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Abstract: In recent years, the rapid accumulation of massive digital seismic observations has created an urgent demand for
efficient and intelligent data-processing methods. This paper presents a suite of new intelligent approaches to seismic data
processing developed by our research group, including: POSE, an automatic P-wave first-motion polarity determination method
based on Order Statistics and Entropy theory; an automatic detection algorithm for fault zone head waves designed to identify
bimaterial interfaces; and HiFi, a method for detecting remote dynamic triggering based on the High-Frequency Power Integral
Ratio. These methods not only significantly enhance the resolution of focal mechanism solutions and stress field inversions for
small earthquakes, but also provide new tools for characterizing medium contrasts across faults and for investigating how dynamic
stress perturbations modulate small earthquake activity. Through application to the 2023 Turkey earthquake doublet and the 2025
M, 7.7 Mandalay, Myanmar earthquake, we demonstrate the advantages of POSE in focal mechanism determination and regional
stress field inversion, the effectiveness of fault zone head-wave detection in revealing velocity contrasts across bimaterial fault
interfaces, and the robustness of the HiFi method in identifying long-range dynamic triggering associated with large earthquakes.
These new observations offer important support for fault-zone structural imaging, rupture dynamics studies, and seismic hazard
assessment, and highlight the broad prospects of intelligent techniques in seismological research.

Key words: intelligent method for seismic data processing; dynamic earthquake triggering; fault zone head wave P wave first-

motion; focal mechanism; seismology.

0 5l%H

b 72 27 SR ST A R WL K R T AN 1B A T Y
Flog 21 e Dok, B s s A3 3] 1 R iy &

a B AR

LRV ADEDL

J M K K B T T b 2 0L B 7 R wn, s e | f;LH ?
i T T2 0 A MR 2 R R 9 e EAE T e
T2 22 5 T A RN T 25 00 73 it - ﬁf@“ﬁﬂﬁwi

R B 807 UL 0 52, 55 AT — - ~_

T7 1 B 2 AN REE DL AHIE T AR B AR BEAG oK, 72
BORME A [ 2l A ZERAN W . An e v L v 250t
ARICP PRI S AR B i A4 R DT PR R U=
P GRIRALE GRIFEHLH SR SRR i T

JE T, 0.5~20 Hz, 5 i &

C R IHLH R

[ bmmemnn |

9 AR R (P 1) s BRI, 50 34k 5 e Ak b A2 i ——
SYHT T T 1A T T 5 T R 5 B A A wE. A \
P 3 790 MV S 11 2 05 20 AR U B 3 1 POk PilCHEPE +

HASH

e AHE 1 B0 4 41 2 D7 1) BU) (8 R EAL I T P
FEAE TR 45 55 15K B9 DU S BR Al A8 AT R4 UL 2%
B0 DX, 3 oK () — b R AR AN [R] 5 3 B9 P E %
FRI0) Sl A 25 5 RO, T AT R0 24 I R A Y
e PR AL figp . 7 WEUL ) Ak Sz e 17 7 YR 0 5 i L AT
i, XF T A B 7 i S A S 2 1R IR 2

PRI —

K1 R TEOE R A Sk
Fig.1 Automated algorithms based on seismic waveforms
a. F 3K I 8 7% 2 25 il & 1 HEF T 53 3% 5 b W72 7 U 1 1 sl A T 5

HA & % & ¥ (Michael, 1987, Aki and Richards,
2002, Heidbacher al., 2018). 3f H % F P % 41 5 1Y
2 WAL i R 4D T 3 T IOR HUG B R TR BIL R A
AV FH T 300 52 0N 52 0 DR /) 7 0 it R 1 1) R
EAIL ] A 1 R BB, 1T LA S 25 348 0 7% R ML ) B B2 AL 1
Hb 76 PR 5% o b 7 R DB 2 ) B 2 M R A 4y B
LR DL Gy b 3L /N RORE T 2 B AT O AR S

e BB IR P P MER) POSE 878k

P Y90 2l A P A 00 A A AR T dke o b N BB T
WU, T B A 4 BRECT 5= 5 0 R Je A R 65 X
B B9 AN Wy, A% 48 59 N TR B 7 5 B 2 B

JO7 A BIF A R Ak B A 0K DR R i T
TA% A U B Sl 1 B dE Ak BRI ORIAE 4R T 4R



58 HiBR B 27

http://www.earth-science.net

51 %

K, VF 2 T IR E ) M AW 5 RN
W SR B, A b BT Y o R R 1k B T AR R Y K
F (Zhang et al., 2023, Han et al., 2025). 8K 1 ,
W22 2] P EAE R Z Bz AR 1 iy i 20, A1 I
Z T TR Y g5k B S R A A R
D5 {8 S PR M 52 0 ORE Y S A AL B Pei e al. (2025)
PEW T — B L TR G T 50 v 0 A
FE B 7 (POSE) | 1% 7 3 B A e 1 i 1 )
e B R, BN 32 B0z Ak g ) i BRI L AR SOk
XF 2% % B B TR UE AT 1R AN A

