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摘 要： 为提升区域月尺度强震风险预测能力，基于贝叶斯网络结构学习提出区域性月尺度地震危险性概率预测模型 . 首先

利用区域与全球地震目录数据构建预测指标，作为网络节点变量；其次采用群智能算法自动确定各节点阈值及节点间的有向

连接；最后通过参数估计，目标节点输出目标区域未来一月内发生 MW5.0 及以上强震的概率 . 实验结果显示，模型预报效能指

标平均达 0.783，经 Molchan 检验验证，其有效性显著，表明该模型能够充分挖掘地震预测指标与强震之间的潜在因果关系 .
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Abstract: To enhance the capability for monthly-scale regional strong earthquake risk prediction, this paper introduces a 
probabilistic seismic hazard prediction model based on Bayesian network structure learning. Initially, a series of predictive 
indicators, serving as the nodes of the Bayesian network, are derived from the earthquake catalog. Subsequently, the thresholds 
for each node and the directed connections among nodes are determined using swarm intelligence algorithms. Ultimately, through 
parameter estimation, the target node outputs the probability of MW5.0+ strong earthquakes occurring in the target region within 
the next month. Experimental results indicate that the model achieves an average prediction efficiency metric of 0.783, and 
validation via the Molchan test confirms its significant effectiveness, demonstrating the model’s capacity to comprehensively 
explore the latent causal relationships between seismic precursors and strong earthquakes.
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0 引言  

地 震 是 最 具 破 坏 性 且 最 难 以 预 测 的 自 然 灾 害

之 一（Andrić and Lu， 2017）. 地 震 预 测 作 为 推 动 现

代地震学发展的重要动力，是防灾减灾工作中的核

心 环 节 ，对 预 警 策 略 的 制 定 、资 源 分 配 以 及 基 础 设

施 抗 震 加 固 等 实 际 决 策 具 有 关 键 意 义（王 芃 等 ，

2019）. 然而，地震预测的复杂性和不确定性使其一

直面临重大挑战 . 地震的孕育过程涉及的诸多变量

难以准确测量和描述，且观测数据中存在大量干扰

信号，这些信号的甄别与去除进一步增加了地震预

测 的 难 度 . 因 此 ，尽 管 科 学 家 长 期 尝 试 通 过 确 定 性

预 测 技 术 准 确 预 报 地 震 的 时 间 、地 点 和 震 级 ，但 目

前的技术和理论尚不足以克服这些困难 .2009 年意

大利拉奎拉地震及其引发的社会事件促使学界重新

审视地震预测中的不确定性表达 . 此后，地震概率预

测作为新的研究方向迅速发展起来 . 概率预测不再试

图精确确定地震的发生时间与地点，而是通过分析历

史地震目录与当前观测数据，计算未来特定时间和

区域内地震发生的概率（Aki， 1981）. 相比于传统确

定 性 预 测 ，地 震 风 险 概 率 预 测 结 果 更 具 科 学 性 ，能

够更直观地展示各地区地震发生的危险性，有利于

防震减灾工作决策部署（李冬梅等，2025）. 近年来，

随 着 统 计 方 法 、地 震 观 测 技 术 和 计 算 能 力 的 提 升 ，

地震概率预测逐渐成为地震科学的重要领域之一 .
根据预测时间尺度的不同，地震概率预测方法

可 分 为 三 类 ：长 期 概 率 预 测 、中 期 概 率 预 测 和 短 期

概 率 预 测 . 长 期 预 测 着 眼 于 数 十 年 甚 至 百 年 尺 度 ，

旨 在 评 估 特 定 区 域 未 来 发 生 强 震 的 总 体 趋 势 和 潜

在危险性；中期预测则聚焦于数月至数年内的地震

活 动 概 率 ，适 用 于 中 期 防 震 减 灾 规 划 ；短 期 预 测 则

尝 试 在 数 小 时 至 数 月 的 时 间 范 围 内 评 估 地 震 发 生

的 可 能 性 ，主 要 用 于 震 前 预 警 与 应 急 响 应 部 署 .
（1）长期概率预测：主要基于地质构造活动、历

史地震复发周期及断层滑动速率等数据，通过统计

模型评估未来地震发生的累积概率 . 目前广泛应用

的 模 型 是 应 力 释 放 模 型（stress release model， 
SRM），该模型由 Vere⁃Jones（1978）提出，其理论基

础是：假定某一地区的地震危险性概率与应力的积

累释放密切相关，构造运动的持续积累使得给定区

域 的 应 力 水 平 随 之 增 加 进 而 发 生 地 震 使 得 应 力 得

以释放 . 另一个经典的长周期预测模型是传染型余

震序列模型（epidemic type aftershock sequence mod⁃
el， ETAS），由 Ogata（1988）首 次 提 出 .ETAS 模 型

认 为 ，在 余 震 序 列 中 ，任 何 一 次 余 震 都 可 能 触 发 更

高 阶 的 余 震 ，而 不 仅 仅 是 强 震 能 够 引 发 余 震 .SRM
和 ETAS 被认为是长周期地震危险性概率中最有效

的模型 . 为了克服 SRM 仅适合应用于单一断层地震

危险性估计的局限性， Jiang et al. （2011）提出了多

维 应 力 释 放 模 型（multidimensional stress release 
model， MSRM）.MSRM 被认为是一个较为优秀的

长周期预测模型，能够在复杂地质条件下进行概率

计 算 .Dieterich et al.（2000）将 ETAS 模 型 与 状 态 ‒
速 率 相 依 型 摩 擦 律（rate ⁃ and state ⁃ dependent fric⁃
tion law）结合，用以解释微震过程中的相关现象 . 目

