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Abstract: In 2021, the small earthquake activity significantly increased in the short term. To investigate the relationship between
seismic activity and salt mining in the region, it deployed a dense array of 54 short period seismographs in the salt mining area and
carried out a one-year microseismic monitoring. The high-resolution earthquake catalog for mining areas, constructed using deep
learning earthquake automatic detection methods and absolute and relative repositioning, greatly improves the accuracy of locating
the epicenter position, especially the depth of the earthquake source, of small earthquakes in mining areas, effectively enhancing
the monitoring ability of seismic activity in small-scale salt mining areas. Combined with the industrial production background and
geological conditions of the area, the following main understandings are obtained. The mining area is mainly characterized by

microseismic activity, which is distributed in two independent earthquake clusters in space. The cluster 1 is located below the salt
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well, with a significantly shallower depth of the earthquake source than the cluster 2. The cluster 2 is located in the surface
water inflow area that several kilometers far from the salt well, and lags behind the cluster 1 by about 8 months in time. After
analysis, it is possible that the cluster 1 is directly related to mining activities, while the cluster 2 may be related to local fault
activation caused by fluid diffusion. This study indicates that based on dense array covering mining areas and intelligent

detection technology, the understanding of the distribution characteristics and seismic mechanisms of small earthquakes in salt

mining areas can be greatly improved, which can provide key basis for optimizing production control plans.
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Table 1  Velocity model used in location
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Table 3 Characteristics and mechanisms of earthquake clusters
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WEAE R JE A 3~4 km (1024~ i1 7E ,59.6 %)

BRI

6 km 4L, BEHRFE 43 A7 2.5~5 km,
VR B TR 2 52 R K
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