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Abstract: To investigate the characteristics of the 2017 M,4.9/M4.4 earthquake sequence in Muli, Sichuan, an end-to-end
framework, involving raw continuous seismic waveform data processing to seismic phase detection, earthquake event
identification, and earthquake location, was constructed based on lightweight artificial intelligence methods, template matching
techniques, and earthquake location methods. This system was used to process raw waveform data from 28 stations within a 60 km
radius of the epicentral area between September 1 and 30, 2017, reconstructing a high-resolution seismic catalog containing 9 252
foreshocks, mainshocks, and aftershocks. Based on focal mechanism solutions of 43 M,=>2.5 earthquakes, it conducted a

comprehensive analysis of the seismicity patterns. The refined catalog exhibits enhanced consistency with Gutenberg-Richter
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magnitude-frequency statistics and clearly delineates spatiotemporal evolutionary features. The seismic sequence occurred within

a complex NW-SE trending strike-slip fault system bounded by the Jinpingshan Fault, with the bilateral expansion of events

from the mainshock toward the NW and SE, and it was preliminarily attributed to driving by afterslip.
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Fig.1 Tectonic distribution map of the Muli earthquake seismogenic zone
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Fig.2 Integrated workflow of seismic phase detection, event identification and precise hypocenter relocation
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At (G-RE ) (Gutenberg and Richter, 1944) ,i%X — i CDF 1Y K-S BE & 347 LR, 3 St 5 7 AN 4R B

E A BIE AR F SR PR R B TR OAWISCRAT MR A SR AT A AR Sk 0 S8 A MERR 2 Mc
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