前长期地震概率预测方法的探索已相对比较成熟 .
（2）中 期 概 率 预 测 ：中 期 预 测 研 究 则 聚 焦 于 地

震活动性异常等多参数融合模型的分析 . 在国内地

震工程领域，概率预测主要依据 Cornell（1968）提出

的地震危险性概率预测方法（PSHA），并在此基础

上 发 展 了 改 进 方 法——中 国 地 震 危 险 性 概 率 评 估

（Chinese possibility seismic hazard assessment， CP⁃
SHA）.CPSHA 方 法 认 为 ，同 一 区 域 内 地 震 活 动 在

时间上符合稳态泊松分布模型，且空间上存在不均

匀分布，然而区域内部的地震活动符合均匀分布且

满足 G ⁃R 关系（徐伟进和高孟谭， 2012）. 该方法在

强震预测中发挥了重要作用，但仍存在一些显著的

不 足 之 处 ：由 于 区 域 内 强 震 的 发 生 周 期 较 长 ，给 基

于泊松模型的估算强震平均发生率 λ 带来了巨大困

难 . 此 外 ，G ⁃R 关 系 在 大 地 震 发 生 时 出 现 的“ 摆 尾 ”

现象（Xu et al.， 2015； Zhang et al.， 2017）也会导致

由微震推算强震的 λ 出现较大偏差，从而导致该模

型的危险性计算出现较大的不确定性 . 对于中期的

危 险 性 概 率 预 测 ，国 内 外 也 已 有 较 多 探 索 . 刘 欢 等

（2024）提 出 一 种 基 于 高 阶 磁 异 常 导 数 与 高 阶 统 计

量的地震短临预测方法，将预测尺度缩短至 4 个月 .
Ma et al.（2024）将中国大陆划分东北、华北、华南等

6 大构造单元，提出将相对强度（RI）、矩比（MR）及

三重平滑（Tripe⁃S）3 种模型整合为混合概率预测模

型，利用地震目录数据采用滑动回溯方法证明了模
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型在 5 年尺度中的有效性，并验证了区域地震活动

特 征 的 时 空 异 质 性 .b 值 作 为 表 征 地 壳 应 力 状 态 的

关键参数，在国内中期预测研究中展现出显著应用

潜力 . 史海霞等（2018）对汶川 MS8.0 地震的研究表

明，其前震源区 b 值呈现趋势性下降，且在主震前约

6 个月出现快速且显著的异常变化；Wang et al.（2021）
基 于 云 南 地 区 b 值 空 间 分 布 特 征 ，通 过 Molchan 图

检 验 了 其 在 中 长 期 预 测 中 良 好 的 效 能 ；且 Wang et 
al.（2023）后续进一步将 AIC 准则引入 b 值分析，构建

了优化的交通灯系统，并对 2021 年漾濞 MW6.7 地震

序 列 的 前 震 ‒ 主 震 ‒ 余 震 特 征 成 功 进 行 了 识 别 .
（3）短期概率预测：尝试在月尺度的时间范围内

评估地震发生的可能性，主要用于震前预警与应急

响应部署 . 目前国内外短临概率预测仍以适用于中

长周期的模型为基础研究（邓世广等， 2019），未见高

可靠且有效的新型月尺度周期预测模型研究工作 .
综上，对地震危险性概率预测主要集中在数年

至数十年的中长周期，目前尚未出现高效鲁棒的月

尺度短周期地震危险性概率预测方法 . 人工智能为

分 析 多 维 数 据 和 解 决 地 球 科 学 中 的 复 杂 及 非 线 性

问题提供了新的机会（Kuglitsch et al.， 2023），使得

基于人工智能的月尺度地震危险性概率预测模型成

为可能 . 然而，随着模型复杂度提升，参数量的剧增

使 得 其 可 解 释 性 及 预 测 可 信 度 逐 渐 下 降（Fleming 
et al.， 2021），在应对如地震等突发灾害时，模型的

“ 黑 盒 性 ”可 能 导 致 专 业 人 员 对 模 型 内 部 运 作 缺 乏

全 面 了 解 ，对 其 结 果 产 生 信 任 危 机 ，从 而 可 能 成 为

后续制定预防策略的阻碍（Dramsch et al.， 2025）.
贝 叶 斯 网 络（bayesian network）作 为 统 计 学 中

的 重 要 模 型 ，因 其“ 白 盒 性 ”和 卓 越 的 可 解 释 性 ，以

及在多变量不确定性知识推理的优势，使得基于贝

叶斯网络的地震概率预测成为可能，但仍依赖基于

专 家 经 验 设 置 的 网 络 结 构 . 相 较 于 专 家 依 赖 ，贝 叶

斯 网 络 结 构 学 习 因 可 以 充 分 挖 掘 数 据 隐 含 的 逻 辑

关联，为建立如地震预测等复杂问题的可解释模型

提 供 了 有 效 技 术 途 径 . 目 前 ，网 络 结 构 学 习 方 法 可

分 为 三 种 类 型 ：基 于 约 束 、基 于 评 分 搜 索 以 及 混 合

学习方法 . 随着计算能力提升和机器学习技术的发

展，基于评分搜索方法中的启发式或群智能算法逐

渐成为近年的研究热点 .Liu et al. （2023）提出了基

于 改 进 哈 里 斯 鹰 优 化 算 法 的 贝 叶 斯 网 络 结 构 学 习

方 法 ，通 过 遗 传 算 子 增 强 了 算 法 的 全 局 搜 索 能 力 ；

Yang et al.（2024）则 将 散 射 搜 索 这 一 元 启 发 式 方

法 应 用 于 贝 叶 斯 网 络 结 构 学 习 问 题 并 表 现 出 良

好 的 性 能 ；He et al.（2024）开 发 的 基 于 邻 接 完 整

节 点 序 的 结 构 学 习 方 法 ，通 过 寻 找 贝 叶 斯 网 络 的

节 点 序 ，再 使 用 爬 山（hill⁃climbing， HC）算 法 从 而

确 定 最 佳 网 络 结 构 . 针 对 贝 叶 斯 网 络 结 构 学 习    
N⁃P 难 问 题 ，研 究 者 们 正 在 探 索 更 加 高 效 和 精 确

