
地球科学   Earth Science
http://www.earth⁃science.net

第  51 卷  第 1 期

2 0 2 6  年  1 月
Vol. 51 No. 1
Jan. 2 0 2 6

https://doi.org/10.3799/dqkx.2025.287

云南预警台网异构波形数据集
构建与震相拾取模型性能评估

吕 帅 1，2，房立华 3*，彭钰翔 1，曹 颖 1，夏登科 4，范莉苹 4，朱 杰 1，郭亚茹 1

                                                              1. 云南省地震局，云南昆明    650224
                                                              2. 中国地质大学（北京）人工智能学院，北京    100083
                                                              3. 中国地震局地震预测研究所，北京    100036
                                                              4. 中国地震局地球物理研究所，北京    100081

摘 要： 近 年 来 ，深 度 学 习 方 法 在 地 震 检 测 和 震 相 拾 取 中 得 到 广 泛 的 应 用 . 然 而 现 有 模 型 主 要 基 于 高 信 噪 比 的 速 度 型 波

形 数 据 进 行 训 练 ，缺 乏 对 加 速 度 计 与 烈 度 计 数 据 的 泛 化 性 评 估 . 为 探 究 现 有 模 型 对 加 速 度 数 据 的 处 理 效 果 及 在 云 南 地 区

的 泛 化 能 力 ，基 于 云 南 预 警 台 网 的 最 新 观 测 数 据 ，构 建 了 包 括 速 度 计 、加 速 度 计 和 烈 度 计 的 多 源 异 构 高 质 量 波 形 数 据 集 ，

且 所 有 震 相 到 时 均 由 人 工 标 注 . 结 合 PhaseNet、USTC-Pickers 等 5 种 专 业 模 型 ，以 及 SeisMoLLM 和 SeisT 等 4 种 大 模 型 ，

系 统 评 估 了 不 同 模 型 在 云 南 数 据 集 上 的 震 相 拾 取 性 能 . 结 果 表 明 ，本 地 迁 移 优 化 的 USTC-Pickers 综 合 性 能 最 优 ，其 Pg 和

Sg 震 相 拾 取 的 平 均 F1 值 达 0.779（到 时 拾 取 差 异 △ t≤0.1 s），显 著 优 于 其 他 模 型 ，且 在 检 测 加 速 度 计 与 烈 度 计 数 据 时 ，较

好 解 决 了 震 相 拾 取 滞 后 问 题 ；大 模 型 在 Sg 拾 取 等 复 杂 环 境 中 展 现 出 更 强 的 泛 化 能 力 . 研 究 还 揭 示 了 主 流 地 震 检 测 模 型

在 不 同 波 形 长 度 、震 级 、震 中 距 条 件 下 的 性 能 变 化 ，强 调 了 本 地 化 训 练 与 模 型 选 取 在 实 际 应 用 中 的 重 要 性 . 研 究 结 果

为 地 震 预 警 系 统 中 的 地 震 检 测 和 震 相 识 别 ，以 及 中 国 地 震 科 学 实 验 场 地 震 观 测 数 据 的 实 时 自 动 处 理 提 供 参 考 .
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Abstract: In recent years, deep learning methods have been widely applied to seismic detection and phase picking. However, 
existing models are mainly trained on high signal-to-noise ratio (SNR) velocity-type waveform data, with limited evaluation of their 
generalization to accelerometer and intensity meter data. To investigate the performance of existing models on accelerometer data 
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and their generalization capability in Yunnan, this study constructed a high-quality, multi-source heterogeneous waveform 
dataset based on the latest observations from the Yunnan Earthquake Early Warning (EEW) network, including velocity 
meters, accelerometers, and intensity meters, with all phase arrival times manually annotated. It systematically evaluated 
the phase-picking performance of nine models⁃on the Yunnan dataset five domain-specific models (e.g., PhaseNet, USTC-

Pickers) and four large models (e.g., SeisMoLLM, SeisT). The locally fine-tuned USTC-Pickers achieved the best overall 
performance, with mean F1 scores of 0.779 for Pg and Sg phase picking ( Δ t≤0.1 s), significantly outperforming other 
models, and effectively mitigating phase-picking delays for accelerometer and intensity meter data. Large models 
demonstrated stronger generalization in Sg picking and low-SNR conditions. The study also revealed performance variations 
of mainstream seismic detection models under different waveform lengths, magnitudes, and epicentral distances, 
underscoring the importance of localized training and model architecture selection in practical applications. The research 
findings provide references for seismic detection and phase picking in earthquake early warning systems, as well as for the 
real-time automatic processing of seismic data at the China Earthquake Science Experiment Site.
Key words: seismic phase picking; dataset; large language model; performance evaluation; earthquake early warning; seismology.

0 引言  

近 年 来 ，人 工 智 能（Artificial Intelligence， AI）
技术在地震监测领域取得了显著进展 . 基于深度神

经网络的多尺度特征自动学习能力，AI 方法能有效

从复杂背景噪声中识别地震震相，提升自动检测与

定 位 效 率 . 国 内 外 学 者 利 用 不 同 的 数 据 集 、不 同 的

网 络 模 型 训 练 得 到 了 GPD（Ross et al.， 2018）、

PhaseNet（Zhu and Beroza， 2019）、EQTransformer
（Mousavi et al.， 2020）、LPPN（Yu and Wang， 
2022）、RNN（Yu et al.， 2023）、USTC⁃Pickers（Zhu 

et al.， 2023）、SeisT（Li et al.， 2024）、SeisLM（Liu 
et al.， 2024）、PRIME⁃DP（Yu et al.， 2024）和 Seis⁃
MoLLM（Wang et al.， 2025）等多个地震检测模型，

推 动 了 地 震 数 据 处 理 由 基 于 规 则 的 算 法 向 数 据 驱

动的特征学习转变，显著提高了地震数据处理的效

率 以 及 微 弱 地 震 信 号 的 自 动 识 别 能 力（Chai et al.， 
2020； Mousavi and Beroza， 2022； Münchmeyer et 
al.， 2022； Feng et al.， 2023； Bornstein et al.， 2024；

