McGuire et al.， 2025）. 地 震 仪 器 烈 度

（本 文 后 面 统 称 为 仪 器 烈 度）是 用 观 测 台 站 记 录 的

地 震 动 数 据 计 算 地 震 对 台 站 所 在 场 地 影 响 的 强 弱

程 度 ，可 以 客 观 反 映 地 震 对 房 屋 建 筑 、生 命 线 工 程

等 造 成 的 破 坏 程 度（Wald et al.， 1999a； 金 星 等 ， 
2013）. 仪 器 烈 度 预 测 是 地 震 预 警 系 统 的 关 键 技 术

环 节 ，其 目 标 是 通 过 地 震 初 期 信 号（如 P 波）快 速

估 算 地 震 动 强 度 ，为 公 众 和 关 键 设 施 争 取 宝 贵 的

应 急 响 应 时 间 ，对 于 震 后 救 援 、灾 情 处 置 等 方 面 也

起 到 非 常 重 要 的 作 用（宋 晋 东 ， 2013； 张 红 才 ， 
2013）. 因 此 ，发 展 高 效 、精 准 的 仪 器 烈 度 预 测 技

术 ，成 为 我 国 防 震 减 灾 体 系 建 设 的 核 心 任 务 之 一 .
快 速 且 可 靠 地 获 取 地 震 烈 度 图 对 于 震 后 灾 情

快 速 评 估 、救 援 部 署 等 具 有 重 要 意 义（Chen et al.， 
2023a）. 一些学者提出基于密集远场地震台阵的地

震烈度预测方法，通过利用密集远场地震台阵和反

投影法对震源破裂过程进行成像，再结合地震动参

数 衰 减 模 型 GMPE 快 速 获 取 地 震 烈 度 图（Chen et 
al.， 2022； 吴 佳 杰 等 ， 2025）；此 外 ，美 国 地 质 调 查

局 提 出 的 ShakeMap 通 过 对 地 震 台 站 的 实 测 地 震

动 参 数 和 地 震 动 参 数 衰 减 模 型 GMPE 的 预 测 值 进

行 加 权 处 理 ，以 快 速 预 测 震 后 的 地 震 烈 度 图（Wald 
et al.， 1999b； Wald et al.， 2022）. 快 速 获 取 可 靠 的

仪器烈度对于地震烈度图的预测也是非常重要的 .
传 统 的 仪 器 烈 度 预 测 方 法 主 要 依 赖 单 一 P 波 物 理

参 数 或 经 验 公 式（马 强 等 ， 2014； Caruso et al.， 
2017）.Wu and Kanamori（2005）发 现 P 波 触 发 后 3 s
的 峰 值 位 移（Peak displacement， Pd）携 带 了 即 将 到

来 的 地 震 动 强 度 信 息 ，并 建 立 Pd 与 地 震 动 峰 值 速

度的经验关系；Brondi et al.（2015）发现 P 波的速度

平 方 积 分（squared velocity integral， IV2）与 地 震 动

峰 值 速 度 和 仪 器 烈 度 存 在 较 好 的 相 关 性 . 但 是 传

统 的 仪 器 烈 度 预 测 方 法 存 在 一 定 的 局 限 性 ，单 参

数 难 以 全 面 表 征 地 震 动 的 复 杂 时 空 特 性 ，以 及 经

验 公 式 依 赖 人 工 特 征 工 程 ，对 噪 声 干 扰 和 复 杂 地

质 条 件 适 应 性 差 等 . 这 些 问 题 可 能 导 致 传 统 方 法

对 于 仪 器 烈 度 预 测 具 有 较 大 的 误 差 和 不 确 定 性 .
近 年 来 ，随 着 人 工 智 能 技 术 的 快 速 发 展 ，机 器

学 习 方 法 在 地 球 科 学 以 及 地 震 学 领 域 得 到 应 用 和

研 究（于 子 叶 等 ， 2018； 宋 晋 东 等 ， 2021； 赵 明 等 ， 
2021； 王 墩 和 孙 琨 ， 2022； Mousavi and Beroza， 
2023； 蒋策等， 2024）. 同时，仪器烈度预测领域也逐

渐 从 传 统 物 理 模 型 向 数 据 驱 动 方 法 过 渡（李 水 龙 ， 
2014； Jozinović et al.， 2020； Kubo et al.， 2020； 李
山 有 等 ， 2024a； 郑 周 等 ， 2024； Jiang et al.， 2025）.
早 期 研 究 多 采 用 线 性 回 归 、极 限 梯 度 提 升（XG⁃
Boost）等机器学习模型，通过人工筛选特征（如 P 波

峰 值 位 移 、速 度 平 方 积 分 等）建 立 预 测 关 系（Hsu et 
al.， 2013； Zhu et al.， 2022； 李 水 龙 等 ， 2023）. 例

如 ，李 山 有 等（2024b）建 立 了 多 特 征 输 入 的 仪 器 烈

度 阈 值 判 别 XGBoost 模 型 ，结 果 表 明 ，和 传 统 的 Pd

方法相比，XGBoost 模型可以更加准确地预测仪器

烈度是低还是高 . 深度学习技术的引入为仪器烈度

预测带来了新思路 . 以长短期记忆网络（LSTM）和

卷积神经网络（CNN）为代表的模型，能够从时域或

频 域 信 号 中 自 动 提 取 高 阶 特 征 . 例 如 ，Zhang et al.
（2022）建 立 了 一 个 基 于 卷 积 神 经 网 络 的 现 地 烈 度

预 测 CONIP 模 型 ，使 用 卷 积 神 经 网 络 从 台 站 记 录

的原始的地震波形中提取时域特征，进而输出预测

的仪器烈度 . 胡进军等（2023）提出了一个基于长短

期记忆网络（LSTM）的仪器烈度预测模型，并将台

站 记 录 的 三 分 量 的 地 震 动 时 域 数 据 作 为 模 型 的 输

入 .Zhu et al.（2023）建立了一个基于双向门控循环

神经网络的地震动峰值预测模型，并将人工从 P 波

信号中提取的多个特征作为模型输入，基于模型预

测 PGA 和 PGV 计算最终预测的仪器烈度 . 然而，现

有 的 机 器 学 习 、深 度 学 习 模 型 仍 存 在 一 些 不 足 ，数

据模态单一，多数模型仅利用时域波形或频谱数据

或多个人工定义的 P 波特征，未能充分融合地震事

件的多维度信息，特征交互不足，不同模态数据间缺
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乏 有 效 的 特 征 交 互 机 制 . 此 外 ，现 有 研 究 多 基 于 国