DT 285 T 1 1 A7 A S (] 0 B, L Ty 240 7
WA [/ AR A BT A AR5 G A v 25 = X Rl T 2
I R A3 SR A5 AL, BE A8 7 AR R IR Y b R D R A
B 56 T 0BT )23 A TR 0 DR A% 45, I 4T S5 1) A ) iy B
JZ 1 % (Fault Zone Head Waves, FZHWs) (Ben-Zi-
on, 1989, 1990). 513k P Ui #H Lb , WF)2 o I A A
] (9 KL F 32 S, I L2 M 8 % b i 21 B i
B A (Bulut ez al., 2012). HiA P IS5 WiZ 15 I =2
[E] F 4% 196 8% A N [R) 5 300 2 ) 22 5, BB ARG 1 S
e H A 5 B A% L T 2 T ) SR R X B O A 5
PN 1) 25 48 4 A T — B B2 19 77 1 (Ben-Zion and
Malin, 1991). 24 T BB 48 15 50 AJ g 1) 55 8 )22 3
J 2% R O 45 BURT 2 B I SRR I Y B IR P B B &
KEE GEAE, RZ A Tk B T & LU T
KR A Hb 7% B 4 A9 AL P 7 5K (Ross and Ben-Zion,
2014; Li and Peng, 2016). 881, i T Wi )2 &7 9% 18
W EA RS IR IE X 2 | ST A KA
HOR A o P T 2R X B sh AR & SR kAT A
T %, LA KORE W 2 Uk 4 BRI A B R T 3 8
IE X TR B s v A R G X
Rk & Atk ik 5 AN T E B SRm, nl LUk R
TR 4 A7 4 (L O ARG 0 RN AT SE RO A5 R A e 4R
TN B A U R BT AR R R, R
HW T 2025 4 40 fa) = 75 8 M, 7.7 1 — A3 B
26 Ul T SR H L AR SCORE AR R A T ik Y B e
TR AT AN AUGA |, XA RO AT T 5 E

R b 7 1 Hb R I BT P AR 1 B 2SN A sh T DA
T LU HE F LT B X S b 5 T s M
B, 33 Fh B Bk PR R G 5 B A ik & (HlL er al.,
1993; A fR A “sh A fi & 7)) mBah Sk FE1F A 3h
G X R T 57 £ BT T S RS L TR A
Wi 2l i AR fE B e A R (B T ), 2024) . H
A 78 % o B K TS B 5 X I MR T B kAR Ak

LRl IO -2 ey aa Bl B NS S S I
Bl 75 ik K O vk A R SE e T IX ) 5= R
PF R 05 BEAT B8 o K 5 b iR T sh AR AL i
# PE (Matthews and Reasenberg, 1988; Reasen-
berg and Simpson, 1992) , iX & J5 % 1 4K B &4 P
A REEA & Yun er al. (2019) 42 5 T — #8777
[FAN  PUMNERE £/ e 2t B 1 2wt T i)
o A RE B A R T DX B 5RO B M R AL, BRAE
T A ) 2% A1 4y b {15 (High-Frequency Power In-
tegral Ratio) , fij F% HiFi } % . 1% 5 B A MK T H
i H s R DU S 1 3 W AR o 3 R SR HLRE A 3
A A R R et , i ELSE e e O ko e Y0
B SRR S AR AL A SOR R 1 BEA T TR
4, IF BT IZ 7 A I 2023 4R £ HH ML7.8 A
M,7.6 WU AE 4 [ Y5 [ N 02 A 3 T 3l 3 il &

1 FETF 0y e 11 5 -5 00 v U %) Pk )
SR BE AR 2 A 7 1 (POSE)

W) By B P A 4 IR M 72 R A A P Y
WAL R Z — RS T L) R 52 IR AL R i AN g
Yy S B ORE , DT — 25 4 TH % T M7 B g
5 I T S A IA L T AR B BT LR R
I B AW 2 AR 58 09 N TR B O i © 20 LA 2
PO T ARG 2 I 4E ok K e TiF 2 5 T IR 2
> 07 1 1 P W1 8 A% v ) R L (Ross et al.,
2018; Zhang et al., 2023; Zhao et al., 2023) , # K
PR TE T i H o b FE R RO AR R B A ) U
EAEZ B2 AL RE I H 20, A MBF R R 0T P
e NS e B I A7 IBCAY TR B2 27~ A5 AU A B X I ]
B, 9 25 RS I 50 % 1k A AT I 35 T B (Jiang et al.,
2021; Lapins ez al.,2021;Zhu et al.,2023) . L H) J7)
B e th B AR Pl ) 3 A 1 ) %E P (Chen et al.,
2024;Han et al.,2025) AL FIRE ¥ Irik T
FUOU F 5 vk B AT B A A AT A R, O S B R
TERH SEIT AL B Pei e al (2025) 42 T —Fh L F
IR gt it B 5 v DA A v A SE e T ik (P
Wave first-motion polarity determination using Order
Statistics and Entropy theory, POSE) , 1% 77 ik B A
v AR PR 0 A 2%, HLAR 52 302 Ak e 7 iy BR A
11 EFIRFEItES5HENNREHE R E
(POSE)

POSE Fk T i AR 70 o BUR 125 (] 259 e
L, 2025) . 55— A0 B o5 b R B O E AT Ak B



5% 19 AN RN AU A R 5

a I b
S Vo= -
0.1s
1 2 =
] = = P HIZh
- Zhr & ) &
= 04 ———
]
PYE I 2 21
T T T T T T T T
1 0 -1 0.0 0.2 0.4 0.6 0.8
I . : i R R
2 0 2 Nt 7 AR R R Col) S5 HIBh BT () 2 1
IR (s)
B— N R LB U B el 5 b # S BN 5 IR IE K6 &