Si et al.， 2024）. 然而，现有模型多基于信噪比较高的

速度型波形数据训练，数据源以速度型地震计记录为

主 . 例如，PhaseNet 训练时使用的北加州数据中 72%

图 1　不同类型仪器记录的地震波形和 PhaseNet 检测的到时对比

Fig.1　Comparison of seismic waveforms recorded by different instruments and PhaseNet-detected arrival times
云南预警台网 SYX02 台（同址安装速度计和加速度计）和距离其最近的 J2811 台（安装烈度计）记录到的 2023 年 9 月 3 日云南耿马 ML3.4 地

震 波 形 . 黑 色 实 线 为 归 一 化 后 的 地 震 波 形 ，蓝 色 实 线 为 人 工 标 记 的 Pg 到 时 、红 色 实 线 为 人 工 标 记 的 Sg 到 时 ，蓝 色 虚 线 为 PhaseNet 拾 取 的

Pg 到时，红色虚线为 PhaseNet 拾取的 Sg 到时 ；图 a 为速度计，图 b 为加速度计，图 c 为烈度计 . 从图中可以看出， PhaseNet 在速度计数据上

检测的震相到时与人工标注的震相到时较为一致，在加速度计或者烈度计数据上检测的震相到时与人工标注的震相到时存在一定差异
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为 速 度 型 数 据 ，STEAD 数 据 集（Mousavi et al.， 
2019）、DiTing 数据集（Zhao et al.， 2023）和 CSNCD
数据集（An， 2024）等均是速度型波形数据 . 这类数据

通常来自安装环境良好、灵敏度高且频带较宽的速

度型地震计，具有信噪比高、噪声干扰少的特点 .
2024 年 7 月，国家地震烈度速报与预警工程（以

下 简 称“ 预 警 工 程 ”）通 过 竣 工 验 收 ，我 国 地 震 台 站

数量超过 20 000 个，标志着我国建成了全球规模最

大的地震监测台网（Peng et al.， 2022）. 预警工程在

全国范围内部署了宽频带速度型地震计（以下简称

速度计，用 HH 表示）、力平衡加速度型地震计（以下

简称加速度计，用 HN 表示）及 MEMS（micro⁃electro
⁃mechanical system）简易烈度计（以下简称烈度计，

用 EI 表示）三种类型传感器 . 以云南为例，全省共部

署 速 度 计 202 套 、加 速 度 计 430 套 、烈 度 计 1 230 套

（朱杰和钟玉盛， 2025），其中加速度型传感器占比

超 过 85%. 加 速 度 计 和 烈 度 计 在 频 带 响 应 、灵 敏 度

及安装环境等方面与速度计不同，导致加速度波形

与速度型波形特征存在显著差异 . 将基于速度型数

据 训 练 的 震 相 识 别 模 型 直 接 应 用 于 加 速 度 和 烈 度

计数据时，其检测精度和识别准确率会下降（图 1）.
本 文 基 于 云 南 预 警 台 网 2023-2025 年 的 观

测 数 据 ，制 作 了 高 质 量 的 地 震 事 件 波 形 数 据 集

和 震 相 到 时 数 据 集 ，对 PhaseNet、EQTransformer
和 SeisMoLLM 等 9 种 主 流 地 震 检 测 模 型 进 行 评

估 ，分 析 了 不 同 模 型 在 速 度 计 数 据 、加 速 度 计 数

据 和 烈 度 计 数 据 中 的 检 测 效 果 ，探 讨 了 迁 移 学

习 和 大 模 型 的 泛 化 能 力 及 适 用 边 界 ，为 发 展 基

于 多 源 异 构 数 据 的 地 震 检 测 方 法 提 供 参 考 .

1 数据  

1.1　云南地震台网简介　

云 南 地 处 青 藏 高 原 东 南 缘 ，构 造 运 动 剧 烈 ，

地 震 活 动 频 繁（皇 甫 岗 ， 2009）. 预 警 工 程 建 设 前 ，

云 南 地 区 共 有 68 个 固 定 测 震 台 站 ，平 均 台 间 距

约 为 76 km（图 2a）.

图 2　预警工程建设前后云南地震台网密度及台站分布

Fig.2　Station density and distribution of the Yunnan Seismic Network before and after the earthquake early warning project      
construction

a. 预警工程前速度计分布；b. 预警工程后速度计分布；c. 预警工程后速度计+加速度计分布；d. 预警工程后速度计+加速度计+烈度计分布
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预警工程建成后，云南地震台网除原测震台站

外，新增地震台站 1 660 个，其中基准站 202 个、基本

站 228 个、一般站 1 230 个，云南地区部署的地震计

类 型 见 表 1. 基 准 站 同 时 安 装 速 度 计（通 道 代 码 为

HHZ、HHN、HHE）和 加 速 度 计（通 道 代 码 为 HNZ、

HNN、HNE）. 基 本 站 配 备 加 速 度 计（通 道 代 码 为

HNZ、HNN、HNE），一般站配备烈度计（通道代码为

EIZ、EIN、EIE）. 所有台站实时回传数据的采样率均

图 3　数据集中地震事件震中分布和台站分布

Fig.3　Epicenter and station distribution of earthquakes in the dataset
红色圆圈代表不同震级地震事件，黑色三角形代表速度计，蓝色三角形代表加速度计，黄色三角形代表烈度计

表 1　云南地区部署的地震计类型

Table 1　Summary of seismometer types deployed in Yunnan region

台站

基准站

基本站

一般站

背景噪声(m/s2)

