F51% 1 i EBR B2 Earth Science Vol. 51 No. 1

2026 414 http://www .earth-science.net Jan. 2026

https://doi.org/10.3799/dqkx.2025.186

BT U B o 4% 5 1 == ST Y 55 2
58 7= Je B T A 2R T

AOELE OBTEK O MLE B

1 RAFRERFHAMNASEE TRFRE, T 065201

2. i T LR, T T 110034

3. kTG R A B RN E M A 3E, L 100095
4. P EMWE BREY RSP, T 100081

O ORI IR RO B AR RV T 68 7, 3 DU 0T 0 4% 5 A 2 ST B DX ek RO b R A 6 AR S T AR Y L 1 ke
F X85 R b F SR SO b 1 T00I0 18 5,V A 090 2% 5 i A8t s HL YR TR B 03 10 1 0 0 2 4% 1 U B B 0 e ) 1) 5 1)
A s R SR T, BARTY AU RS XK R — A N R A M 5.0 B DL R GR AR SC g o5 R R A TR AL e 4
B - #5935 0.783, 28 Molchan K 96 56 1F , HAT 20ME 18 22, 36 WA IZ A A B 8% 38 3472 4 b 72 00 98 A0 5 3078 22 M) A TR ZE AR 56 &
SRR . D1 R 2 2 R 2 o 5 b R S B PR ARE R TR0 5 R H SR BERY BE 7L s Molchan K 5 5 Hb 2%

FESZES: P315.08;P315.5 XEHS: 1000—2383(2026)01—043—13 WriE B H8:2025—06—09

Probabilistic Prediction of Short-Term Strong Earthquake
Hazard Based on Bayesian Network Structure Learning

Si Zhen', Yuan Jing", Zhang Bo®, Chen Shi’*

1. School of Computer Science and Engineering, University of Emergency Management, Sanhe 065201, China
2. Liaoning Earthquake Agency, Shenyang 110034, China

3. Beijing Baijiatuan Earth Science National Observation and Research Station, Beijing 100095, China

4. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

Abstract: To enhance the capability for monthly-scale regional strong earthquake risk prediction, this paper introduces a
probabilistic seismic hazard prediction model based on Bayesian network structure learning. Initially, a series of predictive
indicators, serving as the nodes of the Bayesian network, are derived from the earthquake catalog. Subsequently, the thresholds
for each node and the directed connections among nodes are determined using swarm intelligence algorithms. Ultimately, through
parameter estimation, the target node outputs the probability of M,,5.0+ strong earthquakes occurring in the target region within
the next month. Experimental results indicate that the model achieves an average prediction efficiency metric of 0.783, and
validation via the Molchan test confirms its significant effectiveness, demonstrating the model’ s capacity to comprehensively