际 公 开 数 据 集 ，缺 乏 针 对 中 国 区 域 地 震 动 特 性 的

针 对 性 优 化 ，因 此 ，探 索 建 立 适 用 于 中 国 地 区 的

深 度 学 习 仪 器 烈 度 预 测 模 型 是 非 常 有 意 义 的 .
多模态深度学习是人工智能领域的重要分支，

其 核 心 思 想 是 通 过 联 合 学 习 异 构 数 据 源（如 图 像 、

文本、时序信号）的互补信息，提升模型的表征能力

与 泛 化 性 能（Guzhov et al.， 2022； Jabeen et al.， 
2023）. 在 医 疗 诊 断 、自 动 驾 驶 、自 然 语 言 处 理 等 领

域 ，多 模 态 融 合 已 展 现 突 破 性 进 展（Rastgoo et al.， 
2019 ； Behrad and Abadeh ， 2022 ； Stahlschmidt et 

al.， 2022 ； Mousavi et al.， 2025）. 例 如 ，Chen et 

al.（2023b）提 出 了 一 个 基 于 多 模 态 的 全 球 中 期

天 气 预 报 系 统 ，通 过 处 理 气 象 领 域 中 湿 度 、风 、温

度 等 不 同 模 态 的 气 候 数 据 ，进 而 获 取 更 加 多 元 和

丰 富 的 信 息 ，以 提 高 模 型 对 于 天 气 预 报 的 精 度 .
为 了 探 索 多 模 态 深 度 学 习 方 法 在 中 国 地 区

对 于 地 震 仪 器 烈 度 预 测 的 可 行 性 以 及 提 高 我 国

地 震 仪 器 烈 度 预 测 的 准 确 性 ，本 文 提 出 了 一 种 多

模 态 中 国 仪 器 烈 度 预 测 网 络（Multimodal Chinese 
Instrument Intensity prediction Network， MCI⁃
INet），针 对 地 震 动 频 谱 、时 域 及 文 本（Pd 、IV2 等）

三 类 异 构 多 模 态 数 据 ，设 计 了 不 同 模 态 数 据 对 应

的 编 码 器 结 构（时 域 编 码 器 、频 谱 编 码 器 、文 本 编

码 器），通 过 注 意 力 机 制 动 态 融 合 多 模 态 特 征 ，解

决 传 统 模 型 的 特 征 交 互 不 足 问 题 . 使 用 中 国 地 震

台 网 记 录 的 强 震 数 据 对 MCIINet 进 行 训 练 和 测

试 . 基 于 相 同 的 测 试 数 据 集 ，本 研 究 分 析 了 MCI⁃
INet 在 P 波 触 发 后 3 s 对 于 仪 器 烈 度 预 测 的 性 能 ，

并 和 基 线 模 型 的 仪 器 烈 度 预 测 结 果 进 行 了 对 比 .

1 地震数据和处理  

1.1　地震数据基本信息　

本 研 究 采 用 中 国 地 震 台 网 记 录 的 发 生 在 中 国

地区的地震事件，覆盖区域经度为 71°~126°E、纬度

为 19°~49°N，时间跨度为 2007 年至 2020 年，包含震

级 范 围 MS3.0~ MS7.0 的 1 629 次 地 震 事 件 ，涉 及    
24 204 条三分量加速度记录，加速度记录的采样率

为 100 Hz. 本研究为了防止地震数据在训练过程中

的信息泄露，根据发震时间和地震事件进行数据集

的 划 分 ，将 2007 年 至 2016 年 发 生 的 地 震 事 件 划 分

为训练数据集，包含 1 246 次地震事件，涉及 17 028
条 三 分 量 加 速 度 记 录 ；将 2017 年 至 2020 年 发 生 的

地 震 事 件 划 分 为 测 试 数 据 集 ，包 含 383 次 地 震 事

件 ，涉 及 7 176 条 三 分 量 加 速 度 记 录 . 图 1a 展 示 了

训 练 数 据 集 的 地 震 事 件 震 中 和 台 站 分 布 ，图 1b 展

示 了 测 试 数 据 集 的 地 震 事 件 震 中 和 台 站 分 布 . 同

时，本研究没有依据震中距和信噪比对地震动记录

进 行 筛 选 ，图 2a~2c 和 图 2d 分 别 展 示 了 训 练 集 和

测试集中震中距、信噪比、震级和仪器烈度的分布 .
1.2　数据预处理　

台 站 记 录 的 原 始 强 震 动 加 速 度 数 据 需 经 过 以

下 预 处 理 步 骤 ：（1）对 原 始 的 三 分 量 强 震 动 加 速 度

记录进行基线校正；（2）采用马强等（2013）提出的 P
波自动捡拾算法对原始的竖向加速度记录进行 P 波

拾取，并对最终 P 波拾取结果进行人工校正，以确保

模 型 训 练 的 可 靠 性 ；（3）对 加 速 度 记 录 积 分 获 取 速

度记录，再对速度记录积分获取位移记录，并采用 4
阶 0.075 Hz 高 通 巴 特 沃 斯 滤 波 器 对 积 分 后 的 记 录

进 行 滤 波 ，以 消 除 积 分 造 成 的 低 频 漂 移 影 响（Peng 
et al.， 2017）；（4）依 据《中 国 地 震 烈 度 表》（GB/T ⁃

图 1　(a)训练数据集和(b)测试数据集的震中和台站分布

Fig.1　Distribution of epicenters and stations in the training dataset (a) and in the testing dataset (b)
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17742-2020），计 算 中 国 地 震 仪 器 烈 度 ，并 作

为 回 归 模 型 训 练 的 标 签（ 这 里 的 标 签 为 每 条

地 震 记 录 对 应 的 仪 器 烈 度 数 值）.
1.3　多模态数据构建　

为了充分利用 P 波到达后的数据信息，本研究

采用的 P 波到达后的多模态数据包括时域数据、频

谱 数 据 和 文 本 数 据 . 时 域 数 据 为 P 波 到 达 后 4 阶

0.075 Hz 巴特沃斯滤波器高通滤波后的 3 分量的加

速 度 波 形 ；频 谱 数 据 是 通 过 对 P 波 到 达 后 的 3 分 量

的加速度波形进行快速傅里叶变换，根据傅立叶变

换出现的实部和虚部进行模长运算，进而得到每个

频率分量的振幅；文本数据是根据前人的相关研究

通过对 P 波信号计算得到的 12 个 P 波物理参数，包

括峰值速度 Pv（Wu and Kanamori， 2005）、峰值加速

度 Pa（Wu and Kanamori， 2005）、峰 值 位 移 Pd（Wu 
and Kanamori， 2005）、阿 里 亚 斯 烈 度 IA（Arias， 
1970）、位 移 平 方 积 分 ID2（Wang and Zhao， 2018）、