1.0×10‒9~1.0×10‒8

1.0×10‒6~1.0×10‒5

1.0×10‒4~1.0×10‒3

类型

速度计

加速度计

加速度计

烈度计

设备型号

GL_CS60
GL_CS120
ITC-60A
ITC-120A

BBVS-60
JS-60
JS-120
JS-A2

TDA-33M
TDA-33M

JS-A2
GL-P2B

Palert Advance
TMA-33

VH-GL-LDY

频带

60 s~50 Hz
120 s~50 Hz

60 s~50 Hz
120 s~50 Hz

60 s~50 Hz
60 s~50 Hz

120 s~50 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz
DC~80 Hz

灵敏度

2 000a

2 000a

2 000a

2 000a

2 000a

2 000a

2 000a

2.5b

2.5b

2.5b

2.5b

1.0×106
c

-

-

1.0×106
c

通道

HH*
HH*
HH*
HH*
HH*
HH*
HH*
HN*
HN*
HN*
HN*
EI*
EI*
EI*
EI*

数量

78
33
43
31
10
4
3

101
101
113
115
20

100
705
405

制造商

港震

港震

天元

天元

港震

深研院

深研院

深研院

泰德

泰德

深研院

港震

勤联

泰德

瑞琪

注：a. 单位为 V·m-1·s; b. 单位为 V·m-1·s2; c. 单位为 count·m-1·s2.
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为 100 Hz. 预警工程显著提升了云南地区的地震台

站分布密度和监测能力，速度计平均台间距缩减至

约 43 km，全台网平均间距缩小至约 15 km（图 2）.
1.2　多源异构数据集　

本文收集了 2023 年 5 月至 2025 年 4 月期间云南

预警台网观测的 1 194 次地震的波形数据 . 经人工挑

选与复核，共标注 Pg 震相到时 24 411 条、Sg 震相到时

18 452 条（部分波形仅包含 Pg 震相），仪器包括 152
台速度计、337 台加速度计和 897 台烈度计（图 3）.

从连续波形中截取震前 10 s 和震后 50 s 三分量

数据，构建长度为 60 s（6 000 个采样点）的波形数据

集 . 由 于 同 一 地 震 事 件 不 同 台 站 的 震 中 距 存 在 差

异 ，震 相 到 时 在 截 取 窗 口 内 具 有 随 机 性 . 数 据 集 中

包 含 速 度 计 波 形 9 098 条 ，加 速 度 计 波 形 9 355 条 ，

烈 度 计 波 形 5 958 条 ，分 别 占 比 37.3%、38.3% 和

24.4%. 1 194 次 地 震 的 震 级 范 围 为 M 0.0~5.2（图

4a），震 中 距 为 0~120 km（图 4b），采 用 SeisBench
（Woollam et al.， 2022）将 数 据 集 封 装 为 hdf5 格 式 .
参照 PhaseNet 的信噪比计算方法，以 Pg 到时后 5 s
波形与前 5 s 背景噪声标准差比值的对数作为信噪

比指标，对于未标注 Pg 震相的记录，则改用 Sg 到时

后 5 s 波 形 进 行 计 算 . 图 4c 展 示 了 数 据 集 中 HH、

HN、EI 三类数据归一化后的信噪比分布，图 4d、4e、

4f 分别为三类数据的震相走时曲线图 . 人工标注震

相时以能清晰判断震相到时和类型为准则，从图 4a

和图 4b 可以看出，速度计样本相较于加速度计和烈

度计，震级较小且震中距较远 . 从图 4c 可以观察到，

烈 度 计 数 据 信 噪 比 峰 值 主 要 位 于 0.5~1.5 之 间 ，超

过 85% 的 数 据 信 噪 比 低 于 1.5；加 速 度 计 数 据 的 信

噪比分布特征与速度计形态相似，但其在高信噪比

区间（>2.0）的占比略低于速度计；速度计数据信噪

比分布更加均衡，在高信噪比区间保持较高占比 . 从

图 4d、4e、4f 可以看出，数据集中 HH、HN、EI 三类数

据 Pg 和 Sg 震相走时较为一致，相同震中距下震级逐

渐增大，EI 的 Pg 震相数量随震中距增加逐渐减少 .

2 方法  

2.1　地震检测模型测评　

为 系 统 评 估 地 震 检 测 模 型 性 能 ，本 文 选 取 了

PhaseNet、EQTransformer、RNN、LPPN 和 USTC ⁃
Pickers 5 个 代 表 性 的 专 业 模 型 与 SeisMoLLM、

SeisT、PRIME⁃DP 和 SeisLM 4 个 较 新 的 大 模 型 进

行 对 比 分 析 . 这 些 模 型 覆 盖 了 从 传 统 卷 积 网 络 、循

环网络到 Transformer、大语言模型微调等主流架构

范 式 ，涉 及 不 同 的 数 据 规 模 与 训 练 策 略（如 区 域 迁

移训练、全球预训练、本地微调等），所有模型均未使

用本文所构建的数据集进行训练，避免数据泄露问

题 . 为保障评测客观性，筛选数据集中震中距 60 km
范围内 ML 2.0 以上地震进行评测，其中速度计数据    
1 330 条、加速度计数据 2 106 条，烈度计数据 3 378 条 .

图 4　数据集特征统计图

Fig.4　Statistical characteristics of the dataset
a. 震 级 统 计 ； b. 震 中 距 ； c. 信 噪 比 ； d. 速 度 计 数 据 震 相 走 时 曲 线 ； e. 加 速 度 计 数 据 震 相 走 时 曲 线 ； f. 烈 度 计 数 据 震 相 走 时 曲 线 . 图 d、e、f
中 蓝 色 为 Pg，红 色 为 Sg，散 点 颜 色 深 浅 代 表 不 同 震 级 ，颜 色 越 深 震 级 越 大
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专业模型中，PhaseNet 是基于 U⁃Net 的卷积神