的 启 发 式 群 智 能 策 略 . 然 而 ，选 择 何 种 算 法 仍 需

紧 密 结 合 具 体 应 用 场 景 的 数 据 特 性 和 模 型 需 求 .
为 了 从 历 史 地 震 数 据 中 自 动 提 取 变 量 之 间 的

因 果 关 系 并 挖 掘 地 震 数 据 中 错 综 复 杂 的 隐 性 逻 辑

关 联 ，本 文 提 出 了 基 于 贝 叶 斯 网 络 结 构 学 习 的 地

震 危 险 性 评 估 模 型 ：首 先 根 据 地 震 目 录 设 计 贝 叶

斯 网 络 节 点 ；然 后 采 用 群 智 能 算 法 中 秃 鹰 搜 索

（bald eagle search， BES）算 法（Alsattar et al.， 
2020），并 结 合 爬 山 算 法（Al⁃Betar， 2017）构 建 了

秃 鹰 搜 索 贝 叶 斯 网 络（bald eagle search bayesian 
network， BESBN），接 着 利 用 秃 鹰 搜 索 算 法 进 行

了 自 动 的 阈 值 处 理 ，这 种 组 合 有 效 利 用 了 BES 的

优 秀 全 局 探 索 能 力 和 HC 的 局 部 精 细 调 优 能 力 ，

更 契 合 地 震 数 据 蕴 含 的 复 杂 非 线 性 关 系 挖 掘 需

求 ；最 后 将 该 方 法 用 于 中 国 多 个 关 注 区 域 月 尺 度

MW5.0 以 上 强 震 危 险 性 的 概 率 预 测 ，并 通 过 国 际

公 认 的 Molchan 检 验 表 明 本 算 法 有 效 且 可 靠 .

1 数据集  

地震目录是复杂的高维对象，其高维性使得地震

学家很难对其进行探索，而上面提到的经验地震学方

法似乎不太可能利用目录中更深层的丰富信息，但应

用机器学习技术在识别它们之间的地震活动性中编码

的新关系方面发挥着重要作用（Beroza et al.， 2021），

尤其是基于目录的地震危险性概率评估方法，其构建

过程摒弃了经验性潜在震源识别与参数化设定带来

的认知偏差，使得在保持计算流程简洁性的同时提升

了预测结果的客观性与可解释性（裴玮来等，2021）.
为如实描述区域地震活动的主要特征，研究使

用 中 国 地 震 台 网 中 心 1970-2024 年 的 地 震 目 录 .
为 保 证 数 据 集 的 高 质 量 ，利 用 Datist 软 件 对 目 录 进

行清洗：依据精确经纬度剔除震中位于研究区域边

界 之 外 的 震 例 及 依 据 破 裂 范 围 和 持 续 时 间 判 定 的

余 震 或 震 群 ，确 保 每 条 记 录 都 包 括 正 确 的 经 纬 度 、

发 生 时 间 、震 级 和 深 度 等 信 息 . 最 终 的 数 据 由 两 部

分组成：其一是 1 110 条全球 MW7.0 以上特大震例；

其 二 是 81 090 条 全 国 震 例 ，包 括 2 900 条 全 国
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MW5.0 以上强震例 . 全球的强震分布如图 1 所示 .
地 震 危 险 性 的 确 定 是 通 过 划 定 区 域（即 预 计

地 震 发 生 在 圈 内 ，而 不 发 生 在 圈 外）来 进 行 的 ，其

主 要 思 路 是 利 用 震 例 研 究 成 果 结 合 专 家 经 验 ，圈

定 可 能 发 生 破 坏 性 地 震 的 地 区 ，即 地 震 危 险 区 ，如

表 1 所 示 的 区 域 划 分 均 出 自 地 震 危 险 区 ，划 分 范

围 主 要 基 于 断 裂 带 的 空 间 展 布 特 征 及 历 史 强 震 活

动 格 局 ，确 保 各 单 元 具 有 独 立 的 地 震 构 造 背 景 .

2 方法  

本文基于贝叶斯网络结构学习方法对不同区域计

算 MW5.0 以上地震危险性概率的总体流程步骤如图 2
所示 . 该研究流程主要包括数据处理、结构学习、阈值

优化、模型评估 .方法研究细节将在后续详细介绍 .
2.1　数据处理　

基于月尺度滑动窗口，对预处理后的地震目录进

行多级划分，其节点设置如表 2 所示 .网络节点架构参

考我国震情短临跟踪技术规范中“全球‒全国‒区域”

多尺度层级融合策略，集成不同空间尺度的地震活动

特征，构建具有层级关联性的预测指标体系 . 数据集

的 90% 用于模型参数估计，10% 用于推断测试 . 为避

免因划分不当而导致学习过拟合问题，本研究在不同

区域通过分层抽样，使有震与无震样本在训练集与测

试集中保持 9∶1，且确保在时间维度上不存在重叠 .
2.2　结构学习　

由 于 网 络 拓 扑 结 构 随 节 点 数 量 的 增 加 而 呈 超

指 数 级 增 长 ，使 得 大 部 分 算 法 结 构 学 习 成 本 过 高 ，

导致效果无法接近理论最优 . 为克服结构学习过程

中收敛速度慢和易陷入局部最优的问题，并比较不

同搜索算法及超参数配置的性能差距，表 3 列出了

与 传 统 的 蚁 群 优 化 算 法（ant colony optimization， 
ACO）（Dorigo et al.， 1996），以 及 近 年 较 为 优 秀 的