VU Pk DB W M I A 28 P B % <

=00 W3 5 0 I 2 B R <

1 @ VISR E LR A @) Btk
HE TS R R, 13 BUPP A B AR A A 188

S A
— &tk L
— tdti T <X
0!0 072 0.‘4 0!6 0.‘8
P R

R R 99.6%
<) MR RS 0.40%

1. P Bl (¥4 2 2 o 4

& @ 2. PHAL MR T B
(Pugeetal.,2016)

00 02 04 06 08
M PR e

K2 POSEHikm R
Fig.2 Workflow of the POSE method
A TR (2025)

(1 2a) , 0 15 25 s 34 (8 Ak 1 34, I X6 5 4R o 2
Jiti i 1~20 Hz (947 38 PR g ik 4 . 2805, DL P g )
L AT 2.5 s BIG 2.5 sHIfE 58 1.

5 T A L PR B AT 5 MR RS R R R E
ZIE R e & (F 2b) . 78 P i 2 i B 3T /Y B 8] & 0
N, % 90 SRl R 2 B P AR IR R T R MR e R
PR A5 5 09 B W AR Ab 3l i i U0 PR I B e,
e AR A X — AR Ak, % B A BT R 8 A R A Sk
FERSESE . T EMAX R 0808, ok 5
T Shannon (1948) #1 Fano (1961) 42 1 % &5 J &
B0 HE ) L AL R IE — AR S B 2 X Bk R 6 A
— N EE A e, fE T X8l [a, 0] <[1,N] E & X
WA 4R A 53 il 3R 1T BRI A5 5 B R g s B

Sile)={Ala<i<6,A,> ¢
S;b(s):{Ai|a<i<b,Ai<e},
Hodr s, ,(e) M55 B, S, (e) 7R M B

F VAL B e E X 0 {5 5 5 MR I A

(1)

Rk, TF 5w A S R 0 2 ) 2 e A — kS
AR X R — 2K X
| ‘Sib(e)’ N
n .
’Si\,(g)‘ bianl

ln(‘ SIh(E)‘)

N

(2)

H.(e)=(—1)-

A bR A I ()5 IR 23 28 2 ]9 G OB
JE B A e BEA RUIX 43 P B 15 (908 i
FETEH— B e T BT BERY BN £, 5L AR PR

. _‘Sl‘;l(€)| n Sl:z(€)| -
E(z,e)—THl:,(é)*THl:f(s)*
WHil;x(e)jL
SEEC NS )

P B o B OA A AR H AR eR B /D 7Y I
HESGIE



60 HERFF=  http://www .earth-science.net

51 %

t=argmin E (i, ¢), (4)

I LR 2 AT DA A B 06 3 1) {H e Al 530 P ik )
i (& 2b) .

0= R B S OC T I e MR R
J 8 (PDF) . %) ) i PDF & 3% F 0 7 45 11 4 4k
S0y, F A gk B EE A 2 (e,) B AY MR RS BE Y B R
R W H 5 T JR T M s RS L P = p, ] M
TCE p, 7 M e, 1] e, B 25 14 HE R 25

(u) o (u)
F<Aj+/l\;?§;<mAj |€{>’ (5)
Ho A FR A X E T EHES (R i F (AL e,)
R e KU 46 1 o 7 52 FRRE 20 8 18 0 A pR 4K

A )
V2o,

Horpo? MR REARTT 22 SRR AEFE P B9 KRR (E
Xof L B4R 1] 2 7, , W] A0 Bl B A R o R R

pij :f(€j|€f):

1i(e)— 1

-erfc

. (6)

F(Aﬁf‘)\e,-)% exp( —

7,
> & (7)
L5 A SO T AN [R) S (e, BT 6T N 1 PO B B A
Al RetE (B 2¢ B30) . #:45  AR 4 Pugh er al.(2016) 1Y
J7 A R A B B S A B S iR L T
PR A 2% %% B e (PDF )
% 1+erf(3:7§(z))), (8)
Horpy =+ 1,790 5 R m WP ) bR a) R A 0, (e )
Kt (&) a5 — W AE S IR, o A W bR o 22
50U R R S5 PR B i 1)
s R B AER (& 2d)

N—1
Pr(Y=y)= >z Pr(Y=)le€[ALAL.)).
=1

y==1, (9)
Horp o, R 7E B E X 18] €, % 7 A0 51 B A R 5%
Pr(Y=yle) FRG 1 ZEBES T B0 51k
DRI Wi 75 8] (L A A o 1 O Al R 0 52 ) BT 2d R T
e A PERE R T R )l XL () )
W Cm ) B A5 2% 6 b PR sl i
Ml AR R 99.6 %, ] N AR 0.4%.