速 度 平 方 积 分 IV2（Brondi et al.， 2015）、加 速 度 平

方 积 分 IA2（Festa et al.， 2008）、竖 向 加 速 度 之 和

SVA（Song et al.， 2023）、竖向位移之和 SVD（Song 
et al.， 2023）、竖 向 速 度 之 和 SVV（Song et al.， 
2023）、累 积 绝 对 速 度 CAV（Reed and Kassawara， 
1990）、累积能量变化率 PIV（Nakamura， 2003）. 由于

前人已经对这些文本数据做了详细的介绍，这里不

图 3　(a)时域数据和(b)频谱数据的样例

Fig.3　Examples of (a) time-domain data and (b) spectrum data

图 2　训练数据集和测试数据集的(a)震中距、(b)信噪比、(c)震级和(d)仪器烈度的分布

Fig.2　Distribution of (a) epicentral distance, (b) signal-to-noise ratio, (c) magnitude, and (d) instrument intensity for the training 
and testing datasets
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再赘述 . 图 3a 和图 3b 分别展示了时域数据和频谱数

据的样例，图 3a 中横坐标 0 表示 P 波到达时刻 . 同时，

本研究未对输入数据采取数据增强和归一化处理 .

2 方法  

2.1　多模态中国仪器烈度预测网络　

多模态深度学习是一种结合多种数据模态（如

图 像 、文 本 、音 频 、视 频 、传 感 器 数 据 等）进 行 联 合

建 模 的 机 器 学 习 方 法（Jabeen et al.， 2023）. 其 核 心

思 想 是 通 过 深 度 学 习 模 型 从 不 同 模 态 的 数 据 中 提

取互补信息，并融合这些信息以提升模型的整体性

能 . 与 传 统 的 单 模 态 方 法 不 同 ，多 模 态 深 度 学 习 能

够更全面地理解复杂场景，解决单一数据源信息不

足 或 噪 声 干 扰 的 问 题 . 为 了 探 索 多 模 态 深 度 学 习

在 中 国 地 区 对 于 地 震 仪 器 烈 度 预 测 的 可 行 性 以 及

提高我国地震仪器烈度预测的准确性，本文构建了

多模态中国仪器烈度预测网络（MCIINet），利用地

震 动 频 谱 、时 域 及 文 本 三 类 异 构 多 模 态 数 据 ，并 设

计 不 同 模 态 数 据 下 对 应 的 编 码 器 结 构（时 域 编 码

器 、频 谱 编 码 器 、文 本 编 码 器），通 过 全 局 注 意 力 机

制 动 态 融 合 多 模 态 特 征 ，解 决 传 统 模 型 的 特 征 交

互 不 足 问 题 . 图 4 展 示 了 MCIINet 的 网 络 架 构 .
MCIINet 的 时 域 编 码 器 由 3 个 1 维 卷 积 层

（Conv1D）、3 个 1 维 最 大 池 化 层（MaxPool⁃
ing1D）、1 个 双 向 门 控 单 元 层（BiGRU）和 2 个

Dropout 层 组 成 . 作 为 时 域 编 码 器 输 入 的 是 1.3 节

多 模 态 数 据 构 建 中 介 绍 的 P 波 触 发 后 3 s 的 时 域

数 据 ，输 入 形 状 表 示 为［300，3］的 矩 阵 ，300 表 示 P
波 触 发 后 3 s 的 时 域 数 据 300 个 采 样 点（采 样 率 为

100），3 表 示 UD、EW 和 NS 三 个 分 量 的 数 据 . 最 终

通 过 时 域 编 码 器 输 出 提 取 的 一 维 时 域 特 征 向 量 .
MCIINet 的频谱编码器由 2 个 Conv1D 层、2 个

MaxPooling1D 层 、2 个 BiGRU 层 和 2 个 Dropout 层

组 成 . 作 为 频 谱 编 码 器 输 入 的 是 1.3 节 多 模 态 数 据

构建中介绍的 P 波触发后 3 s 的频谱数据，输入形状

表 示 为［150， 3］的 矩 阵 ，150 表 示 P 波 触 发 后 的 3 s
的 频 谱 数 据 150 个 采 样 点 ，这 里 的 3 表 示 地 震 动 记

录 的 三 个 分 量（垂 直 分 量 和 两 个 水 平 分 量）. 最 终

通 过 频 谱 编 码 器 输 出 提 取 的 一 维 频 谱 特 征 向 量 .
MCIINet 的 文 本 编 码 器 由 2 个 全 连 接 层

（Dense）组 成 . 作 为 文 本 编 码 器 输 入 的 是 1.3 节

多 模 态 数 据 构 建 中 介 绍 的 P 波 触 发 后 3 s 的 文

本 数 据 ，输 入 形 状 表 示 为［12 ，1］的 一 维 向 量 ，

12 表 示 12 个 P 波 物 理 参 数 . 最 终 通 过 文 本 编 码

器 输 出 提 取 的 一 维 文 本 特 征 向 量 .
MCIINet 采 用 Concatenate 层 对 三 类 模 态 特

征 向 量 进 行 拼 接 ，实 现 跨 模 态 特 征 融 合 ；并 在

Concatenate 层 后 采 用 了 全 局 注 意 力 机 制 ，利 用

全 局 注 意 力 机 制 实 现 动 态 权 重 分 配 ，解 决 不 同

模 态 特 征 的 重 要 性 差 异 ，加 强 对 重 要 性 模 态 特

征 的 关 注 度 ，实 现 多 模 态 特 征 的 自 适 应 融 合 .