经网络结构，由四层卷积下采样与四层反卷积上采

样模块组成，使用北加州地震数据中心的 770 000 条

三 分 量 地 震 波 形 进 行 训 练 . EQTransformer 融 合

CNN 的局部特征提取能力、LSTM 的时序建模能力

与 Transformer 的全局注意力机制，采用共享编码器

和 3 个独立解码器结构，基于 STEAD 数据集训练 .
RNN 基 于 移 除 了 Transformer 仅 保 留 CNN 与

LSTM 的 EQTransformer 架构，采用 CSNCD 数据集

进行训练 .LPPN 是一种轻量化神经网络模型，结合

残差连接与深度可分离卷积，基于 STEAD 数据集进

行训练 .USTC⁃Pickers 采用 U⁃Net 架构，通过迁移学

习策略实现模型区域适应性，初始模型在 DiTing 数

据集上进行全国范围预训练，后续引入各省区域数

据进行微调，本文测试所用模型为云南区域子模型 .
大 模 型 中 ，SeisT 采 用 多 尺 度 混 合 卷 积 和 多

路 径 Transformer 架 构 ，支 持 震 相 拾 取 和 地 震 定 位

等 多 种 任 务 联 合 推 理 ，基 于 STEAD 和 DiTing 数

据 集 训 练 .PRIME ⁃DP 采 用 CNN ⁃Transformer 混

合 编 码 器 以 及 多 任 务 解 码 器 架 构 ，使 用 CSNCD
数 据 集 训 练 .SeisMoLLM 采 用 跨 模 态 方 式 将 波 形

分 块 编 码 为 Token 序 列 后 微 调 GPT ⁃2 架 构 ，实

现 多 任 务 端 到 端 推 理 ，模 型 采 用 STEAD 和 DiT⁃
ing 数 据 集 训 练 .SeisLM 采 用 ConvNet + Trans⁃
former 结 构 ，采 用 掩 码 建 模 和 对 比 学 习 进 行 自 监

督 预 训 练 ，通 过 STEAD 数 据 集 训 练 . 表 2 列 出

了 本 文 评 测 的 模 型 、训 练 数 据 集 和 训 练 策 略 .
2.2　性能评估指标　

本 文 采 用 多 维 度 指 标 评 估 不 同 模 型 的 性 能

表 现 ，分 别 根 据 公 式 计 算 模 型 精 确 率（Precision）、

召 回 率（Recall）和 F1 值 .

          Precision = TP
TP + FP  , (1)

          Recall = TP
TP + FN  , (2)

          F1 = 2 × Precision × Recall
Precision + Recall  , (3)

式 中 ，人 工 标 记 的 震 相 到 时 与 模 型 拾 取 的 震 相

到 时 差 的 绝 对 值 在 △ t 内 为 正 确 拾 取 ，记 为 TP ；

超 过 △ t 为 误 拾 取 ，记 为 FP ；模 型 未 检 测 到 人 工

标 记 的 震 相 到 时 为 漏 拾 取 ，记 为 FN.
在常规评估指标基础上，通过计算模型预测到

时 与 人 工 标 注 到 时 的 标 准 差（σ）和 平 均 绝 对 误 差

（Mean Absolute Error， MAE），进 一 步 对 震 相 到 时

误 差 进 行 统 计 分 析 .σ 表 征 拾 取 结 果 的 离 散 程 度 ，σ
值越小，表明模型的一致性越好 .MAE 用于评估模

型 平 均 误 差 幅 度 ，值 越 小 ，表 明 模 型 预 测 到 时 越

接 近 真 实 标 签 . 为 消 除 仪 器 故 障 等 异 常 值 干 扰 ，

参 考 PhaseNet 和 LPPN 的 做 法 ，仅 统 计 误 差 绝 对

值 在 0.5 s 范 围 内 的 有 效 样 本 ，确 保 评 估 结 果 的

代 表 性 和 可 比 性 .σ、MAE 分 别 通 过 公 式 计 算 .
式 中 ，Ttrue ，i 为 样 本 i 人 工 标 注 的 震 相 到 时 ，

Tpre ，i 为 样 本 i 模 型 预 测 的 震 相 到 时 ，ei 为 样 本 i
的 到 时 误 差 ，μ 为 误 差 均 值 ，n 为 样 本 数 量 .
          ei = T true,i - T pre,i ,                                           (4)

          σ = 1
n ∑

i = 1

n

( )ei - μ
2
  ,μ = 1

n ∑
i = 1

n

ei ,                (5)

          MAE = 1
n ∑

i = 1

n

|| ei  ,                                           (6)

3 结果

3.1　模型性能评测结果　

德 国 地 球 科 学 研 究 中 心 在 评 估 地 震 定 位 结 果

表 2　地震检测模型信息

Table 2　Summary of information on earthquake detection models

模型类型

专业模型

大模型

模型名称

PhaseNet
EQTransformer

RNN
LPPN

USTC-Pickers
SeisT

PRIME_DP
SeisMoLLM

SeisLM

训练数据集

NCEDC
STEAD
CSNCD
STEAD
DiTing

STEAD/DiTing
CSNCD

STEAD/DiTing
STEAD

训练策略

全监督训练

全监督训练

全监督训练

全监督训练

预训练+增量微调

联合训练,多任务优化

预训练+解码器微调

跨模态微调

自监督预训练+微调

参考文献

Zhu and Beroza, 2019
Mousavi et al., 2020

Yu et al., 2023
Yu and Wang, 2022

Zhu et al., 2023
Li et al., 2024
Yu et al., 2024

Wang et al., 2025
Liu et al., 2024
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可 靠 性 时 ，将 0.1 s 视 为 震 相 到 时 的 典 型 误 差 阈

值 ，并 以 此 作 为 定 位 算 法 的 输 入 参 数 ，分 析 其 对 震

源 位 置 反 演 精 度 的 影 响 . 实 验 结 果 表 明 ，该 误 差 量

级 满 足 高 精 度 定 位 标 准（Bormann et al.， 2013）. 在

震 相 拾 取 模 型 的 性 能 评 价 中 ，PhaseNet、EQTrans⁃
former 等 模 型 也 普 遍 采 用“ 拾 取 误 差 0.1 s 内 ”作 为

正 确 拾 取 的 判 定 依 据（Zhu and Beroza， 2019； 
Mousavi et al.， 2020）. 本 文 沿 用 这 一 标 准 ，对 各 模

型 的 Pg、Sg 拾 取 性 能 进 行 了 系 统 评 估 ，计 算 了 精

确 率 、召 回 率 和 F1 值 ，结 果 如 表 3 所 示 . 不 同 模 型

在 相 同 误 差 阈 值 下 的 表 现 差 异 显 著 ，反 映 了 模

型 对 台 站 响 应 特 性 与 区 域 地 壳 结 构 的 适 应 性 .