1.2 POSEAFEE2023E+TEHEENEREFTIF
A9 Rz F

14 2023 4F + HH R0 42 5% 7 IR Wi &

il , FI H POSE J7 3 30 51 P ¥ w1 sh W, IR 245 &

T, =

Pr(Y:y|s>:

HASH # ¥ (Hardebeck and Shearer, 2002, 2003)
fiff S R DR ML R 2023 4 £ B HRUGE & R fER K
Y4 HE W T A (EAFZ) , 0 T %8 94 46 ) W AR
B (BT A7 A B R AR U AR S =6 SR LA X
b Ak R G B 2R R - B ROE R LAY R 5
259 H% Ky 3 21 ( Akgiin and INceoz, 2021). i T H
S22 1 W J2 65 4 L R U 240 G 1) 1 AR 85 9
B R (15 EAFZ Iy 4% 090 v A8 T8 5 2 3 B
5 4y B R AE (Reilinger et al., 2006 ; Giiver-
cin ez al., 2022). WAk, 7E 2023 4F M, 7.8 M E Y
A db %% 5 2020 4FE M,6.8 Elazig Hb 52 B 74 B i 2
m , & F 7 — B W % a0 # Z 2 X (Zhou and
Ghosh, 2025) , H 1 52 & B Ve 15 2 — 2 61

fdi J 7 Ding et al. (2023) #5752 H 5% 5 52 H
SCHF L BRI AR 2023 F 2 A SHE2 A 28 HZ
] . F & % 5 Ding er al. (2023) f9 # [7] .POSE
B B B 1~20 Hz 4 38 08 0%, AR I 5= A S
T P BB AR P ET 2.5 s B P U 2.5 s
T AH ] POSE J7 0k g A7 A M 40 531 . B8 AR K
T 9026 9 A Pk B s 5 22 5 TR B R 5

B T P U sh B vk b HASH 89538 45 4 S/P
I e EU AR B DA o R R AL A 29 R BE 1 . S/P PR
FEAAE = M 2] s b ik R Bdis e &
i 1~10 Hz 7 3 38 3 Ak BE, 3% 08 E o F 580 il 11 %) et
TR PR S 4 5l N B I T 0.5 s 2 2 I S
1.5 s, M PRI N L P U 2B AT 2.5 s £ 0.5 s Z
] .24 S-P WAl [a]FE /N T 2 s, %07 9 S /P 4R i b 5o
W0k 3 0T RRIEAL I 8 AT T ™A 0 T S AR
398 5 A8 - 1 - 2 AN B %2 B (nodal plane uncertainty) <<
25°, f# 1 Al 5E P (mechanism probability) >80 % H.#%
PEHLE 5% 22 (polarity misfit)<<20 % RIFZIRAL I fE1E R
AZETTEELE L W BISA C MBI 5 2R, HoAl =
PRI e D)< 55, BABRUE AN R 17 e B8 1002
A~ C 2 R U b ot (4 m2 U AL T J5 2292 (18 3a).

I Ah N A B R E N 2 P B
(AFAD) F# T W58 X 38 P [m] B B 1) 389 4~ 7% T H1L

F1 BENHBREITNIER

Table 1  Quality control criteria

WP IR R TIEE PTG DAt BLA SR

A < 25° =>0.8 <<0.2
B <35 =>0.6 <<0.3
C <45° =>0.5 0.4
D >45° <<0.5 >0.4




1 A5 52 BTORLE e AL AL BIE SR
" T 61
a b
38°N
370 1E Wi 7 o° ° ) i o 70
18.5% A& ’ A\ 15.6%
T T T
36 37 38
(v d
38°N 1
- IEMTRY S b 7
37 Oﬁ X : 259% /e LUI 4
EWiE Bl MWE| o @ 8.0%
| com— ]
09 90 0 o0 LM =
T T T
36° 37° 38°

K13 L H HBURE AR 527 91 i IEATL i) i
Fig.3 Focal mechanisms of the aftershock sequence of the Turkey earthquake doublet
SKH T EREGE MR 0B EO Ny (Bailey ez al., 2010) , H T R/NWIR IR a. 2 T POSE J7 i R4 102 IR LK A% 5 b. 3& T POSE J5 #: 3144
B R DAL A8 1 2326 s . ok A AFAD B2 IRAL ] A s d AF AD ECH 4 vh i IR BL il A 19 702

il i (M >4, & 3c¢) , 18 3 B0 11 5545 2 W )2 2
PLYD MEER B @4 v R, IF 5 POSE J7 ¥: i 545 2 1Y

T VERL o A 225 ST LU XT Ly B SN
|€33‘_‘613|
yis—arctan| ————— |, (10)
[ ( \/5|623‘

Hit ey, e, €0 P Al BRIAN T 4l 5 o
75 8, & FH Frohlich (1992) Y 7% Y #L i 2 54 %)
G307 W WA AR PR AL R M BT HEAT T Rt L
B (K 3b.3d). 7 POSE #idls 4 v, & 1 AL b 72 5 &2
T (34.2%) , HOw 2 IE W A (18.5%) A i I Al
(15.6%). M 7E AFAD ¥4 8 v 18 5 724 M 52 1 L )
3 T (46.2%) , 4l 5E W AL (20.6 %) #1367 7
(8.0%6 ) 1y b 18] W) K s ok A1 . V9 20 50 40 6 AN [) W7 J2 286
RUAR G EE B 25 5 AR AT RS 3 0 A 1 b 7R R
G PR Rl A7 O 3 i B 22 19 8 O 2% 7% 1 4K
P 78 HoAth 1 X A & B (Bailey e al., 2009) , %
AN TR RO B 19 1 52 05 B W] fE A2 5 T S TR W )2 A
FAHLHI (Ben-Zion, 2008 ; Goebel et al., 2017) .