图 4　MCIINet 的网络架构

Fig.4　Network architecture of MCIINet
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全 局 注 意 力 的 具 体 实 现 步 骤 如 下 ：

（1）隐空间变换：通过一个全连接层将输入［B， D］

映射到隐空间［B， U］，并使用 tanh激活函数，如下：

         h = tanh ( X∙W 1 + b1 )， (1)
其 中 ，X∈RB×D（B ：批 次 大 小 ，D ：特 征 维 度）为 输

入 ，W1∈RD×U 表 示 权 重 矩 阵 ，b1∈RU 表 示 偏 置 向

量 ，h∈RB×U 为 隐 表 示 .
（2）注 意 力 分 数 计 算 ：再 通 过 一 个 全 连 接

层 将 隐 表 示 映 射 到［B ， D］，得 到 每 个 特 征 的

注 意 力 分 数 ，如 下 ：

         s = h∙W 2 + b2， (2)
其 中 ，W2∈RU×D 表 示 权 重 矩 阵 ，b2∈RD 表 示 偏 置 向

量 ，s∈RB×D 为 注 意 力 分 数 .
（3）归一化权重：对注意力分数采用 softmax 归

一化（沿特征维度 D），生成权重向量 α，确保每个样

本的特征权重和为 1，如下：

         α = softmax ( s )∈ RB × D . (3)
（4）特 征 加 权 ：将 输 入 X 与 归 一 化 的 权 重 逐

元 素 相 乘 ，得 到 加 权 后 的 特 征 .
注 意 力 机 制 后 连 接 了 2 个 Dense 层 . 第 1 个

Dense 层 的 神 经 元 数 为 32，激 活 函 数 是 ReLU；第 2
个 Dense 层 的 神 经 元 数 为 1，激 活 函 数 为 Linear，用

于 输 出 预 测 的 中 国 仪 器 烈 度 . 同 时 ，为 了 避 免 对

MCIINet 的介绍过于冗长，本研究已对 MCIINet 的

代 码 进 行 开 源 ，可 以 在 Github 上 获 取（https：//
github.com/Jingbaozhu1996/MCIINet），可以通过开

源代码了解 MCIINet 更加详细的结构和参数信息 .
2.2　模型训练　

本研究基于 TensorFlow 2.3 框架、python 3.6 版

本和 NVIDIA Quadro T1000 GPU，采用 1.1 节地震

数据基本信息中介绍的训练数据集对 MCIINet 进行

训练和验证 . 在训练过程中，采用“validation split=
0.1”函 数 随 机 将 10% 的 训 练 数 据 集 作 为 验 证 数 据

集 ；均方误差作为损失函数 ；使用 Adam 优化器，初

始学习率为 0.001；为优化 MCIINet 的学习率，采用

了学习率调度器，用于监测验证集的损失变化进而

自动调整学习率，以提升 MCIINet 训练的效率和性

能，当验证集的损失连续 5 次迭代后未改善时，学习

率 会 乘 以 0.1 并 作 为 当 前 更 新 后 的 学 习 率 ，以 便

MCIINet 更好的收敛；为防止 MCIINet 训练的过拟

合，采用了早停策略，若验证集的损失连续 10 次迭

代后未下降，MCIINet 将停止训练；MCIINet 训练采

用的批量大小为 128，最大迭代次数为 500.MCIINet

的 整 个 训 练 持 续 了 大 约 1 min 23 s. 附 录 图 A1 展

示 了 训 练 过 程 中 ，训 练 集 和 验 证 集 的 损 失 随 迭 代

次数变化的趋势 . 当训练迭代到 27 次时，验证损失

在 10 轮 迭 代 内 都 没 有 降 低 ，MCIINet 训 练 自 动 停

止 . 同 时 ，训 练 集 和 验 证 集 的 损 失 曲 线 是 非 常 接 近

的，这也说明 MCIINet 训练没有出现过拟合现象 .

3 结果和讨论  

3.1　模型测试结果　

在 P 波 触 发 后 3 s，图 5 展 示 了 MCIINet 在 测

试 集 上 的 仪 器 烈 度 预 测 结 果 ，烈 度 残 差 定 义 为 预

测 烈 度 减 去 实 测 烈 度 . 如 图 5a 所 示 ，MCIINet 预

测 烈 度 与 实 测 烈 度 的 散 点 分 布 集 中 在 1∶1 对 角

线 附 近 ，并 且 MCIINet 对 于 烈 度 预 测 的 决 定 系 数

R2 为 0.707，表 明 预 测 烈 度 与 实 测 烈 度 具 有 较 高

的 线 性 相 关 性 . 同 时 ，MCIINet 对 于 烈 度 预 测 的

平 均 绝 对 误 差（Mean Absolute Error，MAE）和 均

方 根 误 差（Root Mean Square Error，RMSE）分 别

是 0.584 和 0.737. 根 据 前 人 的 研 究（Otake et al.， 
2020； Ahn et al.， 2023； 胡 进 军 等 ， 2023），烈 度

残 差 在 ±1 度 范 围 内 被 认 为 是 成 功 预 测 烈 度 ，正

如 图 5a 中 灰 色 区 域 表 示 成 功 预 测 烈 度 区 域 ，黄 色

区 域 表 示 高 估 烈 度 区 域 ，蓝 色 区 域 表 示 低 估 烈 度

区 域 . 根 据 MCIINet 预 测 的 仪 器 烈 度 ，计 算 得 到

成 功 预 测 烈 度 的 占 比 为 83.32% ，高 估 烈 度 的 占

比 为 8.28% ，低 估 烈 度 的 占 比 为 8.40%. 图 5b
展 示 了 MCIINet 预 测 烈 度 残 差 的 分 布 直 方 图 .

同时，在 P 波触发后 3 s，对于相同的测试集，比

较 了 MCIINet 与 单 一 模 态 的 基 线 模 型 对 于 仪 器 烈

度预测的性能 . 这里的基线模型包括传统的用于仪

器 烈 度 预 测 的 Pd 方 法（Wu and Kanamori， 2005）、

Zhang et al.（2022）基于卷积神经网络和时域波形数

据 输 入 建 立 的 现 地 烈 度 预 测 CONIP 模 型 、胡 进 军

等（2023）基 于 长 短 期 记 忆 网 络 和 时 域 波 形 数 据 输

入建立的仪器烈度预测 LSTM 模型、以及李山有等

（2024）基 于 极 限 梯 度 提 升 和 多 特 征 参 数 组 成 的 文

本数据输入建立的仪器烈度预测 XGBoost 模型 . 前

人 对 基 线 模 型 已 做 了 详 细 的 介 绍 ，这 里 不 再 赘 述 .
为 了 确 保 模 型 性 能 比 较 的 公 平 性 ，本 研 究 采 用 与

MCIINet 相 同 的 训 练 集 和 测 试 集 对 基 线 模 型 进 行

训练和测试 . 表 1 展示了 MCIINet 和基线模型在测

试集上的性能比较 . 从表 1 中可以发现：（1）和基线

模 型 相 比 ，MCIINet 对 于 仪 器 烈 度 预 测 有 更 小 的
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MAE 和 RMSE 以 及 更 高 的 R2 和 准 确 率 ；（2）相

