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Abstract: The Chinese seismic instrument intensity prediction is crucial for earthquake early warning (EEW) and hazard mitigation
in China, but traditional methods suffer from issues such as insufficient accuracy and insufficient fusion of multi-source data. This
study aims to construct a multimodal deep learning model, explore its feasibility for predicting seismic instrument intensity in
China, and improve the accuracy and robustness of instrument intensity prediction for EEW. A Multimodal Chinese Instrument
Intensity prediction Network (MCIINet) is proposed, which is trained and tested by the seismic events recorded by China
Earthquake Networks Center. Experiments have shown that on the test dataset, compared to the baseline model at 3 s after P-
wave triggering, MCIINet reduced MAE and RMSE of instrument intensity prediction by 9.03% and 8.67%, respectively, and
improved R’ and accuracy by 9.10% and 2.51%, respectively. MCIINet has effectively improved the accuracy of intensity
prediction through multimodal deep feature fusion, verifying the feasibility of multimodal deep learning for seismic instrument

intensity prediction in China, and providing technical support for instrument intensity prediction in EEW.
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Fig.1 Distribution of epicenters and stations in the training dataset (a) and in the testing dataset (b)
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Table 1 Performance comparison between MCIINet and baseline models on the testing dataset

Jy ik MAE RMSE R* iRiiRS
Pk 0.817 1.038 0.419 67.30%

(-28.52%) (-28.99%) (+68.74%)
CONIP 5 007t 0885 0078 78.76 %

— (-12.97%) (-16.53%) (+22.32%)
B — 0.642 0.807 0.648 80.81%

(-9.03%) (-8.67%) (+9.10%)
XGBoost 5 #1 007 0845 001 77.50%

(-13.09%) (-12.78%) (+15.15)
MCIINet 0.584 0.737 0.707 83.32%

MAE H1 RMSE DL Jz 85 5 9 R” R 8 556 5 (2) A
T e M A 4 B R LSTM £ A (MAE=
0.642, RMSE=0.807, R*=0.648, # i & =
80.81% ) , MCIINet X} F ¥ #% ZU & % Ul i) MAE
Ml RMSE 43 % &A% T 9.03% H1 8.67% . R* Fl #E
Wi R T T 9.10% 1 2.51%. X % W], MCIINet
i 2 M BCHE 1Y A A AR T T R AR
i Z R T A AR L IR T 2 S R AE AL A
XA 2% B RE 0O ORS B BLA — 2 3G R AR A .
32 AAEHRE.EREMELZTECETHM
BE &

AW 58 it — 4 43 B T MCIINet 78 A [A] 5%
SN (= | = A NG e w1 10 N S R =
16 P e fid % J5 3 s, &l 6a.6b I & 6¢ 43 B B T
MCIINet 76 ] 2 4 [ 9 1000 20 )3 4% 25 5 78 vh i |
5 W L RN AE i 56 & . P 6 H 4T 8 B 3R OR T

BB 5 2% W A L 21 (0 5% 2% B SRR T R B AR 2
bR E 25 N6 Hroa] L& B MCTINet (1 1 il 24
JE 5% 25 1) 24 R0 A o 25 VA Bl R PR L f M EE RN
R AR AR T K A 3 0 AR Ak, HL I B R AR 2%
19 B0 BEAE O BE I 5 i 4 52 KT 6 B, MCI-
INet f9 T B4 B2 A7 78 — 7 B8 B A9 IR A 30 4, 46 6
A BB R KRR G 1 A W7 )2 o R e A T P
W B 3K J5 3 s 1Y B HE ME LL R B B A 7 )2 ol 2R R A
80X — % Al B % (Murphy and Nielsen, 2009).
BEAb, HE e T MCTINet I3 28 45 50 %o R[] 5 v
Y PR S R T A M R L IR 2 TR L AR 2
AT LR (1) 5 EEBI R L, Tip e <<
100 km i 2 7% H #E =100 km i, MCIINet %f T #§
F P AR AT BN MAE Al RMSE ; (2) 24 7% o i
<100 km B, A8 T S A0 A9 SEZR A8 LSTM ALY
MCIINet % F 4% 2% 205 1 i) MAE 1 RMSE 4351l