麻 雀 搜 索 算 法（sparrow search algorithm， SSA）

（Xue and Shen， 2020）、灰 狼 优 化 算 法（grey wolf  
optimizer， GWO）（Mirjalili et al.， 2014）和 鲸 鱼 优

表  1　划定研究区域的范围及构造背景

Table 1　Delineation of the extent of the study region and its structural background

研究区域

T01(HH)
T02(DX)
T03(HX)
T04(TK)
T05(TS)
T06(FB)
T07(TG)
T08(TD)

划分范围

红河断裂带周边

滇西和澜沧江地震带

河西走廊、六盘山、兰州、天水

塔里木盆地西南和昆仑山东部

天山山脉

福建省东南沿海、渤海地区和山西东部

唐古拉山脉东部

台湾东部及沿海

构造背景

印度‒欧亚板块碰撞应力控制,历史强震反映走滑断层闭锁

滇缅块体走滑‒逆冲复合,地震机制多样

闭锁段应力积累特征突出,历史强震密集

耦合板缘俯冲受印度板块北向推挤,应力加载引发逆冲型地震丛集

印度‒欧亚碰撞远场效应显著,断层闭锁度高

历史强震受板块内部弱变形与局部应力集中控制

唐古拉山脉东缘走滑断裂网络,地震活动反映高原东向扩展变形机制

高角度逆冲及走滑断层发育,地震频发源于板块边界强耦合

图 1　全球 1960-2024 年 Mw7.0 以上的地震分布

Fig.1　Global distribution of earthquakes with magnitude Mw≥7.0 from 1960 to 2024
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图 2　研究方法的框架与流程

Fig.2　Framework and process of the research methodology

表 2　贝叶斯网络每个节点的设计细节

Table 2　Design specifics of each node in the Bayesian network

节点

A1

A2

B1

B2

B3

C1

C2

D

内容

全球 10 年内 MW7.0 以上地震频率

全国 3 年内 MW6.0 以上地震频率

区域 3 月内 ML3.0 以上地震频率

全国 1 年内 MW7.0 以上地震频率

全国 1 年内 MW5.0 以上地震频率

区域 1 月内 ML3.0 以上地震频率

区域 MW4.0 以上地震平静期天数

下个月是否发生 MW5.0 以上地震

状态 0
平静

平静

平静

平静

平静

平静

长时间平静

不发生

状态 1
活跃

活跃

活跃

活跃

活跃

活跃

平静时间短

发生
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化 算 法（whale optimization algorithm， WOA）（Mir⁃
jalili and Lewis， 2016）的性能对比 . 为减少算法固有

的随机性和结构学习 N⁃P 难带来的影响，对每个区

域重复 50 次，取算法在 8 个研究区域的平均值 . 其中

AET 表示所有区域的平均 执 行 时 间 ；ASD 表 示 模

型 收 敛 的 平 均 结 构 差 异 ；AKS 表 示 模 型 在 所 有 区

域 中 获 得 的 平 均 分 数 . 结 果 表 明 秃 鹰 搜 索 算 法 表

现 最 佳 ，因 此 选 其 作 为 网 络 结 构 学 习 算 法 . 为 突 破

结 构 学 习 易 导 致 局 部 最 优 解 的 问 题 ，本 研 究 将 群

智 能 算 法 与 爬 山 算 法 结 合 . 爬 山 算 法 是 一 种 基 于

贪 婪 搜 索 的 局 部 优 化 策 略 ，该 算 法 从 种 群 随 机 生

成 的 初 始 网 络 拓 扑 结 构 开 始 ，通 过 对 执 行 添 加 、删

除 或 反 转 边 的 操 作 对 网 络 拓 扑 进 行 微 调 ，从 而 更

新候选结构，使其收敛速度更快并让最终学习的网

络结构质量更高 . 本文实验环境如下：Windows11 操

作 系 统 ，CPU 为 13th Gen Intel（R） Core（TM） i9 ⁃
13900K 3.00 GHz， NVIDIA GeForce RTX 4080 SU⁃
PER 图形处理器，概率相关计算采用 pgmpy0.1.25框

架 . 所 有 对 比 实 验 均 在 此 环 境 下 进 行 .
采用 BES+HC 进行结构学习算法的伪代码如

附录 1 所示 . 通过秃鹰搜索算法特有的动态调整搜索

范围和灵活修改种群个体飞行路径来优化对网络拓

扑结构空间的搜索策略，且由于引入了信息共享机

制，使种群个体在搜索时会观察其他个体的行为，此

特点使得该算法特别适用于复杂的网络拓扑学习问

题 . 在首先的选择阶段，算法通过随机生成个体位置

来建立初始种群，模拟秃鹰选择局部搜索空间的过

程；此后的搜索阶段，搜索范围逐渐缩小以提高个体

局部搜索的精度 . 最后的俯冲阶段，算法模仿秃鹰狩

猎时的俯冲行为，迅速收敛到本轮迭代的最优解 .
算 法 伪 代 码 中 ，β 为 缩 放 因 子 ，取 值 为（1.5，

2）的 随 机 数 .Pi 指 的 是 秃 鹰 i 在 种 群 中 的 位 置 .
Pmean 表 示 在 种 群 中 选 出 的 平 均 位 置 ，Pbest 是 当 前