较 于 最 优 的 基 线 模 型 LSTM 模 型（MAE=
0.642 ， RMSE=0.807 ， R2=0.648 ， 准 确 率 =
80.81%），MCIINet 对 于 仪 器 烈 度 预 测 的 MAE
和 RMSE 分 别 降 低 了 9.03% 和 8.67% 、R2 和 准

确 率 提 升 了 9.10% 和 2.51%. 这 表 明 ，MCIINet
通 过 多 模 态 数 据 的 互 补 性 有 效 提 升 了 中 国 仪

器 烈 度 预 测 的 稳 定 性 ，验 证 了 多 模 态 特 征 融 合

对 仪 器 烈 度 预 测 精 度 具 有 一 定 的 增 强 作 用 .
3.2　 不 同 震 中 距 、信 噪 比 和 震 级 范 围 下 的 性

能 分 析　

本 研 究 进 一 步 分 析 了 MCIINet 在 不 同 震 中

距 、信 噪 比 和 震 级 范 围 下 对 于 烈 度 预 测 的 性 能 .
在 P 波 触 发 后 3 s，图 6a、6b 和 图 6c 分 别 展 示 了

MCIINet 在 测 试 集 上 的 预 测 烈 度 残 差 与 震 中 距 、

信 噪 比 和 震 级 的 关 系 . 图 6 中 红 色 方 块 表 示 预 测

烈 度 残 差 的 均 值 、红 色 误 差 棒 表 示 预 测 烈 度 残 差

的 标 准 差 . 从 图 6 中 可 以 发 现 ：MCIINet 的 预 测 烈

度 残 差 的 均 值 和 标 准 差 没 有 随 震 中 距 、信 噪 比 和

震 级 的 变 化 而 发 生 显 著 的 变 化 ，且 预 测 烈 度 残 差

的 均 值 主 要 在 0 附 近 ；而 当 震 级 大 于 6 时 ，MCI⁃
INet 的 预 测 烈 度 存 在 一 定 程 度 的 低 估 现 象 ，推 断

可 能 是 大 震 级 事 件 在 断 层 破 裂 过 程 中 仅 使 用 P
波 到 达 后 3 s 的 数 据 难 以 反 映 整 个 断 层 破 裂 规 模

导 致 这 一 低 估 现 象（Murphy and Nielsen， 2009）.
此外，比较了 MCIINet 和基线模型对不同震中

距范围下仪器烈度预测的性能，如表 2 所示 . 从表 2
中可以发现：（1）与基线模型相比，无论当震中距≤
100 km 还是震中距>100 km 时，MCIINet 对于仪器

烈度预测都有更小的 MAE 和 RMSE；（2）当震中距

≤100 km 时，相较于最优的基线模型 LSTM 模型，

MCIINet 对于仪器烈度预测的 MAE 和 RMSE 分别

图 5　(a)MCIINet 在测试集上的预测烈度与观测烈度的关系以及(b)烈度残差的分布

Fig.5　(a) Relationship between predicted intensity and observed intensity of MCIINet on the testing dataset, and (b) distribution 
of intensity residuals

表 1　MCIINet 和基线模型在测试集上的性能比较

Table 1　Performance comparison between MCIINet and baseline models on the testing dataset

方法

基线模型

MCIINet

Pd 方法

CONIP 模型

LSTM 模型

XGBoost 模型

MAE
0.817

(‒28.52%)
0.671

(‒12.97%)
0.642

(‒9.03%)
0.672

(‒13.09%)
0.584

RMSE
1.038

(‒28.99%)
0.883

(‒16.53%)
0.807

(‒8.67%)
0.845

(‒12.78%)
0.737

R2

0.419
(+68.74%)

0.578
(+22.32%)

0.648
(+9.10%)

0.614
(+15.15)

0.707

准确率

67.34%

78.76%

80.81%

77.50%

83.32%
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降低了 9.25% 和 9.87%；（3）当震中距>100 km 时，

相较于最优的基线模型 LSTM 模型，MCIINet 对于

仪器烈度预测的 MAE 和 RMSE 分别降低了 8.41%

和 4.03%. 这也意味着，MCIINet 可以从多模态数据

中 提 取 更 多 有 效 的 信 息 ，提 高 了 仪 器 烈 度 预 测 的

可 靠 性 ，降 低 了 震 中 距 对 仪 器 烈 度 预 测 的 影 响 .

图 6　MCIINet 在测试集上的烈度残差与(a)震中距、(b)信噪比和(c)震级的关系

Fig.6　The relationship between the residual intensity of MCIINet on the testing dataset and (a) epicentral distance, (b) signal-to-

noise ratio, and (c) magnitude

表 2　MCIINet 和基线模型在不同震中距范围上的烈度预测性能

Table 2　Intensity prediction performances of MCIINet and baseline models for different epicentral distance ranges

方法

基线模型

MCIINet

Pd 方法

CONIP 模型

LSTM 模型

XGBoost 模型

震中距≤100 km
MAE

0.794 0
(‒25.23%)

0.688 1
(‒13.72%)

0.654 2
(‒9.25%)
0.674 8

(‒12.02%)
0.593 7

RMSE
0.994 7

(‒25.27%)
0.917 6

(‒18.90%)
0.824 7

(‒9.87%)
0.848 0

(‒12.35%)
0.743 3

震中距>100 km
MAE

0.888 3
(‒37.45%)

0.622 9
(‒10.80%)

0.606 6
(‒8.41%)
0.664 7

(‒16.41%)
0.555 6

RMSE
1.158 9

(‒37.79%)
0.772 7

(‒6.70%)
0.751 2

(‒4.03%)
0.839 4

(‒14.12%)
0.720 9
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表 3 比较了 MCIINet 和基线模型对不同信噪比

