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Abstract: The spatiotemporal characteristics of volcanic seismicity provide critical constraints for deciphering magma migration
processes and eruption precursors. To elucidate the magmatic activity mechanisms preceding the 2021 eruption of the Great Sitkin
Volcano, Alaska, this study conducted a systematic analysis of the pre-eruptive continuous seismic waveform data from the
volcano. Template matching and the double-difference relocation method were employed to detect seismic events and achieve high-
precision relocation. An unsupervised hierarchical clustering algorithm was then applied to classify volcanic seismicity and analyze
its spatiotemporal evolution based on the constructed seismic catalog. The resulted seismic catalog contains four times the number
of events compared to the official Alaska Volcano Observatory (AVO) catalog. Hierarchical clustering successfully categorized the

seismic events into long-period (LP) earthquakes and volcano-tectonic (VT) earthquakes. The results show that a significant
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intensification of volcano seismic activity was observed prior to the eruption, with shallow LP events reaching an activity peak

24 hours before the eruption, and it is possible that the phenomenon potentially represents critical eruption precursor signals. The

eruption was mainly triggered by magma accumulation and pressurization at upper-crustal depths directly beneath the summit crater.
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Table 1 P-wave velocity model of the Great Sitkin volcano

HPHEE (km/s) TR (km)
2.5 0.0(-1.7)
3.0 0.5(-1.2)
3.7 1.7(0.0)
4.1 2.2(0.5)
4.5 2.7(1.0)
4.9 3.0(1.6)
5.8 4.0(2.3)
6.6 7.0(5.3)
6.68 8.0(6.3)
6.8 11.0(9.3)
6.92 14.0(12.3)
7.04 17.0(15.3)
7.16 20.0(18.3)
7.28 23.0(21.3)
8.05 40.0(38.7)
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