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Abstract: Seismic velocity change serves as a crucial indicator for characterizing the evolution of stress states in subsurface
structure, providing significant insights into earthquake nucleation mechanisms, rupture processes, and postseismic adjustments.
This study utilizes continuous waveform data from four permanent stations located in the source region of the March 28, 2025,
Myanmar M7.9 earthquake. By applying the ambient noise autocorrelation method, we analyze the dynamic changes in seismic
wave velocity during the pre-seismic, co-seismic, and post-seismic phases. The results reveal that all stations observed a notable
decrease in seismic wave velocity within the frequency range of 0.1—2 Hz during the pre-seismic phase, which may be attributed
to pre-seismic slip or progressive changes in the physical properties of the media along the Sagaing large-scale strike-slip fault zone.
During the co-seismic phase, the velocity changes exhibit significant spatial heterogeneity, with stations closer to the epicenter
showing more pronounced variations, indicating stronger near-field ground motion effects. In the post-seismic phase, the wave
velocity gradually recovers over time, likely reflecting the self-healing process of the subsurface media beneath the seismic stations.

These findings provide new observational evidence for understanding the seismogenic mechanisms of large strike-slip faults
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and the post-seismic healing processes of subsurface structure.
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Fig.1 Regional tectonic setting, seismic stations and historical strong earthquake (M=>6.5) in the study region
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Fig.3 The autocorrelation functions with a 5-hour stacking window at station NGU (the black solid line indicates the origin time

of the Myanmar earthquake)
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Fig.4 An example of velocity measurement using compression/stretching method
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