范 围 下 仪 器 烈 度 预 测 的 性 能 . 从 表 3 中 可 以 发 现 ：

（1）与 基 线 模 型 相 比 ，无 论 信 噪 比 ≤10 还 是 信 噪 比

>10 时 ，MCIINet 对 于 仪 器 烈 度 预 测 都 有 更 小 的

MAE 和 RMSE；（2）当 信 噪 比 ≤10 时 ，相 较 于 最 优

的基线模型 LSTM 模型，MCIINet 对于仪器烈度预

测 的 MAE 和 RMSE 分 别 降 低 了 7.46% 和 6.30%；

（3）当 信 噪 比 >10 时 ，相 较 于 最 优 的 基 线 模 型

LSTM 模 型 ，MCIINet 对 于 仪 器 烈 度 预 测 的 MAE
和 RMSE 分 别 降 低 了 12.72% 和 14.28%. 这 意 味

着 ，MCIINet 可 以 从 多 模 态 数 据 中 提 取 更 多 有 效

的 信 息 ，降 低 了 信 噪 比 对 仪 器 烈 度 预 测 的 影 响 .
表 4 比 较 了 MCIINet 和 基 线 模 型 对 不 同 震 级

范 围 下 仪 器 烈 度 预 测 的 性 能 . 从 表 4 中 可 以 发

现 ：（1）与 基 线 模 型 相 比 ，无 论 震 级 ≤6 还 是 震 级

>6 时 ，MCIINet 对 于 仪 器 烈 度 预 测 都 有 更 小 的

MAE 和 RMSE ；（2）当 震 级 ≤6 时 ，相 较 于 最 优 的

基 线 模 型 LSTM 模 型 ，MCIINet 对 于 仪 器 烈 度 预

测 的 MAE 和 RMSE 分 别 降 低 了 8.47% 和

8.18% ；（3）当 震 级 >6 时 ，相 较 于 最 优 的 基 线 模

型 LSTM 模 型 ，MCIINet 对 于 仪 器 烈 度 预 测 的

MAE 和 RMSE 分 别 降 低 了 18.82% 和 14.20%. 这

意 味 着 ，MCIINet 可 以 从 多 模 态 数 据 中 提 取 更 多

有 效 的 信 息 ，降 低 了 震 级 对 仪 器 烈 度 预 测 的 影 响 .
3.3　消融实验　

消 融 实 验 是 一 种 通 过 逐 步 移 除 或 禁 用 模 型 中

的某些组成部分，以评估它们对整体性能贡献的实

验方法 . 为了分析 MCIINet 中不同模态数据和编码

器对仪器烈度预测的性能影响，表 5 展示了对 MCI⁃
INet 进行消融实验，只保留相应组成部分编码器的

仪器烈度预测结果 . 从表 5 中可以发现：（1）无论移

除 任 一 编 码 器 ，仪 器 烈 度 预 测 的 MAE 和 RMSE 均

增 加 ，R2 减 小 ，这 也 意 味 着 各 模 态 数 据 和 编 码 器 都

对 改 进 仪 器 烈 度 预 测 起 着 一 定 的 作 用 ；（2）当 只 保

留单一模态编码器时（时域编码器或频谱编码器或

文 本 编 码 器），对 于 保 留 时 域 编 码 器 或 频 谱 编 码 器

表 4　MCIINet 和基线模型在不同震级范围上的烈度预测性能

Table 4　Intensity prediction performances of MCIINet and baseline models for different magnitude ranges

方法

基线模型

MCIINet

Pd 方法

CONIP 模型

LSTM 模型

XGBoost 模型

震级≤6
MAE

0.807 8
(‒29.22%)

0.646 7
(‒11.58%)

0.624 7
(‒8.47%)
0.654 7

(‒12.66%)
0.571 8

RMSE
1.000 9

(‒28.97%)
0.839 9

(‒15.36%)
0.774 2

(‒8.18%)
0.809 0

(‒12.13%)
0.710 9

震级>6
MAE

1.124 8
(‒12.38%)

1.484 6
(‒33.61%)

1.214 1
(‒18.82%)

1.241 4
(‒20.61%)

0.985 6

RMSE
1.252 7

(‒23.61%)
1.320 4

(‒27.53%)
1.115 3

(‒14.20%)
1.175 3

(‒18.58%)
0.956 9

表 3　MCIINet 和基线模型在不同信噪比范围上的烈度预测性能

Table 3　Intensity prediction performances of MCIINet and baseline models for different signal-to-noise ratio ranges

方法

基线模型

MCIINet

Pd 方法

CONIP 模型

LSTM 模型

XGBoost 模型

信噪比≤10
MAE

0.821 2
(‒30.92%)

0.617 7
(‒8.16%)
0.613 0

(‒7.46%)
0.647 8

(‒12.43%)
0.567 3

RMSE
0.979 6

(‒27.13%)
0.773 5

(‒7.72%)
0.761 8

(‒6.30%)
0.801 3

(‒10.92%)
0.713 8

信噪比>10
MAE

0.807 0
(‒21.95%)

0.817 6
(‒22.96%)

0.721 7
(‒12.72%)

0.738 2
(‒14.67%)

0.629 9

RMSE
0.975 9

(‒20.81%)
1.104 6

(‒30.04%)
0.901 5

(‒14.28%)
0.911 8

(‒15.24%)
0.772 8
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时 的 仪 器 烈 度 预 测 的 MAE 是 接 近 的 ，且 对 于 保

留 文 本 编 码 器 下 ，仪 器 烈 度 预 测 的 RMSE 最 小 、

R2 最 大 ，这 也 意 味 着 MCIINet 对 于 文 本 数 据 的

敏 感 性 更 大 ，并 且 文 本 数 据 对 于 MCIINet 仪 器

烈 度 预 测 的 贡 献 最 大 ；（3）通 过 和 只 保 留 单 一 模

态 的 编 码 器 相 比 ，当 使 用 两 种 模 态 的 编 码 器 时 ，

仪 器 烈 度 预 测 的 MAE 和 RMSE 均 下 降 ，R2 上

升 ，这 也 意 味 着 通 过 增 加 不 同 模 态 数 据 ，可 以 提

供 更 多 的 有 效 信 息 ，使 得 不 同 模 态 数 据 实 现 信

息 互 补 ，进 而 提 升 仪 器 烈 度 预 测 的 性 能 . 这 也 进

一 步 证 明 了 多 模 态 融 合 的 必 要 性 ，揭 示 了 文 本

特 征 在 对 于 中 国 仪 器 烈 度 预 测 中 的 核 心 作 用 .
同时，为了进一步分析文本信息中不同文本特

征对 MCIINet 性能的影响和物理约束，对文本信息

进行消融实验，即：依次移除不同的文本特征，分析

MCIINet 对 于 仪 器 烈 度 预 测 的 MAE、RMSE 和 R2.
表 6 展 示 了 文 本 信 息 消 融 实 验 的 结 果 ，从 表 6 中 可

