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Abstract: To elucidate the mineralization process of the No. 3 orebody of the Jinchuan deposit and to refine the Jinchuan
metallogenic model, it conducted EPMA of ore minerals together with whole-rock major-trace element and Ni-Cu-PGE analyses.
Olivine from the fine-grained and pegmatitic lherzolite hosting the No. 3 orebody shows Fo values of 82.4% —85.0% and Ni
contents of 1 069X 10 °—2 420X 10 °. Both Fo and olivine Ni content increase progressively from the northwest to the southeast.
Major-element variations suggest that the No. 3 orebody experienced dominantly olivine- and pyroxene-controlled fractional
crystallization. The ore-bearing rocks are slightly enriched in light rare earth elements (LREE), markedly enriched in large-ion
lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). The total PGE abundances of the No.3 orebody
are comparable to those of the No.24 orebody, but are significantly higher than those of the No.1 and No.2 orebodies. Importantly,

the southeastern segment of the No.3 orebody remains relatively more mafic and therefore retains greater mineralization potential.
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These observations support a metallogenic model in which the Jinchuan deposit formed through “mantle-derived magma, sulfide

segregation, and multi-center emplacement of mineralized magma”. The No.3 and No.24 orebodies were supplied by the same

magma conduit, whereas the No. 1 and No. 2 orebodies were fed by separate conduits.

Key words: Longshoushan metallogenic belt; Jinchuan magmatic Ni-Cu sulfide deposit; fractional crystallization process; platinum

group element; multi-center emplacement process; ore deposit.
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Fig.1 The distribution of the mafic-ultramafic intrusion of the Longshoushan Terrane
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Fig.2 Geologic map of the Jinchuan intrusion (a), a projected long section (b) and the typical cross section of No.3 orebody
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Fig.4 The micrographs of different lithofacies in No.3 orebody
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Table 1 The olivine composition (%) from Zk404 of No.III intrusion
WA 25 1 Gy BT a5 MgO Sio, FeO MnO NiO Total Fo Ni
b7-01 45.51 39.89 15.09 0.19 0.26 101.54 84.3 2019
AR T T 1 — b7-01 43.75 39.29 14.71 0.19 0.22 99.34 84.1 1752
b7-02 4591 39.76 14.52 0.19 0.23 100.67 84.9 1776
b7-03 45.30 39.68 15.05 0.28 0.24 100.73 84.3 1870
b13-2-02 44.27 39.74 15.72 0.09 0.31 100.32 83.4 2420
b19-2-01 44.32 39.75 14.62 0.22 0.18 99.09 84.4 1375
b19-2-02 44.95 40.30 15.11 0.20 0.21 101.10 84.1 1634
b19-2-05 44.69 39.95 15.44 0.16 0.28 100.65 83.8 2177
b19-2-07 44.48 39.70 14.31 0.25 0.22 99.00 84.7 1713
b19-2-08 43.96 39.80 15.56 0.25 0.19 99.87 83.4 1524
b19-2-09 45.27 39.94 14.95 0.25 0.22 100.71 84.4 1721
b19-2-10 44.15 39.86 15.09 0.12 0.18 99.51 83.9 1430
b19-2-11 44.76 39.59 14.35 0.14 0.24 99.14 84.8 1909
b19-2-12 44.40 40.40 14.70 0.32 0.22 100.26 84.3 1713
rp AR RO
b19-2-13 43.86 39.91 14.25 0.13 0.20 99.01 84.6 1587
b19-01 44.49 39.71 15.35 0.29 0.19 100.12 83.8 1509
b19-02 44.35 39.58 14.74 0.20 0.17 99.10 84.3 1320
b19-04 45.45 39.51 14.26 0.13 0.31 99.75 85.0 2420
b19-07 45.25 39.66 15.05 0.19 0.14 100.35 84.3 1069
b19-09 44.49 39.80 14.44 0.20 0.31 99.45 84.6 2404
b19-10 45.19 39.85 14.96 0.20 0.17 100.41 84.3 1352
b19-11 44.36 39.90 14.48 0.18 0.13 99.30 84.5 982
b19-12 45.21 40.00 14.29 0.25 0.25 100.04 84.9 1988
b19-13 44.48 40.18 14.30 0.24 0.18 99.56 84.7 1375
b21-01 44.44 39.53 15.82 0.19 0.21 100.27 83.4 1642
b21-03 43.78 39.48 16.12 0.23 0.14 99.79 82.9 1084
b22-01 44.45 39.56 15.44 0.26 0.24 99.98 83.7 1 886
b22-02 44.70 40.03 14.89 0.20 0.19 100.12 84.3 1501
b22-06 44.42 40.12 15.47 0.19 0.27 100.96 83.7 2114
AR — G o b22-07 44.31 39.32 14.88 0.25 0.26 99.12 84.1 2035
b22-08 43.67 39.67 15.05 0.22 0.26 99.06 83.8 2043
b22-09 43.14 39.55 16.78 0.23 0.26 100.26 82.1 2059
b22-11 44.60 39.84 15.66 0.23 0.22 100.65 83.5 1697
b22-12 43.18 39.68 16.41 0.16 0.15 99.84 82.4 1171
b22-13 44.08 39.74 15.12 0.19 0.20 99.53 83.9 1532
b22-14 44.00 39.23 15.31 0.17 0.17 98.97 83.7 1344
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Fig.5 The correlation of Fo-Ni of the different lithofacies in
the No.III intrusion
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Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized incompatible element patterns (b) for No.III and

