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Abstract: Conducting waveform inversions to estimate the rupture process of media to large size of earthquakes is one of the
effective methods to better understand the characteristics of strong ground motions. To investigate the generation mechanism of
strong ground motions, this study evaluates the rupture process of the 2018 Hokkaido, Japan, earthquake through waveform
inversion based on the corrected empirical Green’s functions. It is found that, large slip regions are concentrated along the shallow
southwestern- to northeastern-section of the fault around 6.0 km in length and within 12.0 km from the hypocenter. Within this
region, the maximum final slip approximates to 3.5 m; two peak slip velocity regions are identified, with the primary one located 6.0
km southwestern, and the secondary one located 4.0 km northeastern, and both within shallow areas 15.0 km from the hypocenter.
The maximum peak slip velocity is about 2.0 m/s. A rupture velocity of 2.0 km/s is identified, and the inverted source model
corresponds to a magnitude M, 7.0. Furthermore, another 3 waveform inversions using different combinations of empirical Green’s
functions and additional 7 different combinations of near-fault strong motion stations are operated to investigate the robustness and
reliability of the source model. Based on the evaluated source model, additional strong motions at stations, which are not used in the
waveform inversion, are synthesized and the synthesized and observed velocities could match well. Similarities of the final slip
distribution among different source models also could be obtained. Results demonstrate that the major spatiotemporal characteristics
of slip are robust and reliable, which could offer useful information for future strong motion simulation and analysis.

Key words: 2018 Hokkaido Eastern Iburi Earthquake; kinematic source model; waveform inversion; empirical Green’s function;

strong-ground motion waveform; seismology.
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Fig.1 Location of hypocenters of the 2018 Hokkaido earthquake and the small events used in the inversion analysis

F1 EEREBMPIEREHEZ . BERLERERNEIBSH

Table 1 Focal mechanics of the mainshock and EGF events adopted in this calculation

KA R (IST) YA ML .

hE fE-A-H R o) te3ls M GER fiifn WA (N_:n)

B o3 (°E) N) (km) ©) ©) ©)

FiE 2018-09-06 03:07:59.33 142.006 7 42.690 8 37.04 6.7 349 65 107 1.00X 10"
EGF1 2018-09-06 16:53:24.31 141.972 8 42.687 8 34.78 4.4 179 79 -169 2.76 X 10"
EGF2 2018-09-08 18:21:07.13 141.968 5 42.696 0 33.78 4.2 215 78 ~146 1.45X 10"
EGF3 2018-09-09 22:55:13.75 141.983 7 42.781 2 34.87 4.9 341 70 100 2.66x 10"
EGF4 2018-09-17 02:51:31.63 141.862 8 42.718 0 27.59 4.6 357 39 155 7.43X10%
EGF5 2018-09-21 07:56:08.20 141.994 8 42.641 3 36.55 4.2 133 74 50 1.25%x 10"
EGF6 2018-10-08 21:53:58.77 141.963 2 42.627 8 31.79 4.3 21 72 110 3.46 10"
EGF7 2018-11-14 19:07:30.10 141.965 3 42.698 0 31.50 4.7 305 51 70 1.44 X 10"

1 IMA, " NIED F-net ( Fukuyama ez al., 1996).

2007; Nozu and Irikura, 2008; Nozu and Nagasaka, TE A /N R R VR 2 8l i KB A M, R R TR
2017; Wu et al., 2021). 3 14050 1 T 3 2 T 1) EGF JF R F i, i T —H G, X
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Fig.2 Phase characteristics among mainshock and the selected small events for typical strong-motion stations
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