explore the latent causal relationships between seismic precursors and strong earthquakes.
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Fig.1 Global distribution of earthquakes with magnitude M,,=7.0 from 1960 to 2024
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Table 1 Delineation of the extent of the study region and its structural background
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Table 2 Design specifics of each node in the Bayesian network
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Table 3 Comparison of average performance of different algorithms on training set of 8 regions
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BES-+HC 203+8.6 1.03£0.11 2 087.2940.00 50 40
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Table 4 The definition of confusion matrix in this study
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0.194 8). H: =3 [i] 5 ot M i e 4% 44 385 BR G M 73 1 3
FEAE 9 22 5 M Al D DB 24 DR GO O sl 2, T
AV (B4R B 5 15 55 5 T A AT o e A2 4 R R O
FEMEAE R W 0 B JE R S T R 6/ T
1M [F) 5256 46 42 F BESBN 5 Hifh 4 3125 45 R 1) 7k
AEXT LG, Ho ETAS #5281 5% J1] Ogata(1988) #2 i 1Y
25 BT HEAT X L, S BOR B R AU Al TH LA
Hor Ml R KA SR 0.01, A 72 R %k 0.034, 524
S S0 R 1.027 , B [A] ZE 38 2 4L 0.007 , 3 8 45
ke 1.012, b5 36 F A SEOT 54 58 o
BOR AT 45 X R % O N R bR R AR IS
BESBN & FHAH [F] (%) R 8 55 DFAl 48 b5 2847 1 e X L
284y Hr ] WL BESBN 78 A [R] X3 119 & S48 F H A
F W S8 R ETAS & Poisson #5% # % T
BESBN, T03(HX) (i R 5 5 . 4 0.892, AUC ik
0.949, Hi FPR=0.107 }y 4= X I fe 1K , 7 B IZ A AL
T R AR b ko5 AR 1 T A% RE B A . A s, T02
(DX) B RH (0.649) \AUC (0.808) #H X 4 fi% , 7J fig
K5 RGN B A B 2% ) S W 3 vh A R L R ML A K
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Table 5 Thresholds for BESBN in different regions
B Qyarn Ap1 Apy Ay Ay QA3 ey Acy
BESBN-TO01 0.065 6 175.41 21.02 52.93 4.44 52.74 82.20 661.75
BESBN-TO02 0.055 3 192.86 19.98 25.57 3.48 30.24 10.39 151.57
BESBN-TO03 0.047 2 196.42 16.65 9.74 2.48 35.19 2.98 604.50
BESBN-T04 0.194 8 176.32 17.73 75.16 2.81 45.73 11.43 214.70
BESBN-TO05 0.057 5 209.92 17.16 5.91 3.81 40.36 12.82 669.81
BESBN-TO06 0.014 6 153.80 20.71 7.76 1.90 34.96 3.19 1187.76
BESBN-TO07 0.093 8 147.01 22.26 11.48 4.44 34.78 9.18 607.50
BESBN-TO08 0.159 3 174.15 17.92 2.97 1.42 79.14 13.96 378.22
8 30 14 14
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o o o K
4 1 1 8 1 0 3 1 1 10
0 1 0 1 0 1 0 1
TR bR%E o bR 25 o bR T 72 -
%
#
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Fig.3 Confusion matrix for BESBN inference results on the test set
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Fig.4 Comparison of BESBN network structures in different regions
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Fig.5 Conditional probability tables for BESBN in 8 regions
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Table 6 Comparison of model performances in different regions
WF5E X I 2 A R Acc AUC FPR
BESBN-TO1 0.873 0.880 0.980 0.127
TOL(HH) ETAS 0.742 0.821 0.876 0.179
Poisson 0.612 0.746 0.723 0.254
BESBN-T02 0.649 0.768 0.808 0.240
T02(DX) ETAS 0.548 0.716 0.745 0.284
Poisson 0.421 0.642 0.651 0.358
BESBN-T03 0.892 0.894 0.949 0.107
TO3(HX) ETAS 0.769 0.835 0.882 0.165
Poisson 0.634 0.752 0.731 0.248
BESBN-T04 0.659 0.777 0.825 0.250
TO4(TK) ETAS 0.556 0.716 0.748 0.284
Poisson 0.418 0.627 0.642 0.373
BESBN-TO05 0.825 0.836 0.897 0.175
TO5(TS) ETAS 0.697 0.776 0.824 0.224
Poisson 0.573 0.701 0.692 0.299
BESBN-T06 0.832 0.835 0.871 0.168
TO6(FB) ETAS 0.714 0.775 0.812 0.225
Poisson 0.588 0.695 0.698 0.305
BESBN-TO07 0.790 0.809 0.898 0.210
TO7(TG) ETAS 0.672 0.750 0.821 0.250
Poisson 0.534 0.676 0.687 0.324
BESBN-TO08 0.740 0.866 0.890 0.136
TO8(TD) ETAS 0.628 0.806 0.823 0.194
Poisson 0.495 0.731 0.708 0.269

FREl I F1 28, S 30T 2 P BB B kA KR
R, JE T Ay B 24 A X I TOo1 (HH) | T02
(DX).TO3(HX).T05(TS).T06(FB) % D=1#f %
K T 0.2, 4% Bl J2 T02(DX) 7E 0.1 &b 3 3 &=

W, A] BB TR E M - o 2 A B2 R G N ) R
JiHE Ry A3 L. TO4(TK) 7E 0.2 F1 0.4 Ab 52 30 XL 43
A1, A HE X N 4= 3K 5 5% I 7R ik 2 5 AR o ) R
P RN AL ] A7, JLAE SR 45 4 1) 25 1] o AR AE 5 4% X



