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Abstract: Located at the northern edge of the Qinghai-Tibet Plateau and the western end of the Qilian Mountains, the
Shibaocheng-Changma Basin and its surrounding areas are characterized by numerous active tectonic features and intense tectonic
activity. Among these, the Shibaocheng-Yingzuishan Fault Zone, as the largest reverse fault-fold belt in the basin, exhibits
complex tectonic deformation patterns and distinct fault dislocation landforms. This region is an ideal area for studying basin-
mountain tectonic deformation and its deep-shallow tectonic relationships, as well as for understanding the tectonic conversion
relationships between different faults and crustal shortening patterns. This study employs high-precision unmanned aerial vehicle

(UAV) Structure-from-Motion (SfM) photogrammetry techniques, combined with field survey results, to conduct a detailed
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interpretation of faulted landforms. It analyzes the latest activity characteristics and tectonic deformation patterns of the Daxue Shan
Bei Shan Fault within the eastern segment of the Yingzuishan Fault. It also employs cosmogenic nuclide dating methods to age-
date key faulted landforms, and further calculates the Late Quaternary deformation rates through analyses of the deformation
patterns and deformation amounts of multi-level terraces and their corresponding landform surfaces. The research results indicate
that the Daxue Shan Bei Shan Fault consists of two rows of faults. The thrusting action of the front-edge fault has formed
multiple reverse fault-fold belts within the basin, while the rear-edge fault has developed bend-moment normal faults associated
with fold, forming a typical reverse fault-normal fold combination. Fault activity caused the front-edge fault (L.ujiaai segment)
terraces T, and T, to experience vertical displacements of (6.56+0.34) m and (16.09+1.13) m, respectively. Based on terrace age
calculations, the vertical slip rate of this fault segment is approximately (0.1540.01) mm/a, with a horizontal shortening rate of
approximately (0.12+0.02) mm/a and the overall thrust rate is approximately (0.19+0.03) mm/a. The deep slip surface extends
southward to Daxue Shan Fault at a depth of approximately (2.740.5) km, forming a typical thin-skinned reverse fault-fold
deformation zone, which is the result of the fault system’s forward-extending compression and expansion into the basin interior.

Key words: Daxue Shan Bei Shan Fault; unmanned aerial vehicle image; reverse fault fold belt; bending-moment normal fault;

structural geology.
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Fig.2 Distribution of active faults in the Shibaocheng-Changma Basin
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