3 R FH T 20 72 5 AL T S AR AT T )
(K 4). s TAER T MSATSI 5 (Martinez-
Garzon et al., 2014) , % & ¥ 45 & T Hardebeck and
Michael(2006) #2 i i 2 [8] 7 ¥ 3509k . % 07 i i 51

AR 5 B FLAR GRS P RS PR IC Y R IR ML, A R0 >
T T A A% 25T N R TR AL ) 2 AR i 5 |
D 22 CEEBIFZE X R 20 0 0.1° X 0. 1°HY R k& BT . 7E 4
A AR T AL BE AR 0.1° M [ 3 [l N A 2
B HEAT R38R B AL B R F 104 IR ML 155
ST i T POSE S04l 8 43 3 1 5= VR AL 1 £t
ML T AFAD BRI HEnT A b 1 7 0 R & 45 5
HAT B 2 () 8 35 M L2 R, 4 48 A AFAD
B2 0.1 W A% T 47 S 3 B, 17 22 40 i IR R R
B A & AN 2 R ML B =10, I 3b) i T i 3k 1%
AR SO E A R B 2 | XKL T
LA e M7 .8 M il 24 DX 14 v 38 R R S

LA, fd FH Anderson Wi )2 2 %1 (Simpson, 1997)
POR RN VAR LN B s

Ae=(n+05)+(—1)(R—0.5), (11)
Horprn=0,1, 243 5 X 0 F 1F W7 2% 76 T8 7 J22 0 1
JE VR AR 8 T S R b R R ) 3 2R R
T8N IR R 4R TE W2 (0.0<A ,<<1.0) & T W
JZ(1.0<<A,<<2.0) LB i 72 (2.0<<A ,<<3.0).

SRS YR N 7 3 B v Al R %) 5 SR R AN AR
], (A H A 7 1) DX R ) 3 2 90 R 3 0 1) — 3 L 3k
TR B R AR R A, AL T 0.5~1.52



62 HERFF=  http://www .earth-science.net

51 %

X[ *
e R S PP A TR}
5 X o~ [ XIXRRA[AEE
38 N1 EISNIESES Y VATAF
> [=lx[4]=
=] [#l+lX

IEWE GEH kR

[ commm— |
0 T N

37" == fiifa

(° —
30° m— |:] 0.10°x0.10°
60° =-
75° &

[ #% K /Iv(Lon.xLat.

ol 03—

36° 37° 38° 39°E

b
X
S
s = N
EIE R W
m J———
37°1 Wi | [ /N LonLat)
()° m—
30° w— 0.10°x0.10°
60° % l;|— 03—
J5° =
36° 37° 38° 39°E
4 H:F POSE(a)5 AFAD(b) 5% W MLl i 09 5 F1 3 =

{45 2R
Fig.4 Stress-field inversions from POSE-derived (a) and
AFAD (b) focal mechanisms
[ 4% B ARYE A o R 53, 58 AR R T e K (o1, 2008 Al /) (03,
ESUBENNVIL iy S S il

), 7t R T 37 H AR 3 0 R AL A S ) AR Ak ks
SN WETOAER = o i S et s i 1S I S = VI S
5RO FE R W W 2 (EAFZ) R b 76 e & 1 1
1, I R A A PR Y XM 1 R
(Duman and Emre, 2013) 4 W) & . 1L 4, 70 41 5 4
B R AR B F N Bl 32 5 ] o 0 N-S
m & NNW-SSE [1] , 5 ] 557 {7 Az e ) b 4 5 BRI
B e i 44 15 75 5t — B (Reilinger ez al., 2006).

T POSE J5 ¥ A A5 1 25 5 BB 0% T Jin 17 o b 52
B R T 5 0 25 8] 43 DXCRRAE 7R EAFZ AR LB (2
38'N.38.5°E B I ) , i J1 5 4R 45 A B LA wh oy i
A F Y & AL (Transpression) 57 1E (A ,>>2.0) . %
RIS T (Syy) I3 ] 45 I NNW -SSE fii] . 3% X
SRR 1 b XY T EAFZ #9388 /R 4% (Putirge) £ R
14325 (Duman and Emre, 2013), JEHL R JIRZS 1)
B IR W )2 R AR T LA TR 25 X6 DX 3N g S e 1 A B 4
B3 — DG B A A 3 43 DXRR AR A B8 AE X A
M) AFAD Sz i 25 3 (] 3¢) ok BB 15 B A7 2 20 3.

W 47 P B (37°E~38°E) [ h1 3 E AL T

B AR PR (A A T 0.5~1.5). I X I
St J7 TR FFAR AT, BEAS Y 7 7E NNW-SSE [ , 3%
s T ERE R F MR AR LU BEST U] R
F 5,0 EBE A A AT Z % 19 $7 5K 43 i1 (Yoshida,
2024 ) . 7E 5 240 1) 7Y B B 5T P ) X 8K, N 7 3
Bty i 2% A5 SRy — A DL IE W 2 ML o 32 5 09 i 5K R 5
(A fE<<1).3X — 5B IF AR Jm MBI 4, 2 e e 1
2 DB K H s LR )2 0 IR AE S
X 8 B 1A Hb %R A & (Bozkurt, 2001) | DL K i
GPS F1 InSAR W & 9 B 4w b ] fiz 5k B A2 %
(Reilinger ez al., 2006; Weiss et al., 2020) % K ]
by J5T R R b I e U0 5 R BE W) A AR B 1
XFR R 1 1 5 e 5 EAFZ 7R LA & AR 0y S R
] %5 U)AH O, I o5 4 52 30 ZE 0 00 5 )5 O ST
W 114 P79k & % 52 1 (Glover and Robertson, 1998;
Reilinger ez al., 2006 ; Taymaz et al., 2007 ).