种 群 的 最 佳 位 置 ，Pcandidate 是 当 前 的 候 选 位 置 .c1 和

c2 是 秃 鹰 向 最 佳 位 置 和 中 心 位 置 移 动 的 强 度 ，取

值 为（1，2）间 的 随 机 数 .x1（i）和 y1（i）用 于 表 示

秃 鹰 的 极 坐 标 ，取 值 范 围 为（1，2）间 的 随 机 数 .
2.3　阈值优化　

阈 值 优 化 分 为 两 方 面 ，其 一 为 数 据 离 散 阈 值 .
地 震 目 录 中 的 连 续 型 观 测 数 据（地 震 频 次 、平 静 期

天 数）需 离 散 化 为 二 元 状 态 变 量 . 传 统 方 法 多 采 用

经验四分位数或均值分割法，但易产生重要特征信

息损失 .BES 在此过程中根据灵活的动态搜索机制

离 散 为 信 息 损 失 最 小 的 最 佳 二 元 变 量 . 其 二 为 报

警概率阈值，模型输出的后验概率 P（D=1|E）需通

过 决 策 阈 值 转 化 为 二 元 预 警 信 号 . 考 虑 到 对 漏 报

的 敏 感 性 ，二 者 均 采 用 R 值 最 大 化 为 优 化 目 标 ：

           α* = argmax
α ∈ [ 0,1 ]

R ( α ) ， (1)

式中，R（α）随 α 变化的函数关系可通过遍历训练集输

出 .BES 在多维数据区间进行搜索，能迅速定位使 R

值最大的最优阈值 α*.训练过程中，模型的参数估计采

用先验分布为 Dirichlet 分布的贝叶斯估计（Bayesian 
estimation， BE），在测试集推断后验概率采用变量消

除法（variable elimination， VE），其公式如下所示：

           P ( D|E )= P ( E|D )× P ( D )
P ( E )

 ， (2)

 P ( D |E )= ∑H ∏ i - 1
n P ( X i |Parents ( X i ) )

∑D' ∑H ∏ i - 1
n P ( X i |Parents ( X i ) )

 ,

(3)
式（2）中： P（D |E）是给定观测证据集合 E 的条件下

目标变量 D 发生的后验概率，P（E |D）是在目标变量

D 已 知 时 观 测 证 据 E 发 生 的 条 件 概 率 ，或 称 为“ 似

然”，P（D）是目标变量 D 的先验概率，反映地震目录

中的初始假设；P（E）是观测证据 E 的边缘概率作为

归 一 化 常 数 . 式（3）中 ： Xi 为 贝 叶 斯 网 络 节 点 ，E

为 观 测 证 据 集 合 ，H 为 需 要 消 除 的 非 证 据 非 目 标

变 量 ，D ′表 示 目 标 变 量 D 的 所 有 可 能 取 值（即 D 的

表 3　不同算法在 8 个区域的训练集上性能比较

Table 3　Comparison of average performance of different algorithms on training set of 8 regions

算法

ACO+HC
SSA+HC

GWO+HC
WOA+HC
BES+HC
BES+HC

AET
243±2.5
230±3.1
238±1.7

202±18.0
203±8.6

235±11.3

ASD
2.75±1.24
2.12±0.63
1.83±0.53
3.58±1.37
1.03±0.11
1.00±0.00

AKS
939.52±10.25
1 142.79±1.16
1 211.68±3.50
1 416.37±2.44
2 087.29±0.00
2 099.85±0.00

迭代轮数

50
50
50
50
50
50

种群数量

40
40
40
40
40
50
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全 域 集 合）. 分 子 为 联 合 概 率 在 目 标 变 量 D 上 的

边 缘 化 ，分 母 为 归 一 化 常 数 . 将 对 D 的 后 验 概 率

超 过 报 警 阈 值 的 样 本 归 为 正 样 本 ，否 则 归 为 负 样

本 ，后 续 可 对 模 型 的 评 估 采 用 可 量 化 的 评 价 指 标 .
2.4　评估指标　

根据模型训练得到的报警阈值，可对模型的概

率 预 测 结 果 进 行 分 类 评 估 . 网 络 的 结 构 学 习 使 用

Cooper and Herskovits（1992）提 出 的 基 于 评 分 搜 索

方 法 ，评 分 函 数 Score 采 用 贝 叶 斯 信 息 准 则（bayes⁃
ian information criterion， BIC），取 相 反 数 是 为 方 便

比较 .BIC 作为一种基于贝叶斯统计的模型选择工

具 ，旨 在 权 衡 模 型 的 拟 合 优 劣 和 复 杂 程 度 ，通 过 惩

罚参数数量来鼓励选择相对简单的模型，引导模型

向 更 好 的 结 构 发 展 ，从 而 避 免 过 拟 合 . 对 于 模 型 在

测 试 集 上 的 表 现 ，采 用 适 用 于 机 器 学 习 的 R 值

（Peng et al.， 2006； Panakkat and Adeli， 2007； 
Adeli and Panakkat， 2009）、ROC 曲 线 下 面 积

（AUC）和准确率（Acc）来评估模型 . 其公式分别为：

           BIC = -2lnL + klnn , (4)
           Score = -BIC , (5)

           R = TP
TP + FN - FP

TN + FP  , (6)

           Acc = TP + TN
TP + TN + FP + FN  , (7)

           AUC =∫
0

1

TPR ( FPR ) d( FPR ) , (8)

式中：L 为似然函数的最大值，k 为模型中自由参数

的数量，n 为样本量的大小 .R 值量化了模型识别地

震时空特征和反映捕捉真实震例的能力，尤其适用于

正负样本不平衡、不确定性较大的地震概率预测中，R

值为 0 表示模型决策完全随机；为 1 表示模型完全预

测 正 确 . 准 确 率 可 以 反 映 模 型 的 整 体 预 测 能 力 ，而

AUC 弥补了准确度在不平衡数据集上的局限性 .TP、

FP、TN、FN 的 定 义 如 表 4 所 示 .TPR，也 称 为 召 回

率或灵敏度，表示模型正确识别的正样本比例，FPR
为 衡 量 负 样 本 中 被 模 型 错 误 归 类 为 阳 性 的 比 例 .