52 HERBL2E  http://www.earth-science.net %51 %
TO1 T02 TO3 T04
LOFS —— BESBN 1.0 —seseN | O[] —— BESBN 1.0 —— BESBN
0.8 \ e ETAS 0.8 \ e ETAS 0.8 o~ e ETAS 0.8 e ETAS
s Poisson N === Poisson N = Poisson — Poisson
woet W \Of'/}\\/ ot 1IN ° \Of'/}» osk 111 ° \C:z%/ 0.6 X \Qi'a\\/
= %_ N \ %_ ~ \ % N S
LE 4 \,)\b N 2 : 0.4 \\O\b N X . 0.4 \ ‘o\\) N 3 ) 0.4 \ o\b A < N
02 gt S 02 W N 02 3 N 02 Y N
0ol? B SN ogel b 0.0LE y B 00l d b N
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
S I 8] o R S I 18] o R I 18] o5 R N 18] o5 P R
T05 T06 T07 T08
1o —— BESBN 1.0 ——BESBN 1.0 R —— BESBN Lo —— BESBN
038 —— ETAS 08 ‘ < = ETAS 08 = ETAS 08l » = ETAS
N — P 0isSON N — P0isSON — P0issON \ — D 0isSON
5 0.6 : \Q?'o\\ ost 17 ° \Q?'f}\\ 0.6 \QS"}« 0.6 N %y
,{é \% \\/ \%-\\/ -\\/ .\ 7
2 04 \\g\b \\\ 0.4 \‘/o\b \\\ 0.4 \ /9\§> . 0.4 N S
02 3 ‘\\ 02 2 ‘\\ 02 b ‘\\ 02 ‘\\
0.0LE sl golf b soogolB b s golh S
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
S I 18] 5 P 2R SN T8 o5 R S BN T8 o R S5 I 18] |5 2%
Bl 6 A[a] X 355 8 1) Molchan [&]
Fig.6  Molchan plots of models in different regions
%7 Molchan I &R
Table 7 Molchan test results
BFE X 5 i 1-S G,,(0.17) G (0.20) Gy G
BESBN-TO01 0.8397 2.540 1 3.918 4 3.918 4 5.064 6
TOL(HH) ETAS 0.765 5 - 2.197 1 2.7819 3.490 7
Poisson 0.717 5 - 1.359 1 2.2365 3.053 5
BESBN-T02 0.872 4 4.3758 4.9931 4.840 0 5.717 7
T02(DX) ETAS 0.820 4 1.1539 2.980 4 3.1457 4.3605
Poisson 0.726 4 - 1.2751 2.089 5 3.010 1
BESBN-TO03 0.896 9 8.4707 8.072 5 8.072 5 9.082 6
TO3(HX) ETAS 0.748 6 3.923 8 44729 3.8457 5.022 0
Poisson 0.784 5 - 2.8829 3.240 3 3.954 9
BESBN-T04 0.818 8 1.7413 2.7459 2.966 7 4.510 2
TO04(TK) ETAS 0.746 2 - 1.116 7 2.110 2 3.254 8
Poisson 0.683 3 - 0.543 4 1.673 0 2.643 8
BESBN-TO05 0.901 2 5313 6.570 4 6.570 4 7.934 6
5(TS) ETAS 0.848 5 - 4.1518 4.1518 5.6057
Poisson 0.703 0 - 2.108 8 2.447 8 3.434 2
BESBN-T06 0.881 0 593 7 6.195 6 6.195 6 6.864 4
TO6(FB) ETAS 0.8325 - 4.161 6 4.3332 5.192 5
Poisson 0.7477 - 2.1652 2.8250 3.242 9
BESBN-TO07 0.817 0 1.777 6 2.729 0 3.178 6 4.228 1
TO7(TG) ETAS 0.762 7 - 1.519 2 2.4213 3.403 1
Poisson 0.678 0 - 0.8558 1.800 0 2.368 4
BESBN-TO08 0.782 8 1.412 3 1.9221 2.563 8 3.5455
TO8(TD) ETAS 0.725 4 - 0.930 8 2.004 3 2.8357
Poisson 0.614 6 - 0.704 7 1.5353 2.2019
Safi Wiy St DAY AR B RN T g 3 A LA R DG D7 1 R A LA AT 0T B AT A O W AR I, AR

3.2 Molchan #I&

Xof L 52 £ 6 A ARE 38 S S5, 9F 5 4 )

P T A5 Y )

A7 R4 2 bR 9 G LA R 3 25 7 (proba-

bility gain) fe W E Z(Aki, 1981). 8 T X AWF 5T 7 ik
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