N ) 3 S A5 348 s T WF 58 X LA NNW -SSE
17 A S e Sl <3 5 == A i D VA B2 B A |1 A
AFAD 45 3 (4 e # WoR |, B T POSE J7 i 1Y w1 %
B AR R A T B A8 B 1t — B 55 T SR AR A
A 0 )37 G AR S e R LA A
Ze T 200 AR b B i R XL 31 B R W Pk
b DXL B PG B i 3 ok XY A ] A R AE
X K 40 09 W g 37 43 DR AR R B POSE 5 5 19
AR5 S O TR B YR R 4% NUR Y B Y
T N ) S P 43 T 2 P T B O A LR

2 Wr)ZE B A SRy ik

A7 T 7 )2 B O 7 M 2 RE 65 7 A UE R UM R
B (bimaterial interface ) 1% #% 09 W7 2 & % (Fault
Zone Head Wave, FZHW ) , H A% #& 3 & 55 5] T 47
JoT F A PR — ) Y S RE O ) A 18— 7 5 (Ben-
Zion, 1989). 5 H ik P ¥ AH L, W7 J2 1 I 3L
A TR REE AR R IR IR R T EIA P
ey B e DL &5 P A e B 0 3h i v A D i
] &5 . LI P U AW )2 B 2 R Ry 2 A 22 AT A
J2WE e 52U B b I 2 R BE 22 S () K/ (Ben-
Zion and Malin 1991) , T Sy 55 W7 J2= 9 3 22 5% 4
i o A T = O E R - N T = = 2 S| E IR
P % Z [0 () B ik 25 Ae 2z [ Y 96 & ] LS Y -

Az‘zr(%—%)%r(A%), (12)

Forb Ao il a3 530 2 7 o 3 AR GHE A T P JEE 1



%1

AN RN AU A R 63

2l 1 F ¥ {4 ( Ben-Zion and Malin, 1991). %
Tk 2 3, AT LR R e 22 5 B A A
TH W 2 A1 TR 2k T 3 B XTI (Ad/a) .

T ARAT B 2 S R SR AN O W R
BT 2 1 0 ANk Pk A BIR AR L LAR B AR
J s Z R [ B4 By 75 Ok b R R M RE B0  Ross
and Ben-Zion (2014) i i 7+ 5 STA/LTA (Allen,
1978) F¢AiF oA BOK 5 HUP) 2R A L AR R 4 i
(kurtosis; Baillard ez al., 2014) F{i B (skewness) PR
BOH W7 R A5 A7 LE W )2 B . Li and Peng (2016) 2R
FH T P B B0 A 0 R R R 00 7 2 i U, SRR
it DT 22 B 0 5 LAk PO I IR I L 2B R 4
B A TR 52 AH OB T2 Bl B0 R AR R R AR AT B
TE 33k 7 vk R AR AR Sy W 2 I A T Y G
SERRAE R, T A AR I S X AT e
SHGA BN, B IR N T AR
I ff 4 25 S /9 T §E M, Wang ez al. (2023) 2 it
TOHTA SR I R R - S e A
TBU 0 7 A 0 5 W O 45 6 T 3k A DL AR & oE
PR TN NG — Ik I DLR AR A g Y
M,7.7 2 75 b 7R A% 5 T AR R BT R B, X
R T 2 T A0 A A 0 4 2 S AT SO 5 4 AT

..............

...........

Hij [FISTA/LTA:

Vol G E
v e JHF & mA L
Einfi, =4 [

______________

2.1 EFIREHFMENRZEHEEHBINE X
BE R RIS A SR W T2 e

PRSI FE a0 B 5 B R (Wang et al., 2023) , 1F
A gh K A b g A4 T STA/LTA pR 0N 1
PR RS — b i STA/LTA HikEEH
gy b R R R AT R DU 2 R ECE R
At 24

SR LIl]
Horp S, 2 A B d By STA/LTA 9 - 1F 56 %L,
Atira F Atsra 23 SR 2K I 57 M I 48 10 G . X
— 21 B R B A R JC I R W R
M HIK P2 Atsea FBHE R R, STA/LTA
P14 R A R 50T R (AN ROHS 0 1t 10 e it A2 £k . A
S, 245k e (E /NI P05 SR A R FR e L R, R
ARS8 2 A STA/LTA BHE 5 81 204, L
FRAFENTE AWM B Atsa W1 s, Alira B 10's
(F6), AHh 78 % £ TF R 18 R bR A5 5, ELB K &
S bR EIK B BB 5, 3% B 2090 K 2. SR S 1) 48
2 CE ORI 9 STA/LTA 280 F fil % 5 {8
(&l 6b) o 2K 15 5 9 6 119 4] 20 B B . 33 < iy 1) A6 00
L Ta) 4 B 1) R W 2 A IR W A 1 55 1) W 2 e 0
AF LA R 1 D B, B P ) 22 WK T 4 BT DA SR
G 76 I T A2 3l b 55 I R 45 5 1952, 40 18 6b BT

(13)

S.(t)

............................

J& M STA/LTA
I

A

BTN A I
Afi A B B4,

c I 2 i

oAl SRR B
L 7322177 it e
7'y
A 4 A 4
A 1, 0 1, FIF KRS REIHE— SR
g B we [ pmmki

.........