SR T S VR 2 3 00 v I B A L8 B T A o1

R

K6 MCIHNet 7eil 14 b B ZURE AR 22 5 (a)ie /P BE ()R 1 LE AN ()R 9 i G 22
Fig.6 The relationship between the residual intensity of MCIINet on the testing dataset and (a) epicentral distance, (b) signal-to-

noise ratio, and (c) magnitude
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Table 2 Intensity prediction performances of MCIINet and baseline models for different epicentral distance ranges
- B EE<C100 km M EE™>100 km
¥
MAE RMSE MAE RMSE
. 0.794 0 0.994 7 0.888 3 1.158 9
PyJ5ik
(-25.23%) (-25.27%) (-37.45%) (-37.79%)
) " 0.688 1 0.917 6 0.622 9 0.7727
CONIP £ 54
" (-13.72%) (-18.90%) (-10.80%) (-6.70%)
H LA
0.654 2 0.824 7 0.606 6 0.7512
LSTM f #
(-9.25%) (-9.87%) (-8.41%) (-4.03%)
0.674 8 0.848 0 0.664 7 0.839 4
XGBoost £ %
(-12.02%) (-12.35%) (-16.41%) (-14.12%)
MCIINet 0.5937 0.743 3 0.5556 0.720 9

FEA T 9.25% A19.87% 5 (3) 4 Z H #E >100 km A},
M TR ILLRIA LSTM B % MCIINet % T
#8510 B W 5 MAE F1 RMSE 43 B T 8.41%

F4.03% . XWEWE , MCIINet 7] i )\ 2 #5125 B
PR BOCE 28 p 5 8 B T AR LR A
AAE P BRAR TR TP I XA Z R T ) R
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Table 3 Intensity prediction performances of MCIINet and baseline models for different signal-to-noise ratio ranges

Sk i M <10 {5 >10
MAE RMSE MAE RMSE
P 0.8212 0.979 6 0.807 0 0.9759
SR
’ (-30.92%) (-27.13%) (-21.95%) (-20.81%)
CONIP 0.617 7 0.7735 0.817 6 1.104 6
9 PR 2
(-8.16%) (-7.72%) (-22.96%) (-30.04%)
SR AR
LSTMHH 0.6130 0.7618 0.7217 0.9015
b i
(-7.46%) (-6.30%) (-12.72%) (-14.28%)
XGBoost#iny 0.647 8 0.801 3 0.738 2 0.9118
OOST MR 71
(-12.43%) (-10.92%) (-14.67%) (-15.24%)
MCIINet 0.567 3 0.713 8 0.629 9 0.772 8

&4 MCIINet fI 5 28 4 B 72 R [8) 7 4 5E B A 20 R T 14

Table 4 Intensity prediction performances of MCIINet and baseline models for different magnitude ranges

X 6 P =>6
7 ik
MAE RMSE MAE RMSE
X 0.807 8 1.000 9 1.124 8 1.252 7
PJiik
(-29.22%) (-28.97%) (-12.38%) (-23.61%)
0.646 7 0.839 9 1.484 6 1.320 4
CONIP #£78
- (-11.58%) (-15.36%) (-33.61%) (-27.53%)
e 2
. . 0.624 7 0.774 2 1.2141 1.1153
LSTM H#)
(-8.47%) (-8.18%) (-18.82%) (-14.20%)
N 0.654 7 0.809 0 1.2414 1.1753
XGBoost 15
(-12.66%) (-12.13%) (-20.61%) (-18.58%)
MCIINet 0.5718 0.710 9 0.985 6 0.956 9

2 3 A T MCTINet Fl H 2 A6 R0 AN [ 15 1k L
T BT A B T ) M RE AR 3T DL R B
(1) 5L BAIA L, T (5 M b <1038 & {5 M L
=10 Af , MCIINet X T &% Z1 B2 350 I %6 A 5/ i
MAE Fl RMSE; (2) 4 {7 M tb<<10 &, #H3¢ T & 10
B FE LR A LSTM A58, MCIINet % T4 2§ 51 & i
I MAE Fil RMSE 43l B AR T 7.46 % F16.30% 5
(3) 415 M [ =10 B, AH B T e f 9 Bk 4 Y
LSTM £ % , MCIINet X F 4% & Z1 B # i) MAE
Hl RMSE J3 3] B A% T 12.72% F1 14.28 % 1% % b
& , MCIINet A DL A 22 450 285 25 4 b 42 BT 2 7 %4
A L, B AR 1 A M BE o S 8 2 00 ) 5 )