震 相 拾 取 测 试 结 果 表 明 ，不 同 模 型 在 不 同 类

型 数 据 和 震 相 上 的 性 能 存 在 显 著 差 异 ：9 个 模 型

在 速 度 计 数 据 上 的 平 均 F1 值 为 0.712，高 于 加 速

度 计 的 0.684 和 烈 度 计 的 0.672. 各 模 型 对 Pg 的 拾

取 性 能 普 遍 优 于 Sg，其 中 SeisMoLLM、SeisT 和

EQTransformer 在 两 类 震 相 间 的 性 能 差 异 相 对 较

小 ，而 PhaseNet、RNN、LPPN、PRIME_DP 和 Seis⁃
LM 在 Pg 上 的 优 势 更 为 明 显 .USTC⁃Pickers 在 三

类 数 据 上 的 平 均 F1 值 最 高 ，为 0.779；在 速 度 计 和

加 速 度 计 上 的 F1 值 分 别 为 0.768 和 0.798，均 为 各

模 型 中 最 高 值 ；在 烈 度 计 上 的 F1 值 为 0.771，仅 次

于 SeisT 的 0.793.SeisT 的 综 合 表 现 仅 次 于 USTC⁃

表 3　不同模型在本文数据集上的拾取结果统计(误差在 0.1 s 为 TP)
Table 3　Summary of picking results of different models on the dataset (error within 0.1 s counted as TP)

测试数据

速度计

加速度计

烈度计

测试模型

PhaseNet
EQTransformer

RNN
LPPN

USTC-Pickers
SeisT

PRIME_DP
SeisMoLLM

SeisLM
平均值

PhaseNet
EQTransformer

RNN
LPPN

USTC-Pickers
SeisT

PRIME_DP
SeisMoLLM

SeisLM
平均值

PhaseNet
EQTransformer

RNN
LPPN

USTC-Pickers
SeisT

PRIME_DP
SeisMoLLM

SeisLM
平均值

Pg
Precision

0.827
0.859
0.842
0.801
0.870

0.858
0.806
0.804
0.863
0.837
0.802
0.876
0.720
0.676
0.936

0.918
0.760
0.880
0.859
0.825
0.810
0.900
0.779
0.663
0.827
0.883
0.766
0.951

0.865
0.827

Recall
0.867
0.870
0.822
0.765
0.879
0.856
0.803
0.865
0.889

0.846
0.846
0.832
0.691
0.595
0.935

0.904
0.735
0.858
0.903
0.811
0.831

0.617
0.724
0.474
0.819
0.828
0.602
0.535
0.776
0.689

F1
0.847
0.864
0.832
0.782
0.874

0.857
0.805
0.833
0.876
0.841
0.823
0.853
0.705
0.633
0.936

0.911
0.747
0.869
0.881
0.818
0.820
0.732
0.750
0.553
0.823
0.855

0.674
0.684
0.818
0.746

Sg
Precision

0.528
0.702

0.434
0.576
0.637
0.663
0.479
0.653
0.579
0.584
0.422
0.579
0.399
0.501
0.588
0.605

0.393
0.568
0.475
0.503
0.479
0.665
0.499
0.554
0.648
0.682

0.471
0.617
0.541
0.573

Recall
0.577
0.631
0.454
0.413
0.688

0.634
0.539
0.681
0.658
0.586
0.565
0.622
0.494
0.440
0.753

0.701
0.525
0.711
0.667
0.609
0.611
0.529
0.590
0.464
0.803

0.785
0.533
0.698
0.701
0.635

F1
0.551
0.665
0.444
0.481
0.662
0.648
0.507
0.666

0.616
0.582
0.484
0.600
0.441
0.468
0.660

0.650
0.449
0.632
0.555
0.549
0.537
0.589
0.541
0.505
0.718
0.730

0.500
0.655
0.611
0.598
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Pickers，平 均 F1 值 为 0.775.SeisLM 和 SeisMoLLM
紧 随 其 后 ，平 均 F1 值 分 别 为 0.726 和 0.723. 图 5 展

示 了 不 同 模 型 在 三 类 数 据 上 的 精 确 率 、召 回 率 和

F1 值 对 比 雷 达 图 . 从 图 中 可 以 看 出 ，不 同 模 型 在

速 度 计 数 据 ，尤 其 是 Pg 上 的 性 能 差 异 相 对 较 小 ，

在 加 速 度 计 和 烈 度 计 上 的 性 能 差 异 相 对 较 大 .
为进一步了解模型性能，本文计算了±0.5 s 误

差 范 围 内 的 各 模 型 拾 取 结 果 的 标 准 差 σ 和 平 均 绝

对 误 差 MAE，图 6 展 示 了 9 个 模 型 在 三 类 数 据 上

的 震 相 到 时 误 差 标 准 差 及 平 均 绝 对 误 差 对 比 .
SeisMoLLM 、USTC⁃Pickers 和 SeisT 的 误 差 标 准

