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Abstract: The western Junggar Basin (WJB) has undergone multi-stage tectonic evolution. However, there are still uncertainties
regarding the deformation timing, reactivation dynamics, and reservoir-controlling effect of complex faults within the WJB,
which restricts oil and gas evaluation and exploration efforts. In this paper, it clarified the development characteristics and
reservoir-controlling mechanisms of faults at different stages through integrated structural analysis of intra-basin seismic data and

basin-margin field outcrops. The research shows that the WJB has mainly undergone four stages of deformation, each controlled
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by differential dynamic settings. During the Hercynian, multi-directional plate collisions and compressions generated multi-
episode thrust-nappe faults, including N-striking brittle-ductile, NW-striking ductile-brittle, and NE-striking brittle faults.
During the Indosinian, thrust-transpressional faults developed in the WIJB, driven by the counterclockwise rotation of the
Junggar Block and EW-directed compression, with basin-margin dextral transpressional faults and near EW-striking conjugate
shear faults formed. During the Yanshanian, the NNE-directed subduction of the Bangong-Nujiang Ocean and the subsequent
Lhasa Block collision drove left-lateral strike-slip shearing of the Darbut Fault Zone,and its Riedel shears derived NW-striking
and E-striking dextral secondary strike-slip faults. During the Himalayan, the rapid uplift of the North Tianshan Mountains,
driven by the India-Eurasia continental collision, triggered the rapid southward tilting of the WJB, generating extensional
normal faults within the WJB. In terms of hydrocarbon geological significance, Hercynian thrust-nappe faults were later
intensely filled with hydrothermal fluids, forming boundaries that seal oil and gas in deep formations, and basic traps such as
faulted anticlines and fault blocks developed concurrently. The Indosinian “ fault-fault ” migration system transported oil and
gas from source rock areas to the Carboniferous, forming two types of paleo-oil reservoirs in the Carboniferous, namely
weathered crust reservoirs and interior reservoirs, and developing composite traps concurrently. Yanshanian reticular faults
dominated ultra-long-distance westward oil and gas migration, and differential strike-slip movement promoted the migration
and accumulation of some oil and gas into the overlying Jurassic-Cretaceous strata. Himalayan normal faults channeled deep
oil and gas upward to adjust and accumulate in the Neogene, with the concurrent formation of structural-stratigraphic traps.
Multi-stage faults regulated differential hydrocarbon accumulation through reservoir modification, vertical-horizontal
migration, and paleo-reservoir adjustment. The vertically ordered superimposition of multiple oil-bearing intervals forms a
stereoscopic exploration framework, providing theoretical support for hydrocarbon exploration breakthroughs in the WJB.

Key words: western Junggar Basin; tectonic evolution; strike-slip fault; fault-controlled hydrocarbon accumulation; hydrocarbon

accumulation model; petroleum geology.
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Fig.1 Tectonic unit division of the Junggar Basin (a) and tectonic sketch map of the western Junggar Basin (b)
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Fig.2 Seismic profile of the fault system in the western Junggar Basin
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Fig.3 Jurassic distribution (a) and connecting-well section of reservoir development characteristics in the Chepaizi Uplift, western

Junggar Basin (b)
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Fig.4 Fault-stratigraphy coupling profiles of multi-strike faults in the northwestern Junggar Basin margin
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Fig.5 Seismic coherence-time slices and staged activity characteristics of faults in the basin-mountain transition zone of the

western Junggar
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Fig.7 Schematic diagrams of tectonic evolution and associated stress field changes in the western Junggar Block and its adja-
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Fig.9 Fault control on hydrocarbon accumulation and differential accumulation patterns in the western Junggar Block
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