F 4L T MCIINet 135 26 457 R X A [R] 5= 9
T FB R AR B R T A M RE N R 4 T L&
(D) S5RLHBAME, TIEER<6LEER
=6 Bf , MCIINet % T &% Z1 B 30 I 4R A 5 /N 1Yy
MAE F1 RMSE ; (2) 24 52 9 <<6 B} , # & F 5 flt 19
FE BRI LSTM B &L, MCIINet X 1% 2% 21 B i

W % MAE Ml RMSE 4+ 5l B ik T 8.47% A
8.18% ; (3) M 7E gt =6 W, 5 T 5 fi il 3 £k
A LSTM £ 5, MCIINet XF T 4% &% 24 B 100 #
MAE #l RMSE 43 5l B AR T 18.82% 1 14.20% . iX
B URE , MCIINet 7] DL 22 45 285 25 4 b 42 o 2
AR B BEAR TR OGRS ZU R T0I A 5 )
33 HRXI

T Rl S 50 S — o 3 2 AP RS B mk A AR AR op
1) 5 S 21 8 43, LA VTAS B AT R A 1 e T ik ) 52
99 4 A T 43 M MCTINet H A [] B 25 0308 il 2 7
i XS g 20 T 4 P RE R L 26 5 R T X MCI-
INet #4711 fl 5256, HOR B AH 7 20 18058 43 4 55 25 1
AR B0 B i g R N SRl LA B . (1) Big#E
B AT — 4 5 45, A 20 R 000 9 MAE #1 RMSE ¥
B, RPPE /IS 33K AL B R A A B R G B 2 A
Xof A A #2 B R T A — o B AE 5 (2) 2 AR
B B — S o R 2 I 3 2 D s A 3% 4 B 2 B
SCA G A% 2 ), %t T B8 R R g A 2 oA B g S 2
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Table 5 Results of MCIINet ablation experiment
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Table 7 The impact of global attention mechanism on the

MCIINet E"J?H)Jkgﬁﬁ} MAE RMSE RZ performance Of MCIINet
s 35 2t 1 2 0.684 0.898 0.564 4 JR T R ML MAE RMSE R*
T 2 1 25 0.676 0.889 0.573 T 0.591 0.742 0.703
SCA Gt B 2 0.678 0.857 0.603 A 0.584 0.737 0.707
ik 3ol 4 5% 45— A9 S A 21 0.620  0.790 0.663
i 3ok 24 % 2~ SCA G £ 21 0.599  0.755 0.692 . . .
AT 2 B 2+ SCAS 2 T 2% 0.633  0.801 0.653 INet R (i AR BUI AT 52 % 19 MAE Al RMSE,

e 35 2 B 5 U9 G A 2+ SO RS AR 0.584 0.737  0.707

F6 XAFEHMIBHER

Table 6 Results of text information ablation experiment

TAE R MAE RMSE R?
BRI P, 0.610 0.759 0.689
RO BRI (E L P, 0.589 0.740 0.705
R BR W AR N 8L E P, 0.586 0.741 0.704
T 153 ] FEL IV J07 B0 T, 0.589 0.737 0.707
B BROLFS V- J7 R0 ID2 0.599 0.752 0.695
T BR A F-Or B IV2 0.627 0.773 0.677
R 38 E 7-J7 BRI IA 2 0.603 0.754 0.693
% B 16 1] ik B2 22 F SVA 0.612 0.772 0.678
BRI ) i B 2 F1 SVD 0.598 0.747 0.698
TR 185 [0 L E Z FI SVV 0.601 0.750 0.696
BB R CAV 0.586 0.740 0.705
Fo Bk R AL B 7L LR PIV 0.591 0.746 0.699
KRB BRAT AT SCAAF B 0.584 0.737 0.707

INF G A 2% 20 I A9 MAE 242308 /9, B3 T 4R
B SCA S i R, A g 20 BE W i) RMISE #5/) |
R* fe K, 3% 2 R % MCIINet X F 3C 7R 504 79
R T R, I B SCAS BdE X F MCIINet X 2%
FURE T A BT Wk fe R (3) 38 A A AR R B A
A0 40 05 4 AH B, Y R T PR S Y G A AR B
1 %% ZU B #i B MAE #1 RMSE ¥ F %, R* I
Tb 31X AL 5 PR E G 2k 1Y A ] R S B L RT DL 4R
B 2 0 F ROE B, AN TR RS B s S BLAE
SCECRS T R T A RS ZRE SR Y P BE L X
—HUEH T ZREM A ML EN B R T UK
AR AE X T o [ 2% 20 R T A i A% O A A
[F B, Ry i — 25 43 A SCARAF B AN Tl SCA
fIEXF MCIINet P B (4 52 Wi £ 9 3829 5, 6 SCAF
HEAT I Al S5, B« MO B B AN [R] ) SCA R A, 43 T
MCIINet X T4 & Z1 B 0l ) MAE .RMSE Fil R®.
FOER T CA(E B WAl SC5 45 5, AR 6 ]
DL B 24 B SCAS R AE 5 1 5 B4y TV2, MCT-