差 和 平 均 绝 对 值 误 差 最 低 ，尤 其 是 SeisMoLLM ，

在 烈 度 计 数 据 上 一 致 性 最 好 . 图 7 和 图 8 分 别 展

示 了 各 模 型 Pg 和 Sg 震 相 到 时 误 差 的 分 布 直 方

图 . 结 果 显 示 ，所 有 模 型 的 预 测 误 差 主 要 集 中 在

±0.2 s 区 间 内 ，USTC⁃Pickers 和 SeisT 等 大 模 型

的 误 差 分 布 相 对 均 衡 ，而 PhaseNet 和 EQTrans⁃
former 等专业模型误差分布呈明显右偏态分布，表

明 专 业 模 型 拾 取 的 震 相 到 时 相 对 滞 后 ，而 经 过 本

区 域 数 据 迁 移 训 练 的 模 型 能 有 效 抑 制 滞 后 趋 势 .
3.2　不同时窗长度拾取效果对比　

从 数 据 集 中 筛 选 出 信 噪 比 较 高 的 加 速 度 计 波

形 样 本 ，对 真 实 震 相 概 率 以 及 PhaseNet、USTC ⁃
Pickers 和 SeisT 三个具有代表性模型的输出概率曲

线进行对比分析 . 如图 9 所示，在时长为 30 s 的波形

数 据 上（图 9a），3 个 模 型 均 能 准 确 识 别 Pg 和 Sg 震

相，在窗长为 12 s 的数据上（图 9f），PhaseNet 拾取的

Pg 相较于真实到时表现出明显的滞后特征，而经过

云南地区数据迁移训练的 USTC⁃Pickers 有效抑制

了这种滞后现象 . 此外，USTC⁃Pickers 在不同时长

数据上的表现具有较高一致性，这种现象可能源于

专 业 模 型 学 习 了 更 多 的 波 形 细 节 特 征 . 相 比 之 下 ，

SeisT 在 30 s 和 12 s 不 同 时 长 数 据 上 呈 现 出 显 著

差 异 的 拾 取 结 果 ，这 种 特 性 可 能 与 其 融 合 Trans⁃
former 结 构 后 同 时 关 注 全 局 信 息 有 关 . 因 此 ，当 数

据 长 度 不 同 时 ，不 同 模 型 的 拾 取 结 果 会 有 差 异 .

图 5　不同模型在三类数据上的精确率、召回率和 F1 雷达图

Fig.5　Precision, recall, and F1-score radar chart of different models on three data types
a. 速度计；b. 加速度计；c. 烈度计

图 6　不同模型在三类数据上的震相到时误差标准差及平均绝对误差对比

Fig.6　Comparison of standard deviation and mean absolute error of phase arrival times for different models on three data types
a. 速度计；b. 加速度计；c. 烈度计
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3.3　不同数据条件下模型性能变化　

为 进 一 步 分 析 不 同 数 据 条 件 下 模 型 的 拾 取 性

能变化，基于 0.1 s 的判定阈值统计各模型的正确拾

取 数 量 ，绘 制 了 模 型 在 不 同 信 噪 比 、震 级 和 震 中 距

图 7　不同模型在三类数据上的 Pg 震相到时误差(Tpre-Ttrue)分布直方图

Fig.7　Histograms of Pg arrival time errors (Tpre-Ttrue) for different models on three data types
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条 件 下 对 三 类 数 据 的 拾 取 效 果 对 比 图 . 对 速 度

计 的 拾 取 结 果（图 10）显 示 ，模 型 整 体 性 能 趋 势

与 数 据 集 的 原 始 分 布 特 征 保 持 一 致 ，模 型 在 Pg

上 的 性 能 相 较 于 Sg 更 为 接 近 ，表 明 模 型 在 Pg 上

的 拾 取 差 异 较 小 ，而 在 Sg 上 的 拾 取 差 异 较 大 ，

尤 其 是 震 中 距 大 于 40 km 后 ，差 异 进 一 步 增 大 .

图 8　不同模型在三类数据上的 Sg 震相到时误差(Tpre-Ttrue)分布直方图

Fig.8　Histograms of Sg arrival time errors (Tpre-Ttrue) for different models on three data types
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在加速度计数据上，模型间的拾取差异相较于

速 度 计 进 一 步 增 大 ，USTC⁃Pickers 模 型 展 现 出 最

好 的 性 能 ，在 其 他 所 有 测 试 条 件 下 均 保 持 最 优 表

现 . 此 外 ，SeisT、SeisMoLLM 和 SeisLM 等 大 模 型

在 Sg 拾 取 任 务 中 表 现 突 出 ，其 性 能 优 于 除 USTC⁃

Pickers 外 的 其 他 专 业 模 型 ，这 一 现 象 可 能 源 于 大

模型具有提取更丰富波形特征的能力（图 11）.
与加速度计类似，模型在烈度计数据的拾取差

异 相 较 于 速 度 计 同 样 较 大 .USTC⁃Pickers、SeisT、

SeisMoLLM 和 SeisLM 依然拥有较好表现（图 12）.

图 10　模型在不同信噪比、震级和震中距离的速度波形上的拾取效果对比

Fig.10　Phase picking performance on velocity data under different SNR, magnitude, and epicentral distance

图 9　模型在同一波形不同时窗长度数据上的拾取效果对比

Fig.9　Comparison of picking performance of different models on the same waveform with different time window lengths
左 图 为 30 s 窗 长 ，右 图 为 12 s 窗 长 ；图 a、f 为 三 分 量 原 始 波 形 ，图 b、g 为 真 实 标 签 到 时 扩 展 为 高 斯 窗 的 概 率 曲 线 ，图 c 和 图 h、图 d 和 图 i、
图 e 和 图 j 分 别 为 PhaseNet、USTC-Pickers 和 SeisT 输 出 的 概 率 曲 线
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3.4　同址速度计和加速度计数据拾取性能比较　

依 托 预 警 基 准 站 同 步 部 署 的 观 测 优 势 ，选 取

2023 年 5 月 2 日 云 南 保 山 隆 阳 Ms5.2 地 震 100 km
范 围 内 14 个 基 准 站 的 速 度 计 和 同 址 加 速 度 计 数