以 发 现 ：当 移 除 文 本 特 征 速 度 平 方 积 分 IV2，MCI⁃

INet 对 于 仪 器 烈 度 预 测 有 更 高 的 MAE 和 RMSE，

以 及 更 低 的 R2 ，且 分 别 为 0.627 、0.773 和 0.677 ，

这 意 味 着 文 本 信 息 中 速 度 平 方 积 分 IV2 最 为 重

要 ，对 于 MCIINet 仪 器 烈 度 预 测 的 贡 献 最 大 .
此外，进一步通过消融实验分析了是否包含全局

注意力机制对 MCIINet 性能的影响，如表 7 所示 . 从

表 7 中可以发现：通过引入全局注意力机制，一定程度

上 降 低 了 MCIINet 对 于 仪 器 烈 度 预 测 的 MAE 和

RMSE，以及提升了 R2，这也说明通过全局注意力机

制动态权重分配对多模态特征融合具有一定的贡献 .
3.4　定日 6.8 级震例分析　

2025 年 1 月 7 日西藏定日发生了 6.8 级地震，震

中在东经 87.45°、北纬 28.50°，此次地震造成严重的

人 员 伤 亡 和 经 济 损 失（吴 佳 杰 等 ， 2025； 杨 婷 等 ， 
2025）. 本 研 究 进 一 步 分 析 了 MCIINet 对 于 此 次 定

日地震仪器烈度预测的性能和警报性能 . 图 7a 展示

了此次地震实测仪器烈度的分布，图 7b 展示了在 P
波 触 发 后 3 s 时 MCIINet 的 预 测 仪 器 烈 度 分 布 . 对

比图 7a 和图 7b 可以发现，预测仪器烈度与实际烈度

是较为接近的，且对于震中附近 6 度以上存在一定

程度低估现象，推断这可能是大震级事件在断层破

裂过程中仅使用 P 波到达后 3 s 的数据难以反映整

个 断 层 破 裂 规 模 导 致（Murphy and Nielsen， 2009）.
此外，地震预警系统通常通过判断预测烈度是否超

过 预 先 设 置 的 阈 值 来 评 估 台 站 附 近 是 否 存 在 潜 在

地震破坏，进而判断是否向公众或重大工程发布警

报（Hoshiba et al.， 2008； Zollo et al.， 2010）. 本研究

中，根据中国地震烈度表在烈度 6 度以上以房屋震

害为主要评定依据，将实测烈度 6 度作为预先设置

的 阈 值 . 同 时 ，根 据 前 人 的 研 究 ，预 测 烈 度 残 差 在

±1 度范围内是可接受的，因此，在统计意义上定义

了警报，如表 8 所示 . 图 7c 展示了实测烈度大于 6 度

和实测烈度小于 6 度的台站分布，从图 7c 中可以清

楚看到只有 3 个台站的实测烈度是大于 6 度的 . 在 P
波 到 达 后 3 s，图 7d 展 示 了 基 于 MCIINet 的 预 测 烈

度，每个台站的警报性能 . 从图 7d 中可以发现：只有

一 个 台 站 XZ.D0001 出 现 漏 报 ，且 没 有 台 站 出 现 误

表 6　文本信息消融实验的结果

Table 6　Results of text information ablation experiment

文本信息

移除峰值位移 Pd

移除峰值速度 Pv

移除峰值加速度 Pa

移除阿里亚斯烈度 IA

移除位移平方积分 ID2
移除速度平方积分 IV2

移除加速度平方积分 IA2
移除竖向加速度之和 SVA

移除竖向位移之和 SVD
移除竖向速度之和 SVV
移除累积绝对速度 CAV

移除累积能量变化率 PIV
未移除任何文本信息

MAE
0.610
0.589
0.586
0.589
0.599
0.627
0.603
0.612
0.598
0.601
0.586
0.591
0.584

RMSE
0.759
0.740
0.741
0.737
0.752
0.773
0.754
0.772
0.747
0.750
0.740
0.746
0.737

R2

0.689
0.705
0.704
0.707
0.695
0.677
0.693
0.678
0.698
0.696
0.705
0.699
0.707

表 5　MCIINet 消融实验的结果

Table 5　Results of MCIINet ablation experiment

MCIINet 的组成部分

时域编码器

频谱编码器

文本编码器

时域编码器+频谱编码器

时域编码器+文本编码器

频谱编码器+文本编码器

时域编码器+频谱编码器+文本编码器

MAE
0.684
0.676
0.678
0.620
0.599
0.633
0.584

RMSE
0.898
0.889
0.857
0.790
0.755
0.801
0.737

R2

0.564
0.573
0.603
0.663
0.692
0.653
0.707

表 7　全局注意力机制对 MCIINet 性能的影响

Table 7　The impact of global attention mechanism on the 
performance of MCIINet

全局注意力机制

无

有

MAE
0.591
0.584

RMSE
0.742
0.737

R2

0.703
0.707
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报现 象 . 表 9 进 一 步 展 示 了 台 站 XZ.D0001 的 信

息 ，该 台 站 的 震 中 距 接 近 100 km 且 信 噪 比 仅 有

1.47 ，推 断 低 信 噪 比 可 能 也 是 导 致 该 台 站 漏 报

的 原 因 之 一 . 同 时 ，随 着 P 波 到 达 后 时 间 窗 的 增

加 ，在 P 波 到 达 后 5 s ，该 台 站 成 功 报 警 .

4 结论  

针 对 中 国 地 震 仪 器 烈 度 预 测 精 度 不 足 与 多

源 数 据 融 合 不 充 分 的 问 题 ，本 研 究 提 出 了 一 种

基 于 多 模 态 深 度 学 习 的 中 国 仪 器 烈 度 预 测 网 络

（MCIINet），并 探 索 MCIINet 在 中 国 地 区 对 于 地

震 仪 器 烈 度 预 测 的 可 行 性 . 通 过 融 合 地 震 波 时

域 数 据 、频 谱 数 据 及 文 本 参 数 数 据 三 类 异 构 模

态 ，结 合 注 意 力 机 制 动 态 优 化 特 征 权 重 ，MCI⁃
INet 实 现 了 对 中 国 仪 器 烈 度 预 测 . 使 用 中 国 地

震 台 网 从 2007 年 至 2020 年 记 录 的 地 震 事 件 对

MCIINet 进 行 训 练 和 测 试 . 同 时 ，还 将 训 练 好 的

MCIINet 对 2025 年 1 月 7 日 西 藏 定 日 发 生 的 6.8
级 地 震 进 行 烈 度 预 测 性 能 分 析 . 通 过 分 析 MCI⁃
INet 的 仪 器 烈 度 预 测 结 果 ，本 文 得 到 以 下 结 论 ：

