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Abstract: Overthrust belt is of significant importance for hydrocarbon exploration. To elucidate the characteristics and formation
mechanisms of the subsalt overthrust belts in the middle Kelasu structural belt, Kuqa Depression, it conducted detailed seismic
profile interpretation combined with discrete element numerical modeling. The results reveal the development of two major
subsalt overthrust belts, Bozi 25 and Keshen 5 West, in the middle Kelasu structural belt, and demonstrate that their spatial

distribution is closely coupled with the Paleogene salt-lake distribution and pre-existing salt diapiric structures. The frontal uplift
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separating the two salt lakes, where abrupt variations in gypsum-salt layer thickness occur, acts as a stress concentration zone

which facilitates the preferential propagation of large-scale overthrust structures. Moreover, the progressive growth of salt

diapirs provides additional accommodation space for the development of these large-scale overthrust systems. These findings

highlight the footwalls of overthrust structures as key targets for future hydrocarbon exploration and for identifying or re-

evaluating Bashijiqike Formation traps within the Kelasu structural belt.
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Fig.1 Structural framework of Kuqa Depression (a) and fault system of Kelasu structural belt (b) (modified from Wang ez al.,

2025)
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Fig.5 Seismic profile CD crossing Keshen-5 Well in the eastern part of the study area (location shown in Fig.3)
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