3 结果  

3.1　效能量化　

通过贝叶斯网络结构学习，本研究构建了 8 个

研究区域的地震危险性概率预测模型 BESBN，表 5
展示了各区域节点的离散化阈值与报警概率阈值，

不同区域的阈值差异较为明显，T06（FB）的报警阈

值最低（α=0.014 6），而 T04（TK）的阈值最高（α=
0.194 8）. 其 空 间 异 质 性 反 映 各 构 造 单 元 地 震 活 动

特 征 的 差 异 性 ：板 内 断 裂 带 因 微 震 活 动 频 繁 ，需 更

低阈值捕捉异常信号；而板缘俯冲带受全球强震远

程加载作用，需更高阈值过滤噪声干扰 . 表 6 给出了

在相同实验条件下 BESBN 与其他统计学模型的性

能 对 比 ，其 中 ETAS 模 型 采 用 Ogata（1988）提 出 的

经 典 模 型 进 行 对 比 ，参 数 采 用 最 大 似 然 估 计 拟 合 ，

其中地震发生率取值 0.01，生产率设为 0.034，震级

影响参数设为 1.027，时间延迟参数取 0.007，衰减指

数设定为 1.012，随后基于拟合参数计算条件强度函

数 获 得 各 区 域 时 间 窗 口 内 的 地 震 发 生 概 率 ，并 与

BESBN 采用相同的 R 值等评估指标进行性能对比 .
经分析可见 BESBN 在不同区域的表现均优于目前

主 流 的 统 计 学 模 型 ETAS 及 Poisson 模 型 . 对 于

BESBN，T03（HX）的 R 值 最 高 ，为 0.892，AUC 达

0.949，其 FPR=0.107 为全区域最低，表明该模型对

青 藏 高 原 东 北 缘 强 震 的 预 测 效 能 最 优 . 相 反 ，T02
（DX）的 R 值（0.649）、AUC（0.808）相 对 较 低 ，可 能

与滇缅块体复杂的走滑‒逆冲复合型地震机制有关 .
图 3 为 8 个区域对应 BESBN 的混淆矩阵，综合来看

BESBN 的强震漏报率较低，根据风险决策理论，漏

报造成的潜在损失往往远超误报损失，符合防震减

灾 中“ 宁 可 误 报 、不 可 漏 报 ”的 策 略 . 网 络 拓 扑 结 构

如 图 4 所 示 ，所 有 区 域 的 贝 叶 斯 网 络 均 呈 现 出

“ 全 球 大 震 ‒全 国 强 震 ‒区 域 微 震 ‒区 域 强 震 ”的 跨

尺 度 正 反 向 因 果 传 导 路 径 ，多 数 区 域 的 节 点 C2
与 目 标 节 点 形 成 强 连 接 ，表 明 该 区 域 4.0 级 地 震

平静期缩短对后续强震具有指示作用，印证了板块

运动通过应力传递影响区域地震活动，证明该网络

结构对区域应力积累‒释放过程的物理表征能力 .
图 5 的 条 件 概 率 表（conditional probability ta⁃

ble， CPT）揭示了不同构造单元强震发生概率（D=
1）的 空 间 分 异 . 属 于 板 缘 俯 冲 带 的 T04（TK）、T08

（TD）D=1 概 率 在 0.2~0.4 区 间 形 成 明 显 峰 值 ，反

映 印 度 板 块 俯 冲 带 和 台 湾 弧 陆 碰 撞 带 因 板 块 边 界

表 4　本研究中混淆矩阵的定义

Table 4　The definition of confusion matrix in this study

混淆矩阵

后验概率超过报警值

后验概率未超过报警值

下个月发生 MW5.0
以上强震

TP
FN

下个月未发生

MW5.0 以上强震

FP
TN
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图 4　不同区域的 BESBN 网络结构对比

Fig.4　Comparison of BESBN network structures in different regions

图 3　模型在测试集上推理结果的混淆矩阵

Fig.3　Confusion matrix for BESBN inference results on the test set

表 5　不同区域 BESBN 的阈值

Table 5　Thresholds for BESBN in different regions

模型

BESBN-T01
BESBN-T02
BESBN-T03
BESBN-T04
BESBN-T05
BESBN-T06
BESBN-T07
BESBN-T08

αwarn

0.065 6
0.055 3
0.047 2
0.194 8
0.057 5
0.014 6
0.093 8
0.159 3

αA1

175.41
192.86
196.42
176.32
209.92
153.80
147.01
174.15

αA2

21.02
19.98
16.65
17.73
17.16
20.71
22.26
17.92

αB1

52.93
25.57
9.74

75.16
5.91
7.76

11.48
2.97

αB2

4.44
3.48
2.48
2.81
3.81
1.90
4.44
1.42

αB3

52.74
30.24
35.19
45.73
40.36
34.96
34.78
79.14

αC1

82.20
10.39
2.98

11.43
12.82
3.19
9.18

13.96

αC2

661.75
151.57
604.50
214.70
669.81

1187.76
607.50
378.22
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持续应力加载，导致断层闭锁段更易发生应力失稳 .
相 反 ，属 于 板 内 断 裂 带 区 域 的 T01（HH）、T02

（DX）、T03（HX）、T05（TS）、T06（FB）的 D=1 概率

普 遍 低 于 0.2，特 别 是 T02（DX）在 0.1 处 出 现 主

峰 ，可 能 预 示 走 滑 ‒逆 冲 复 合 型 断 层 系 统 的 应 力 释

放 更 为 分 散 .T04（TK）在 0.2 和 0.4 处 呈 现 双 峰 分

布 ，可 能 对 应 全 球 强 震 远 程 触 发 与 本 地 应 力 积 累

两种机制共存，其概率结构的空间分异特征与各区

图 5　8 个区域中 BESBN 的条件概率表

Fig.5　Conditional probability tables for BESBN in 8 regions

表 6　不同区域的模型性能比较

Table 6　Comparison of model performances in different regions

研究区域

T01(HH)