comparison with No.I intrusion

15 ARG 35 R 51 56 (2009 ) 3 B3R B A7 B vEAL (B 5 Anders and Grevesse(1989) , J5t 44 Hly b A7 v 4k fE 5 Palme and O’ Neill(2007)

#SENI.Cufl PGE TR M XL HEM L ,S 5
Ni, Cu Z [H] 35 F B0 R 4 9 1F AH & (18 8a.8b) , S
5 Pd.Ir .Ru.Rh Z [A] #H PRt 8 47 (& 8d~81f) ,{H S
5 Ptz a1 et 22 (& 8c) . 3x — B IE A 6 1 &
WY, T R FE WA T by i ok X A
W AR e R & &, 0 DL B A A] S & & 19 15 ol
T3S F KRNI Cuf S 245 15 M2 5T 1M

P2 S AN K RN BT R & & 359 5 24 S A
L, 0w T 150k A& T 250 (& 8).
Ry it — 20 BT B R B AL Y B e R R
H WA FE & TR N Cu F1 PGE #47 100% B4k 9
TR iR 22 05 m, BIBR T 4% S & i/
T 0.5% BYFE A . 1H5 )72 % Barnes and Lightfoot
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Table 2 Concentrations of PGE (10 7) and Ni.Cu.S (%) in the No. [l intrusion
o K RETR JE — . Ru Pd Ir ( Pt Rh Cu Ni S
(m) (107) (%)
7k404-b7 404 Ttk kL 0.7 7.3 0.7 6.9 0.5 0.1 0.1
7k404-b9 452 IE2L BN hgik  35.9  190.6 9.5 254.5 13.3 0.2 0.4 1.2
7k404-h12 484 YR ek 106 61.4 4.3 83.1 3.2 0.6 0.4 1.4
7k404-h13 496 EZ/ PN ek 147 1047 3.9 61.3 6.3 0.2 0.7 1.9
7k404-h14 505 2 YR ek 167 123.9 5.0 244.0 9.1 0.4 0.6 2.1
7k404-b15 511 Bk gk 12,7 1435 4.7 88.9 5.8 0.2 0.4 1.7
7k404-b16 520 Bk gk 104 106.9 5.0 95.3 5.0 0.2 0.4 1.6
7k404-b18 525 fEZ/ BN gk 216 80.7 7.0 135.7 7.2 1.1 0.4 2.6
7k404-b22 533 BYR SR 106 1134 5.9 188.2 6.5 0.2 0.3 1.2
7k404-b25 548 BYR HBER 116 1129 5.0 258.4 5.9 0.3 0.4 1.7
7k404-b26 552 By HBER 720 1701 3.4 506.5 4.3 0.5 0.4 1.8
7k404-b28 566 =S/ N HRDR 19.2 1318 9.2 385.9 7.5 0.7 0.7 1.9
7k404-b29 573 BYOR AR 1420 1131 5.2 379.2 6.6 0.7 0.4 1.9
7k404-h32 588 EHITSIN fhdelk 184 1497 5.1 456.3 8.3 0.6 0.9 3.4
7k404-b33 598 Bk MR 106 209.1 5.1 795.2 6.7 0.7 0.7 2.8
7k404-h35 607 IE2 /2N gk 9.8 1718 4.1 291.1 3.5 0.5 0.6 2.2
7k404-h36 620 YR fidk 7.2 1168 4.0 439.8 4.6 0.2 0.5 2.0
7k404-h38 634 2 IR gk 3.4 929 1.2 334.1 1.4 0.5 0.3 1.4
7k404-h39 640 2 IR fidk 54 226.2 4.2 536.0 2.5 1.0 0.5 2.7
7k404-b40 646 BYek &Ik 180 813 10.6 268.6 7.3 0.2 0.5 1.8
7k404-ba1 651 EE LN fifk 0.8 39.1 0.7 58.6 0.6 0.4 0.4 1.6
7k404-b42 664 E2T N itk 01 15 0.8 0.1
7k404-b43 671 =R itk 01 20 2.6 0.1