（1）本文提出的多模态中国仪器烈度预测 MCI⁃

表 8　基于仪器烈度的警报定义

Table 8　Definition of alarms based on the instrument intensity

警报

成功不报警

误报

成功报警

漏报

实测烈度<6 度

预测烈度<7
预测烈度≥7

-

-

实测烈度≥6 度

-

-

预测烈度≥5
预测烈度<5

表 9　台站 XZ.D0001 信息

Table 9　Station XZ.D0001 information

台站名称

XZ.D0001

震中距

91.27 km

信噪比

1.47

P 波时间窗

3 s
漏报

4 s
漏报

5 s
成功报警

图 7　(a)定日地震的实际仪器烈度分布；(b) MCIINet 预测的仪器烈度；(c)定日地震的实测烈度≥6 和实测烈度<6 的分布；(d)
基于 MCIINet 预测烈度的警报性能

Fig.7　(a) Actual instrument intensity distribution of Dingri earthquake; (b) the instrument intensity predicted by MCIINet; (c) the 
distribution of actual instrument intensity ≥6 and actual instrument intensity <6 for Dingri earthquake; (d) alarm perfor⁃
mance based on MCIINet for predicting intensity
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INet 网 络 有 效 地 缓 解 了 传 统 烈 度 预 测 方 法 和 单 一

模态基线模型中存在的信息单一、多源数据融合不

充 分 的 问 题 .MCIINet 可 以 同 时 处 理 地 震 动 时 域

数 据 、频 谱 数 据 和 文 本 数 据 ，并 从 不 同 模 态 数 据

中 提 取 特 征 进 行 信 息 融 合 ，进 而 预 测 仪 器 烈 度 .
（2）在 P 波 触 发 后 3 s，MCIINet 对 于 烈 度 预

测 的 MAE 、RMSE 、R2 和 预 测 烈 度 准 确 率 分 别 是

0.584 、0.737 、0.707 和 83.32% ，且 显 著 优 于 基 线

模 型 . 同 时 ，和 基 线 模 型 相 比 ，MCIINet 的 仪 器

烈 度 预 测 残 差 受 震 中 距 、信 噪 比 和 震 级 的 影 响

更 小 ，且 对 于 仪 器 烈 度 预 测 有 更 好 的 鲁 棒 性 .
（3）通 过 消 融 实 验 表 明 ，多 模 态 降 低 了 仪

器 烈 度 预 测 MAE 和 RMSE 、提 升 了 R2 ，进 一

步 验 证 了 多 模 态 信 息 的 互 补 性 .
（4）在 2025 年 1 月 7 日 西 藏 定 日 发 生 的 6.8 级

地 震 中 ，在 P 波 触 发 后 3 s，MCIINet 基 于 仪 器 烈

度 预 测 没 有 发 生 误 报 ，只 有 一 个 台 站 发 生 漏 报 .
本 研 究 的 主 要 目 的 是 构 建 多 模 态 中 国 仪 器 烈

度预测网络（MCIINet），探索在中国地区对于地震

仪器烈度预测的可行性，提升地震预警中仪器烈度

预测的准确性和鲁棒性 . 为了确保模型性能比较的

公平性，本研究采用与 MCIINet 相同的训练集和测

试集对基线模型进行训练和测试 . 通过和基线模型

相 比 ，进 一 步 表 明 MCIINet 在 一 定 程 度 上 提 升 了

仪器烈度预测精度，验证了多模态深度学习对于我

国 地 震 仪 器 烈 度 预 测 的 可 行 性 . 同 时 ，对 于 不 同 的

震 中 距 、信 噪 比 和 震 级 范 围 ，在 相 同 的 测 试 集 上 ，

MCIINet 对于仪器烈度预测表现出更优的性能 . 此

外，对于深度学习任务来说，进一步优化模型性能，

使 深 度 学 习 模 型 逼 近 完 美 也 是 算 法 工 程 师 们 一 直

追 求 的 目 标 . 不 断 优 化 MCIINet 模 型 ，增 加 MCI⁃
INet 模型的性能，提升 MCIINet 对于仪器烈度预测

的 准 确 性 对 于 地 震 预 警 和 防 震 减 灾 也 是 非 常 重 要

的 . 在 未 来 的 研 究 中 ，也 会 考 虑 通 过 不 同 的 数 据

集 切 分 方 法 、模 型 超 参 数 优 化 、数 据 增 强 等 技 术

进 一 步 优 化 MCIINet 的 性 能 ，使 MCIINet 对 于 仪

器 烈 度 预 测 的 准 确 率 可 以 得 到 进 一 步 的 提 升 .
本 研 究 验 证 了 多 模 态 深 度 学 习 在 地 震 预 警 中

国地震仪器烈度预测中的可行性，推动了人工智能

与地震科学的交叉融合，为提升我国地震预警系统

的时效性与准确性奠定了理论基础 . 在未来的研究

中 ，还 需 要 进 一 步 的 优 化 MCIINet 的 时 域 编 码 器 、

频谱编码器和文本编码器的架构，这对于进一步改

进 MCIINet 的性能也是非常重要的 . 同时，在未来，

还需要持续纳入新发地震事件，尤其是超大地震（M
>7）记录，以提升和优化模型对极端事件和小样本

事件的适应性（Li， 2022）. 基于本研究的数据和结果，

可以推断 MCIINet 可以有效地提高地震预警地震仪

器烈度预测的可靠性，也为我国地震预警系统仪器

烈度预测模块优化升级提供理论支撑与技术保障 .
随 着 现 在 多 元 数 据（例 如 路 由 器 、手 机 振 动 传

感 器 、监 控 摄 像 头 、分 布 式 光 纤 等）的 融 入 ，可 以 为

地 震 监 测 预 警 提 供 海 量 的 辅 助 地 震 观 测 数 据 ，而

人 工 智 能 大 模 型 和 大 数 据 等 新 兴 技 术 的 发 展 有 望

充 分 且 有 效 地 利 用 和 处 理 海 量 的 多 元 数 据 ，发 展

泛 在 振 动 传 感 智 能 化 地 震 烈 度 预 测 技 术 ，可 为 我

国 地 震 预 警 和 防 震 减 灾 提 供 新 的 方 向 和 手 段 .
附录见https：//doi.org/10.3799/dqkx. 2025.078.
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