据（震 相 检 测 时 段 为 2023 年 5 月 2 日 0 时 至 5 月 5
日 0 时）进 行 速 度 计 和 加 速 度 计 震 相 拾 取 同 址 对

比 . 采 用 PhaseNet 进 行 震 相 拾 取 ，结 果 表 明 ：加 速

度 计 的 震 相 拾 取 数 量 仅 为 速 度 计 的 50% 左 右 ；速

度 计 数 据 上 Pg 拾 取 数 量 多 于 Sg，而 加 速 度 计 则

呈 现 相 反 趋 势（图 13a），这 种 现 象 可 能 源 于 宽 频

带 速 度 计 更 宽 的 频 带 响 应 范 围 和 更 高 的 灵 敏 度

使 其 能 记 录 更 丰 富 的 信 号 特 征 . 统 计 显 示 ，同 台

站 速 度 计 与 加 速 度 计 的 Pg（ 图 13b）和 Sg（ 图

13c）到 时 误 差 均 值 分 别 为 -0.031 s 和 -0.039 s，

表 明 加 速 度 计 震 相 识 别 存 在 0.03~0.04 s 的 系 统

性 延 迟 ；二 者 的 标 准 差 分 别 为 0.103 和 0.121 ，反

映 出 较 高 的 一 致 性 ，其 中 P 波 误 差 波 动 更 小 ，这

与 P 波 初 动 清 晰 、更 易 识 别 特 性 相 符 .P 和 S 的

偏 度 系 数 分 别 为 -1.91 和 -1.37 ，表 明 某 些 条 件

下 的 加 速 度 计 的 震 相 到 时 会 出 现 显 著 延 迟 .

图 11　模型在不同信噪比、震级和震中距的加速度计数据的拾取效果对比

Fig.11　Phase picking performance on accelerogram under different SNR, magnitude, and epicentral distance

图 12　模型在不同信噪比、震级和震中距的烈度计数据的拾取效果对比

Fig.12　Phase picking performance on MEMS data under different SNR, magnitude, and epicentral distance
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4 讨论  

4.1　不同模型在多元异构数据上的适用性分析　

从 各 模 型 在 数 据 集 的 整 体 表 现 来 看 ，USTC ⁃
Pickers 综 合 表 现 最 优 ，平 均 F1 值 为 0.779，SeisT、

SeisLM 和 SeisMoLLM 紧随其后，平均 F1 值均超过

0.7. 但是，所有模型在 Sg 震相拾取上的表现均相对

较差，后续模型开发应着重提升对 Sg 震相的识别能

力 . 误 差 分 布 结 果 表 明 ，PhaseNet、EQTransformer
等 专 业 模 型 在 三 类 数 据 尤 其 是 加 速 度 型 数 据 上 均

存在明显的震相到时滞后现象 . 这种现象可能源于

加速度计和烈度计的灵敏度较低，当地震信号较小

时其响应能力不足导致初至震相拾取困难，需要依

赖后续较大振幅才能准确识别震相 . 相比之下速度

计 凭 借 高 灵 敏 度 和 低 噪 声 环 境 优 势 能 够 清 晰 记 录

震 相 初 至 . 经 过 本 地 数 据 训 练 的 USTC⁃Pickers 即

便在仪器类型和观测环境发生变化的情况下，仍然

可以有效抑制这种滞后趋势 . 相关研究表明，迁移学

习可以显著提高模型的适应能力（Chai et al.， 2020； 
Niksejel and Zhang， 2024； Saad et al.， 2024），利 用

历史数据进行迁移训练，模型能够更好地掌握本地

地质构造特征，进而提高在不同类型数据上的拾取

效果 . 从测试结果来看，相较于更换模型或重新设计

模 型 架 构 ，迁 移 训 练 带 来 的 性 能 提 升 更 为 显 著 . 同

时，由于加速度型地震计存在灵敏度低、安装环境受

人类活动干扰大、震相到时滞后等问题，在实际地震

定 位 中 应 优 先 采 用 速 度 计 数 据 以 提 高 定 位 精 度 .
4.2　专业化模型与通用大模型性能比较　

专 业 模 型 通 常 被 认 为 在 特 定 场 景 中 更 高 效

（Pecher et al.， 2025），而 大 模 型 更 强 调 通 用 泛 化 能

力（Du et al.， 2024）. 用 于 地 震 检 测 的 专 业 模 型 自

2017 年以来得到了快速发展（Fang et al.， 2017），而

地震通用大模型最近两年才刚刚起步，目前全球已

公布的用于地震检测的大模型只有 SeisT、SeisLM、

PRIME ⁃ DP、SeisMoLLM 和 DiTing（http：//www.
esdc.ac.cn/）. 震相拾取作为一种密集型时序语义分

割任务，要求模型对每个采样点给出精确的分类概

率 ，因 此 无 论 是 专 业 模 型 还 是 大 模 型 ，都 需 要 具 备

对震相到时的敏感性 .SeisMoLLM 的结构消融实验

显示，即便是具备时序特征理解能力的大模型，在缺

乏卷积模块的情况下，震相拾取性能下降显著 . 这一

现象表明模型依赖卷积的细节特征提取能力（Wang 
et al.， 2025），因此，即便是通用模型，也必须具备局

部细节感知能力，才能胜任高精度震相拾取任务 .
从同一波形不同时窗长度的测试结果来看，包

含 Transformer 结 构 的 SeisT 在 处 理 不 同 长 度 波 形

时 ，输 出 结 果 会 因 上 下 文 长 度 变 化 而 显 著 波 动 ，但

其全局感知特性使其在复杂、低信噪比波形中的鲁

棒性优于专业模型，特别是在连续波形、Sg 识别等

场 景 中 ，往 往 能 获 得 更 优 的 拾 取 表 现 . 当 波 形 长 度

增 加 时 ，大 模 型 可 更 好 地 整 合 长 距 离 依 赖 关 系 ，从

而 提 供 更 贴 近 真 实 标 签 的 结 果 ；相 对 而 言 ，专 业 模

型对波形长度变化的敏感性较小，更关注于短时窗

内 的 局 部 特 征 . 此 外 ，大 规 模 预 训 练 模 型 在 低 信 噪

比 和 跨 域 场 景 下 展 现 了 更 强 泛 化 性（Li et al.， 
2024； Liu et al.， 2024）. 以 SeisMoLLM 为 例 ，虽 然