FS W2 D3 B e a4
Fig.5 Workflow of the semi-automatic detection algorithm for FZHW
& A Wang et al. (2023)



64 HERFF=  http://www .earth-science.net %51 &
a [_ — HIiAPH b
FZHW Picking | | BN
. 7y
Z5 i I
M
2s | |
e,
| | 20
REREE | =
-
| 2104 srk-06ss
Z STA/LTA KK =10s E W {fi=4.2
| Wi = 5.0 T i e
______________________________________________________ 0
= — = 20
: :
S109 smark-040s
FZHW N L
0
ZE 20
<
=
EIO FiE1£=0.20 s
. N ___”_@J_{LE[_:};(’___.__________.______7 =
(£33 0
: 20
P
=)
—— =10
53 2 E Kt K=0.10's
: N~ om0
! 0 T 7 T T T r r
-1.00 -0.75 0.50 -0.25 0.00 025 0.50 0.75 1.00
N i (s)

6 B2 1 A I 7 1
Fig.6 Demonstration of the FZHW detection algorithm
a. 21 (A I E (4 M 2 AE 23 S 378 00 3l A B P AR HUBT F 5 76 R 0 op 55 MR 4T T 0.5~20 Haz #4938 3 b, AN [R) 6 947 1< J32 00 1o L F)  L 1h 5
i BRESC, SR BE €0 AR SR AR IO 1 P a T B AR R AR T 7 R € TR 0 B A I B A R e DA 0 A0 R R LS R
L0 SCER R Ok P I A R AR A R GO HEAR TR T W2 B MY A Wang ez al. (2023)

£ N =S I il ET S 2 [ R N S S <l
ﬁflﬂzﬂ’] W BF bR %% (Baillard ez al., 2014 ; Zhou et
, 2022) kAR B 2 H Ok 2 J5 B B ik P U
EIT U PR B GE LR .
- j’—m d(z'i)|*624
) TN >2, "
1<, 2
(el a)|
Hor ) Az BN 43 591 2 31 550 06 B8 i B e A9 BF 7 I
FRAE SR d R | d (o) |[TEM 8 (2 — Aty ]I

PIH AR A (L15) rE RS FR E B 26 1Y, B S ik 5 i
R 5B B 204 S Bk PR 8 B I (Ross
and Ben-Zion, 2014) , %k J5 ¥ H A IE 2= 07— 04,
% W W B R T IS 2 A (K] 6e; Zhou er al.,
2022). 0 T RS HAB A TR R T — 1 5=

Hh R S B AT 2 PR E I T B A, FERE L
Nbiimiea = tp — 1y = 7’%: (15)
a

Horr, z[)%ﬂruéj\%lJz%ELP?ﬁ‘z%nFZHwE@iﬂm‘-m
S W2 I Y R S R a R B RN U

JZHEEE RS [ STA/LTA BRBOR 5 B 3 £
I Bif 4 12 2 6 5 068 B2 R S0bR 10 09 30 I R AT X L
W = FH 22 KT 0.065 s, NN AT e 47 7E FZHW.
2 I 22 {8 (0.065 s) 4 A 536 1 A 280 53 B 2 0 BR
(Ross and Ben-Zion, 2014; Wang et al., 2023) , 24
INTZAEE  FZHW 4 DL 5 Bk P U X 2 7ok
22 MEHEBRIMITIEEH M ENMHR
4

20254F 3 H 28 H , fE 4 fa) 2 A8 B3 kA= T
M,7.7 H7E , XF 4 fa) B 30T b X3 AT ™ R AN
D43 T ) R R AR A SRR B R (Sagaing
Fault) b #)—~#h 52 25 X 4 (Hurukawa and Maung,
2011), EEW K JE L 500 km , 724 10 3% LUK K
[ 5 W R E ik 28 22 — (Hirano et al., 2025). K
) R T B A R OO B R A T Y
W )2 25 37 5 B B8R (Peng et al., 2025) . 1 24 % A 491
ORI LRI BN AR VQ IR E VN R S E AT R 2
J& ol #E 55 U % 24 (Hirano ez al., 2025). M4, f% T B4
WS Won  AERE R B P i kAR T — R R 1) %
T w24, UL W1 AT BB A7 7 I ) 5 R R A5 A AR A



A A - AR GO AR T Ab B 65

21°00'N 4

20°30"

20°00"1

19°30" 1

19°00"

95°30' 96°00' 96°30'E

150

100

w
(=]

"‘,""&‘ »” A /)
N "‘\“‘ )
il

T B S (km)
)

-50

-100

P77 672 B 0D 15 43 1
Fig.7 FZHW waveforms and their spatial distribution around the Sagaing Fault
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R0 R TR LA 30 A il & A KO CLAH, e 4
5 3 R [H] 5 7B AE AN R & 3l AN [6) 4508 1 LN 1 CL
B AR ARG BE il & T XU/N S, B T IX
/N 52 Y e HEAE 10~35 Hz 15 Bl 9 24 8058, BT LA
[F] 431 23 30 [ ) CLAB S 8K 5 I =z, n AL J2 R i
1 MR S B A RE B B n, ) CL ¥ = LR
TEFF 8 WUR I B R . B, 76 S ) 05055 L
THEAR B0 CLH 097 3 45 2 9 F ok SRAE B K15
BAMAEEMKE . TREMigRTShnsH
I 8] K N B E O It R B 3K TR 4 60 d.