T % T0 2 A6 v ERL 2 g MR Ak 4 B 9% BT O T i g T A [ N S 00 S8 A MR ORI T B R s W R T A%
4 AL 2SS4 PlasmaQuant MS Elite #1 ICP-MS, il i3 B & 8 50 kV, LA 60 mA 5 #i 4 i 2 70 R U &8 k7 Agilent 7700e ICP-MS;
RS EE - /N T 1020 s IR 22 . PA 28 BT i 25/ T 124, Ir [Ru Rh PtAp Hri 22 /N T 10%.

i 08 A o b g R (L 9) , 3 3K B PPGE (Pt
Pd) A X & 4 1Y A2 A, [ B PGE #H X% F Ni, Cu
TR AR A AR YR AR, ER R B
) PtIE 5 % 1 Pd £ 5 5 (& 9a) 5 76 £ dh A A iR G
RB A BC A i — B0, ¥R U] B PUIE R
W Pd 7 56 (8 9b) 38 73 FE i b Pt 5 Pd Y fifk 4
G A] RE 5 B A ) 43 B A A SUIRTE Bh A G

=B HH
g

51 BEHEABTEXNSBELERNET

MM AE RSN IR R E LRI Y,
EMg Fe fINI W FEFE0 Y, 55 EHF & ML
O B MO A A AR A R A B R
g3 B At B O A ) A R AR 0 AR s AR 1k
B 52 7 45 TR R 5 ) (Li et al.,1999) . 7E 4 3% v Ak B
WY B, 5 R & AR i A W 4 B NI AT Mg 72 BIORS A4

5}

T AH A U R BB MR A o B A A R R AR
AR Y NI Mg & 3% W B AR, MRS A Fo {E & Ni
O Y BRI OTE R T A A W AR Y MG
Ao Ea S mAL Y B E 2 kA BT NUTE B
A9y B 3 e ZR B (~500) B K T 7R MRS 47 P Y
S3C R E(~T7) T BA dn A RONE A NI
REAR , AL T IR 3 A A LT I &N R
I IS &0 5 1 i S /7 35 3R R X — 4 AiE (Li
et al., 2004 ; BE A5 , 2009 ; Duan et al., 2016) .
WA A A 25 AH 2 R0 0T 2 A AR AR AR (1A
6) , Il 5 5 1A 1y Bk 2 3% vl Ak ok R vp 2 B R A T O
A1 4y B 4h R R 8 AT R B 5 5 R a0 Ak
AL T O A 53 8 4 0 B 4L # 28 (Chai and Nal-
drett, 1992a; Bk %1 4% , 2009; Li and Ripley, 2011;
Kang e al.,2022) ¥ A B 5% e mis N B o 154 1k
S AHAONE A 1 o 4 5 BRI 4R L, S5 R vk
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ABEE R AT )y (B 5) , R 4i ki 5
AR it A v BN A 4 25 45 b 5 A ) s 5 T
KA BN A 5 e R A R AL BT A L 29 20 1.