其在 STEAD 数据集上训练 ，但在本研究云南地区

的异构数据集中仍保持了较优表现，表明其具有一

定程度的区域泛化能力，这对缺乏高质量标注数据

的 新 区 域 极 具 价 值 . 随 着 硬 件 与 资 源 的 持 续 进 步 ，

构 建 和 部 署 具 备 一 定 规 模 的 大 模 型 变 得 越 来 越 可

行 ，其 在 地 震 预 警 系 统 中 的 应 用 潜 力 正 日 益 凸 显 .

图 13　PhaseNet 对同台址速度计和加速度计震相拾取对比

Fig.13　Phase picking comparison on co-located velocity and acceleration data
a. P 和 S 的震相数量； b. 速度计与加速度计 P 到时误差 T（HH） -T（HN）分布； c. 速度计与加速度计 S 到时误差 T（HH） -T（HN）分布
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尽 管 大 模 型 具 有 非 常 大 的 潜 力 ，但 目 前 专 业

模 型 在 特 定 场 景 中 依 然 具 有 不 可 替 代 的 优 势 . 首

先 ，专 业 模 型 结 构 更 轻 量 ，训 练 成 本 低 ，便 于 部 署

在 资 源 受 限 的 前 端 设 备 或 小 型 台 网 . 其 次 ，基 于 本

地 数 据 的 迁 移 学 习 策 略 可 在 较 低 成 本 下 显 著 提 升

模 型 在 特 定 区 域 或 仪 器 类 型 上 的 性 能 . 例 如 ，

USTC⁃Pickers 尽 管 使 用 的 是 相 对 简 单 的 PhaseNet
架 构 ，但 通 过 在 云 南 地 区 多 源 数 据 上 的 迁 移 训 练 ，

表 现 出 良 好 的 适 应 性 与 拾 取 精 度 ，能 够 有 效 缓 解

由 于 地 质 构 造 差 异 或 仪 器 类 型 不 同 所 带 来 的 系 统

性 偏 差 . 此 外 ，专 业 模 型 由 于 参 数 量 较 小 ，在 训 练

和 推 理 中 的 效 率 往 往 较 高 . 本 文 的 测 试 硬 件 环 境

为 一 台 搭 载 双 路 CPU 的 服 务 器 ，具 体 配 置 为 ：两

颗 Intel Xeon Gold 6230 处 理 器（每 颗 CPU 基 频 为

2.10 GHz，共 48 个 物 理 核 心），以 及 512 GB DDR4
内 存 . 所 有 模 型 均 在 统 一 数 据 集 下 开 展 测 试 ，且

采 用 相 同 长 度 的 输 入 数 据 进 行 评 估 . 测 试 结 果

显 示 ，专 业 模 型 推 理 时 间 一 般 小 于 15 ms，大 模

型 为 20~30 ms（图 14）. 大 模 型 多 基 于 Transform ⁃
er 架 构 ，模 型 参 数 量 大 ，训 练 需 要 使 用 的 数 据 多 ，

计 算 资 源 大 ，训 练 成 本 较 高（Li et al. ， 2023）.
综 上 所 述 ，通 用 大 模 型 与 专 业 模 型 各 具 优

势 ：前 者 适 合 构 建 具 备 跨 区 域 泛 化 能 力 的 统 一 框

架 ，后 者 则 在 面 向 特 定 区 域 或 任 务 场 景 时 具 备 更

高 性 价 比 . 在 当 前 尚 未 形 成 统 一 高 质 量 大 规 模 地

震 数 据 集 的 背 景 下 ，利 用 本 地 数 据 进 行 迁 移 学 习

仍 是 提 升 模 型 性 能 的 有 效 路 径 ；而 随 着 数 据 规 模

与 模 型 能 力 的 不 断 增 长 ，探 索 兼 具 泛 化 性 与 局 部

适 应 性 的 融 合 模 型 将 是 未 来 的 重 要 研 究 方 向 .

5 结论  

本 文 构 建 了 覆 盖 云 南 预 警 台 网 速 度 计 、加

速 度 计 和 烈 度 计 的 异 构 波 形 数 据 集 ，通 过 对

PhaseNet 、EQTransformer 以 及 SeisT 等 9 种 主 流

地 震 检 测 模 型 进 行 评 估 ，主 要 结 论 如 下 ：

（1）USTC⁃Pickers 作为迁移优化的专业模型，在

云南三类仪器数据中综合性能最优，尤其在速度计和

加速度计数据中，Pg 和 Sg 震相拾取的平均 F1 值达

0.779（△t≤0.1 s），且有效缓解了震相拾取滞后问题 .
（2）SeisT、SeisMoLLM 和 SeisLM 等 大 模 型 在

Sg 和低信噪比条件下展现出优越的泛化能力，在烈

度计等新型仪器数据中具备更大潜力 .
（3）专 业 模 型 更 关 注 波 形 细 节 、输 出 一 致 性

高 ；大 模 型 则 在 上 下 文 理 解 和 复 杂 信 号 中 更 具

优 势 . 在 当 前 缺 乏 统 一 大 规 模 训 练 数 据 的 背 景

下 ，结 合 迁 移 学 习 优 化 专 业 模 型 仍 是 提 升 区 域

泛 化 性 能 的 重 要 手 段 . 未 来 可 进 一 步 探 索 融 合

本 地 训 练 与 大 模 型 预 训 练 的 混 合 策 略 ，推 动 震

相 识 别 模 型 向 更 高 精 度 与 广 泛 适 用 性 发 展 .
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