DL B R, H 2 9k 0.627 ,0.773 1 0.677,
XK A SCAE B il B 5 B IV2 e o
B, 4 MCIINet {5 245 15000 64 5T ik o5 K .

WEAh 3 — 2P i S AT T R AR R
TR SILH X MCIINet 4 B8 B9 52 M, Qe 7 fir 7 . AL
F TR Gt 5 A 2R E L, — e R
LR T MCIINet Xf T X #5 Z4 B 0 /9 MAE il
RMSE, DA S T+ T R?, i3 0 B 3 5 4 Jmy v 2 7 4L
il Bh A E 43 BT SRR IE AL A 2AT — 3 1 Tk
34 EHG6SHKEBI NI

20254F 1 7T HPUSOE H R T 6.8 9% 7%
HTE AR 25 87.45° AL 25 28.50°, M Y Ml 72 i ™ Y
AN MaT ik (RIERSE, 2025; HiE4%,
2025) . A GE ik — 2 43 B T MCIINet X F I K E
H b 72 A5 20 B 7000 (1 4 B R i bE BE L B 7a @R
TR b 7R S AN RS ZURE Y 4y A, B Th AR T HE P
W fih % J5 3 s BF MCIINet 4 751 0 A% 25 51 5 40 A7 . %t
Fb P 7a FIIE 7b W] L& B, N AN 2 B0 R S bR B
BRI, B TR W 6 B UL B AR —E
T ARAG B4, 4 T 3 AT BB = KR 3 R A T 2
Z430 B AU R Pk B IR S 3 s A BCHE HE DL R
A W J2 i ¢ BB R B (Murphy and Nielsen, 2009).
AN, b R T AR G 3 H SE A S 2 O A
o T2 U A IR Bk DAL £ b BT R A A A TR AR
by 7 IR T ) DT R A ) AR B R TR R A
i (Hoshiba ez al., 2008; Zollo et al., 2010). A< #F 5%
e, AR ] AR BN B SR AR BB 6 B LA I L) B R R
TN E BT RS R S0 Z R 6 B ARk T i
F B E . [R] B AR i BTN BIF ST, T B Ak 25 T
C1EMEN R, W, Eg i X b X
TR, K S AR LR Te R T SEM B K F 6 1
FNSEI BB /N T 6 BE Y & 3 4 A, L 7e vhn] DL
HEEINHA 3G SRR T 6 R . P
W F kG 3 s, B 7d R T 3 F MCIINet /) i 21
BE A BB ERE B 7Td T AR B H
—A~ 3 XZ.D0001 Bk e, B A & ulh i 3 iR
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Fig.7 (a) Actual instrument intensity distribution of Dingri earthquake; (b) the instrument intensity predicted by MCIINet; (c) the

distribution of actual instrument intensity =6 and actual instrument intensity < 6 for Dingri earthquake; (d) alarm perfor-

mance based on MCIINet for predicting intensity
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Table 8 Definition of alarms based on the instrument intensity

E2 i SR JE <6 i SN B =6 i
TR T F B <7
AR T ZL =7
RIEE T Z g =5
T 4t B Z1 <5
*9 AWHXZDO01EER
Table 9 Station XZ.D0001 information
AMAM RTE K P
3s 4s 5s
XZ.D0001  91.27km 147 Wk Wi DR

WML . KB — LR T & ¥ XZ.D0001 19 5
B % B U Y P E 25 100 km B A5 B AL
L.A7 , 4 W7 MK 5 W8 bE ol B B2 5 30X & b W IR
5 N 2 — [ A P Bk S B RS 3

L AE Pk RIS 5 s, 0% 6l B

g

4 Zie

EEXT i E RS ZIE S E AR S £
TR0 HiE fh A R 38 4 1 ) AR BIF 9 4 T — Fb
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