T02(DX)

T03(HX)

T04(TK)

T05(TS)

T06(FB)

T07(TG)

T08(TD)

模型

BESBN-T01
ETAS
Poisson

BESBN-T02
ETAS
Poisson

BESBN-T03
ETAS
Poisson

BESBN-T04
ETAS
Poisson

BESBN-T05
ETAS
Poisson

BESBN-T06
ETAS
Poisson

BESBN-T07
ETAS
Poisson

BESBN-T08
ETAS
Poisson

R

0.873
0.742
0.612
0.649
0.548
0.421
0.892
0.769
0.634
0.659
0.556
0.418
0.825
0.697
0.573
0.832
0.714
0.588
0.790
0.672
0.534
0.740
0.628
0.495

Acc
0.880
0.821
0.746
0.768
0.716
0.642
0.894
0.835
0.752
0.777
0.716
0.627
0.836
0.776
0.701
0.835
0.775
0.695
0.809
0.750
0.676
0.866
0.806
0.731

AUC
0.980
0.876
0.723
0.808
0.745
0.651
0.949
0.882
0.731
0.825
0.748
0.642
0.897
0.824
0.692
0.871
0.812
0.698
0.898
0.821
0.687
0.890
0.823
0.708

FPR
0.127
0.179
0.254
0.240
0.284
0.358
0.107
0.165
0.248
0.250
0.284
0.373
0.175
0.224
0.299
0.168
0.225
0.305
0.210
0.250
0.324
0.136
0.194
0.269
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域断裂带闭锁程度、应力加载速率等具有相关性 .
3.2　Molchan 检验　

对地震危险性概率预测领域，研究提出的预测

方法是否真的有效需要进行严格透明的检验，概率

性预测模型的有效测量标准尤以“概率增益”（proba⁃
bility gain）最为重要（Aki， 1981）. 为了对本研究方法

表 7　Molchan 检验结果

Table 7　Molchan test results

研究区域

T01(HH)

T02(DX)

T03(HX)

T04(TK)

T05(TS)

T06(FB)

T07(TG)

T08(TD)

模型

BESBN-T01
ETAS
Poisson

BESBN-T02
ETAS
Poisson

BESBN-T03
ETAS
Poisson

BESBN-T04
ETAS
Poisson

BESBN-T05
ETAS
Poisson

BESBN-T06
ETAS
Poisson

BESBN-T07
ETAS
Poisson

BESBN-T08
ETAS
Poisson

1-S

0.839 7
0.765 5
0.717 5
0.872 4
0.820 4
0.726 4
0.896 9
0.748 6
0.784 5
0.818 8
0.746 2
0.683 3
0.901 2
0.848 5
0.703 0
0.881 0
0.832 5
0.747 7
0.817 0
0.762 7
0.678 0
0.782 8
0.725 4
0.614 6

Gavg(0.1τ)
2.540 1

-

-

4.375 8
1.153 9

-

8.470 7
3.923 8

-

1.741 3
-

-

5.531 3
-

-

5.593 7
-

-

1.777 6
-

-

1.412 3
-

-

Gavg(0.2τ)
3.918 4
2.197 1
1.359 1
4.993 1
2.980 4
1.275 1
8.072 5
4.472 9
2.882 9
2.745 9
1.116 7
0.543 4
6.570 4
4.151 8
2.108 8
6.195 6
4.161 6
2.165 2
2.729 0
1.519 2
0.855 8
1.922 1
0.930 8
0.704 7

Gavg

3.918 4
2.781 9
2.236 5
4.840 0
3.145 7
2.089 5
8.072 5
3.845 7
3.240 3
2.966 7
2.110 2
1.673 0
6.570 4
4.151 8
2.447 8
6.195 6
4.333 2
2.825 0
3.178 6
2.421 3
1.800 0
2.563 8
2.004 3
1.535 3

Gmax

5.064 6
3.490 7
3.053 5
5.717 7
4.360 5
3.010 1
9.082 6
5.022 0
3.954 9
4.510 2
3.254 8
2.643 8
7.934 6
5.605 7
3.434 2
6.864 4
5.192 5
3.242 9
4.228 1
3.403 1
2.368 4
3.545 5
2.835 7
2.201 9

图 6　不同区域模型的 Molchan 图

Fig.6　Molchan plots of models in different regions
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进行严格透明的检验，采用了被广泛应用于地震预

测的统计方法——Molchan 检验 . 该方法由 Molchan
（2010）提出，通过构建 Molchan 图来量化模型预测能

力的优劣，尤其适用于基于概率的危险性预测模型 .
在 Molchan 图中，横轴 τ 表示异常时间占用率，

即预测的警报范围占总观测时间的比例；纵轴 ν 代表

漏报率，即未预测成功的地震事件占总地震事件的

比例 . 理想情况下，模型的预测效能在图中应尽可能

位于左下角，即捕捉到较小警报范围内的大部分地

震 事 件 . 图 中 的 对 角 线 代 表 随 机 猜 测 ，任 何 有 效 的

预测方法都应低于这条对角线（孙小龙等，2018）.
在本研究中，首先根据不同区域确定模型不同的

预警阈值，并将高于这些阈值的后验概率视为警报

（Molchan， 1991； Zechar et al.， 2008）.其次，根据 Mol⁃
chan 图可计算每个震例的概率增益，计算公式如下：

         G = 1 - ν
τ

 . (9)