Jg T #E— A SE DynTriPy (9 30 2 filh % 1 5
iR LAMARANTREAET CLEITRESRKT
0.85 Y L 7% B B . 38 o A3 A v E R Uk 2 S [
- B HOBURE 8 R X R A S

ABFTE LA DynTriPy BT 25 R AN T
o I 5 J %o - B OB AR 3R Y B A ik & I 5
RO e85 . 8 Je , ML7.8 b 5% Y B0 25 finh & PR B A
M,7.6 #5752 F 4 W #  DynTriPy 89 i+ 5 45 8 o,
M, 7.8 i FE XTI B CLH K T 085 M G Ui £ T
M, 7.6 Mm% HON TR 25 S b, M, 7.8 M 7% i B 28
a0 1) A I DS 52 R 1 Bl R AR 2 T
M, 7.6 #7% (F 11). 3% — 455 5 Inbal ez al.(2023) 7¢
HE U b XA B 5% 25 o ——M, 7.6 HbRE 4 ML, 7.8 M 7%
A TSR I ik % BB 7 R TR . AT RE A R R A A —
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I FL 7= P57 A S 35 A M 07 1) 1, BT RAAS [8] 95007 £
{14 2% ] RE R T AN R RN B s 25 0 ), HLE
I R=IE LD AAE R N UR PO NN TN ¥ (o
S, H I BOM [R) G 5= A AN 1R W7 )= 09 Ak A BE 1 A
[ 5 55 —J7 Wi, AT X A AE ML, 7.8 7€ (3 — I
) o C Bl & (R BT 2=, AT RE R T R K REAR R
RAEREJE % A2 89 ML,7.6 #1732 (5 7= ) Hh 15 2 fih
S U AE P A B MR 2 A B B 2k e B
GGl Z AT R R A 0 U0 R R &
R IR 2 W P ik AR 2% (P&l 11a, 11b) . 3X Al Gg R W], 17
T A BEHACT G 1 W= R AR D S 1 T P T

4 vhHgS5RH%E

& NP SINE P DOE =2 NN NS S N
TR BE DT W58 K& A7 i S FHAR F 58 32 31 1 &5
A 5 I e R v [ b AR R o N T RE b R
S5 b HG M T R R R b e [ RR ) b R
T F | b ] i RE ) b R ) BRI S T A R 2
Ti BHEC R 2 v R 2 SR B B 7 i b 2
N EARRE 23 M 07 ik RV R R B R T R B
2 R (Li and Peng, 20165 Yang et al., 20193 Ji-
ang et al., 2021; Cheng et al., 2023; Zhao et al.,
20235 Zhu et al., 2023; Zhang et al., 2024 ; Pei et
al., 2025) . K& T o [ M 7% Jay Hh AR BN P gk 158 AR B
5% A B 53 I B B AR E A R I B (R TR B A
N T 6 1 b M D0 0 0 B R F 9 ) B B R
rh [ b R R 5 O R M R A N | M AR A M R
VR 2 BOE Re Ak 7 R TE v [ b 5 R A OC b 52
T 9l 55 A N HT L ROR 4 R 1 Ml RR B ORE O A Y
B R K- AR, 7R B R N TR BE M RE OB
53 M 07 1 5 N T 98 O L R S Y [ ) G
INIHE, BB B BIF 5% 38 A7 A8 QT & e Y =5 T

(1) P %0 3l B Pk 04 o o 0 501 2 b 72 5040 Ak
B AR A1) T B IR Pei ez al. (2025) 42 T —
il B T 00y g8 it a5 E Y P R B % k)
ST 2K % T I HE R R S & R A
YRR e ) BB ROR — B0, HORCA B 9R i 4L
MegE ) Az Ak BE ) . ET A B 58 (Zhang er al.,
2023) & N LA ic K oK Hl (unknown ) 12 s A
29 40% LA b BA 05 W L 59 ) 8l R A AR
B, 1 POSE J7 ¥ 11 DL 6 18 51 35X 58 2 72 AH
(7). 45k, POSE oAk & 3 F T 52 B 1l 7 %540 o

iz N

Ab PR A BT o B B K R R H S b TR PR AL
fiff . LA S B 1 S I i BCE AN e 7 R 0 R IR AL
(2) W7 )23 T 0l A ) XoF FF e Dy S5 G A4 245 44 i AR
B S ST 1 R I ] 4 TSR W
W JZ B %A I 7 (Wang ez al., 2023) % T A
5V N0 A EL R D0 3R T ey 35 T R B o i
PR AR B B Sh A 1 iz 7 e B T AR AR AT LA
REAE o < JE T8 Ry T A 1 2 850w A DU RE A 2
F7AE 5 B T8 0 7™ 4 19 2 880K W & AL W) 3l i 78 4L
B R A A A 0 B il 4 A R (E =2 ) Y )
AP 22 A, BB TR ETHE TR S HIAP
I %) 4% W e R 2 AT A BB, TR 2B AN [m] R R 1 R
+ 18 B B0 REAE PR 6 T e R A AT TN TR
S [V == RSN A oAl R e N o g 6]
(3) 3 7% 3l 25 fih A g5 7 1 sl A Do 5802 5k
B 7 22437 N7 R A i DA D 240 b AR I
HABEEZE LGB TS, 2024) ,9F & 19 DL HIF 5 2%
Ry Al Y Bl A i A v Rk W 2 P 42 ——Dyn TriPy
(Yun ezal., 2021)i@ ] T2 Gl  KEZEHFHMN
Al A Zh AR I T S BT B A ik R AT R
W OREEL R RGN . AN il T R 3 kb
Ty 2R BE e, n] DAAE G 58 & AR I 3 [) PN 5
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