4546 W5 A AR A [l A Ao A1 Fo fH & Ni &
17 25 [A] AR AE FRAE , JC I8 2 v 4R A AR I 2 A e
AR, 2 B0 b AU 2R ) R VU RONE A7 Fo { e Ni &% &
ST v 0 A CIEL 5) 5 R R AR T 4 6 4 iR
TOMERIONE T  ZkA04 A R OGS A Fo {EL
NI 7 12 (82.1%~84.3% Fl'1 084X 10 °*~2 114X
107 B & & T b 76 0 Zk503 i B A A 0 A
(80%~82.1% M1 117X 10 *~1675X10 "), % —#
GG 71N 18] T AR 7 ) 32 2 A PR R B2 P 15 [m] i
Zk404 THAR AR OEMIONT S B LR E 29 140 m, 1B
R T Zk503 1Y 20 m, KW 0] 7 2R 7 a1 12 7 A A RIS
P38 R T S IR ASE B MRS A il 20 1Y 25 1] 28 Ak Ay
fIE AW FE I R A dd R VRO 25 7 e 7R 7 1) AT g
SRR AETE , HLF A VR FE 1Y i — 20 A 1, 32055 A 1 2
PERR B KB Ak ) o , BT E ORI )
52 HEREESEFEERFNEZR

1% 96 % (Os Ir . Ru Rh . Pt il Pd) B A A i1
b 3K A 2 Ve B, A B AR - R AR A AR 2 TRl A
BE B 5 e &R B (Ds,ysi=10'~10") (Peach et al.,
1990;Fleet ez al., 1996 ) . TEG AL ¥y 15 5 i A v, B2
WG TR FE A b &N R E
BWARP TG OC R 5 S & i 2 A A AR R AR
TEARSCE (B 8) , R W i o #2 4R R T R 2
ABRAL Y CH R 4 Mo A 7= SR 26 7S M s BA L 19845
Song et al.,2009; Chen et al.,2013) ; $X 1M , 35 43 4
oG A Lk Sr W X AEAE (Yang et al., 20065
Song et al.,2009) . 1E S % & 5 #1170 F AH 5 1 ] figk
LS O R I AR R 1 i 2 S TR AR

WA S 54115 o0 R Z 18] 1Y A OG5 2% (&l 8c~
8g) . WHFE R W], i fb 4 & it B il AL Wy Rk 2
[a] B 3% @ 1 4 1 (Barnes ez al., 2017; Mao et al.,
2018) , 45 by WY b 14 43 B 4 A AR D . AR A 0 A
YR e T I R o - R R AL /MR N
(MSS) Fl 5% 4% i £ 9 4% 14 (RSL) , IPGE (Ir, Ru.,
Rh) f1 PPGE (Pt, Pd) 7 — # Z [i] iy 4 Bt & %
(Dyssrs) 23 90 R 3.1~17 #1 0.017~0.24 (Barnes et
al., 1997 ; Ballhaus et al., 2001) , 5 3 IPGE ¥ % it
A SR AL Y AR T PPGE B 5 HE AR iR ALY
VRN 05 el 1 X R DB WS W % SR 7 RN
FVHOR ™ 1 B 16 e A v i A0 i T R OR RE AR R
U BT W0 0 R %) 8 4 . AH R 1R R A v 1 AL
W R, I B A W =2 (8] Bk RE R AL 0 B 4
KW Y 43 B A AR T, R I IPGE #il PPGE
Z 1A BA R A I A e (& 10) , HEai Ak 9 i
TG 3 20 B AL RE T b A R A R A 0 s AR B A
XF 4 A IR 4% 3 B0 K o 40 % 0T R 19 4 B 2
RER ARG PR YCIRT A 100% B Ak 40
TG FATAE R G0 22 57 (W S R 2R SC L, 1995 Duan
et al.,2016;1Long et al.,2023;Li et al.,2025) . {4 ,
3EH A Pt .Pd &5 24 SO AL, H BT 1
259 4K ;1 Ru Rh & 5 B W 7 HoAl 34> £ 2
W o 24 5 R 15 57K B Ru.Rh & &EAHEL, H
¥IE T 255 1K (Long et al., 2023; K it % %,
2023). 3k #6225 R B, W46 B Ak W 0 AR 1 R4y
ZAE AR R LR AR R A G (R S
B b ¥ & R T & H 2 %5 Campbell and Naldrett,
1979). /i A R A 58 3 4F X TE A4 )1 IR B 20 4R
B3 P AU R & 8 SR AT TR,
SR F 2450 KR T Pd &M 0.86X10 7,
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575 b 5T BA (1984) B BIF 5, 31X P> 5 14 8 IR o —
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Mao ez al.(2024) 38 33 %F 4 )18 R B RS 41 = 2 A A
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