式中：G 大于 1 表示优于随机猜测，G 越大预测效果

越 好 . 最 后 ，根 据 绘 制 的 曲 线 图 计 算 出 曲 线 下 的 面

积 S，模型的预测效能定义为 1⁃S. 图 6 显示了不同模

型的 Molchan 检验结果，且经检验证明 BESBN 在不

同区域中均具有与主流模型相比更好的效能 . 表 7
显 示 了 Molchan 检 验 的 计 算 细 节 ：当 τ<0.2 时 所 有

区域的平均 G 值均大于 1.5，证明模型在预警时间占

比 20% 以内，其月尺度决策是高可靠的，此特性得

益 于 贝 叶 斯 网 络 对 多 时 间 尺 度 预 测 指 标 的 协 同 推

理 能 力 ，特 别 是 通 过 结 构 学 习 发 现 的“ 全 球 特 大 地

震 ‒全 国 强 震 ‒区 域 微 震 ”的 复 杂 因 果 关 联 机 制 ，从

而 在 较 小 τ 值 时 实 现 高 地 震 覆 盖 率 . 通 过 8 个 构 造

区 的 对 比 分 析 ，发 现 模 型 在 活 动 断 裂 带 密 集 地 如

T03（HX）表现最优，其曲线最贴近坐标原点，最大

概率增益达 9.08，而 ETAS 及 Poisson 模型只有 5.02
和 3.95，表明传统模型难以捕捉区域微震活动自组

织演化的非线性特征 . 这种空间差异性可能源于不

同构造单元的地震活动特征：板缘俯冲带 T08（TD）

的 强 震 受 全 球 板 块 运 动 影 响 显 著 ，而 板 内 断 裂 区

T03（HX）更多依赖区域微震活动的自组织演化，这

与 网 络 结 构 学 习 中 发 现 的 跨 尺 度 因 果 关 系 吻 合 .
相 较 于 传 统 固 定 阈 值 策 略 ，BESBN 这 种 基

于 地 震 目 录 数 据 驱 动 的 动 态 阈 值 选 择 机 制 可 使

每 个 研 究 区 域 的 预 警 灵 敏 度 与 其 地 震 活 动 水 平

自 动 适 配 . 在 地 震 频 发 的 T04（TK）需 要 更 高 预

警 时 间 占 比 来 维 持 低 漏 报 率 ，而 相 对 地 震 活 动

较 为 平 静 的 T06（FB）则 需 要 极 高 敏 感 阈 值 α =

0.015 来 快 速 响 应 ，这 种 差 异 化 策 略 使 得 T06
（FB）在 Molchan 图 中 斜 率 表 现 更 加 陡 峭 .

4 结论及讨论  

本研究基于贝叶斯网络结构学习方法，构建了

适用于多区域的月尺度强震危险性概率预测模型 .
与传统确定性地震预测模型不同，贝叶斯网络这种

基 于 统 计 学 的 模 型 通 过 概 率 公 式 推 理 ，直 观 解 释

不 同 区 域 的 短 期 地 震 危 险 性 . 有 别 于 基 于 预 设 的

专 家 知 识 网 络 ，BESBN 通 过 数 据 驱 动 发 现 潜 在 因

果 ，学 习 的 网 络 拓 扑 往 往 具 有 更 高 复 杂 性 ，一 定 程

度 降 低 了 由 于 主 观 经 验 导 致 忽 略 潜 在 问 题 的 隐

患 ，为 及 时 调 整 地 震 灾 害 预 防 策 略 提 供 有 效 支 撑 .
针 对 目 前 月 尺 度 地 震 预 测 缺 少 可 靠 方 法 或 模

型 的 问 题 ，本 文 提 出 的 方 法 经 过 多 研 究 区 域 的

Molchan 检 验 ，在 低 异 常 时 间 占 比（τ <0.2）时 ，所

有 区 域 平 均 概 率 增 益 可 达 4.64，证 明 其 是 有 效 的 .
对 于 本 研 究 采 用 分 区 域 建 模 策 略 而 非 全 国 尺

度 建 模 ，主 要 基 于 以 下 科 学 考 量 ：国 内 地 震 活 动 受

控 于 复 杂 的 构 造 背 景 ，且 各 单 元 的 应 力 场 分 布 、断

层几何结构等存在较大差异，全国尺度的建模将面

临参数空间异质性过大的局限性，不同构造区域的

地 震 触 发 机 制 从 逆 冲 型 、走 滑 型 到 拉 张 型 变 化 剧

烈 ，其 震 源 深 度 、破 裂 尺 度 等 关 键 参 数 的 分 布 特 征

差 异 较 大 . 若 采 用 全 国 统 一 的 网 络 结 构 和 参 数 体

系 ，可 能 会 导 致 模 型 过 度 平 滑 区 域 差 异 ，丧 失 对 局

部 地 震 活 动 特 征 的 敏 感 性 ，最 终 影 响 预 测 精 度 . 相

比之下分区域建模策略通过构造单元的独立划分，

使 每 个 子 模 型 能 够 充 分 适 应 其 特 定 的 地 震 构 造 环

境，确保了参数估计的稳健性和预测结果的可靠性 .
本 研 究 为 短 期 地 震 危 险 性 预 测 提 供 了 可 解 释

的数据驱动因果关联，其结构学习机制对揭示地震

产 生 的 因 果 具 有 普 适 意 义 ，但 对 于 个 别 区 域 的

BESBN 模 型 漏 报 的 强 震 例 ，原 因 需 后 续 进 一 步

研 究 . 该 方 法 为 现 有 的 地 震 危 险 性 概 率 预 测 体 系

提 供 了 补 充 ，未 来 将 探 索 网 络 拓 扑 结 构 与 地 壳 形

变 、地 球 化 学 等 多 源 学 科 数 据 融 合 ，优 化 算 法 提 升

学 习 效 率 ，增 强 模 型 对 复 杂 构 造 环 境 的 适 应 性 .
致谢：北京白家疃地球科学国家野外科学观测

研究站为节点设计提供指导意见；辽宁省地震局为

选择研究区域提供宝贵意见；感谢审稿专家提出的

宝贵修改意见！
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