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摘 要： 地 震 定 位 是 地 震 预 警 和 地 球 深 部 结 构 研 究 的 核 心 ，但 其 精 度 仍 面 临 挑 战 . 本 研 究 基 于 中 国 大 陆 测 震 台 网 的 三

分 量 波 形 数 据 ，采 用 深 度 学 习 技 术 ，构 建 了 单 台 地 震 反 方 位 角 估 算 方 法 ，对 比 分 析 了 标 准 卷 积 神 经 网 络 与 WaveNet 模

型 在 P 波 、面 波 和 全 波 形 输 入 下 的 性 能 差 异 . 结 果 显 示 ，WaveNet 结 合 全 波 形 输 入 的 表 现 最 优 ，其 借 助 扩 张 卷 积 与 残 差

连 接 结 构 增 强 了 对 长 时 间 序 列 特 征 的 提 取 能 力 ，反 方 位 角 平 均 偏 差 仅 为 0.04°，拟 合 优 度（R²）达 到 0.99. 独 立 测 试 结 果

表 明 ，该 模 型 具 备 良 好 的 泛 化 能 力 ，平 均 绝 对 偏 差 和 方 差 相 较 于 传 统 面 波 偏 振 方 法 分 别 降 低 了 58.70% 和 28.21%. 基 于

全 波 形 输 入 的 深 度 学 习 方 法 可 显 著 提 高 单 台 定 位 精 度 ，为 地 震 预 警 及 极 端 环 境 下 的 地 震 监 测 提 供 有 效 技 术 支 撑 .
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Abstract: Earthquake location is fundamental to both early warning systems and studies of the Earth ’s deep structure, yet its 
accuracy remains challenging to be improved. Using three-component waveform data from the China National Seismic Network, 
this study develops a single-station back-azimuth estimation method based on deep learning. We compare the performance of a 
standard convolutional neural network with that of a WaveNet architecture under three input settings: P-wave only, surface-wave 
only, and full-waveform input. Results show that WaveNet combined with full-waveform input performs best, benefiting from 
dilated convolutions and residual connections that enhance its ability to extract long-range temporal features. The model achieves 
an average back-azimuth deviation of only 0.04°, with a coefficient of determination (R²) of 0.99. Independent tests demonstrate 
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strong generalization capability, with the mean absolute deviation and variance reduced by 58.70% and 28.21%, respectively, 
compared with the traditional surface-wave polarization method. The findings indicate that deep learning with full-waveform 
input can substantially improve single-station location accuracy, offering effective technical support for earthquake early warning 
and seismic monitoring in challenging environments.
Key words: earthquake location; back⁃azimuth; WaveNet; deep learning; full waveform; seismology.

0 引言  

地 震 定 位 是 地 震 科 学 研 究 和 地 震 防 灾 减 灾 的

核心技术之一，其精度和时效性直接决定了地震预

警 系 统 的 效 能 以 及 对 地 球 深 部 结 构 认 知 的 可 靠 性

（田玥和陈晓非， 2002）. 通过准确测定震源参数，地

震 定 位 不 仅 为 地 震 、火 山 、冰 川 和 核 试 验 监 测 提 供

了基础支撑，还为壳幔结构成像研究提供了关键数

据支持（Lomax and Savvaidis， 2022）. 传统地震定位

方 法 利 用 初 至 波 走 时 数 据 和 地 下 介 质 速 度 结 构 来

确 定 地 震 事 件 的 时 间 与 空 间 信 息（Thurber and 
Rabinowitz， 2000）. 通 过 对 地 震 观 测 信 息 的 进 一 步

挖掘，基于程函方程（劳高月等， 2024）和波动方程

（Tong et al.， 2014；Li et al.， 2020）的方法有效提升

了 地 震 定 位 精 度 . 尽 管 如 此 ，当 前 地 震 定 位 技 术 仍

面临诸多挑战（张风雪等， 2025）. 一方面，地震观测

站的空间分布不均，尤其在深海或偏远地区台站密

度 较 低 ，限 制 了 定 位 精 度（Zang et al.， 2024）；另 一

方面，区域地形和深部构造的复杂性增加了震源参

数 测 定 的 难 度（Wagner et al.， 2013）. 此 外 ，随 着 地

震 数 据 存 档 规 模 的 不 断 扩 大 ，传 统 定 位 技 术 已 难

以 满 足 海 量 数 据 处 理 的 效 率 需 求（Mousavi and 
Beroza， 2023）. 因 此 ，在 复 杂 环 境 下 ，传 统 方 法 难

以 兼 顾 高 精 度 与 实 时 性 要 求 ，亟 需 引 入 新 技 术 手

段 以 提 升 地 震 定 位 的 整 体 性 能（侯 新 荣 等 ， 2024）.
根据数据来源的不同，地震定位方法可分为多

台定位与单台定位两类 . 多台定位利用地震台阵的

走时或波形数据获取震源的时间和空间信息，精度

较高（Li et al.， 2020）. 单台定位则通过分析地震波

的 偏 振 特 性 及 其 传 播 规 律 等 特 征 推 断 震 源 的 方 位

和距离，适用于地震台站分布稀疏的海洋或行星地

区（Sun et al.， 2024）. 单台定位具备时效性优势，能

够实现数据的快速处理与结果迅速输出，为地震实

时预警系统提供关键支持（李山有等， 2024）. 其中，

反 方 位 角（back azimuth）是 单 台 定 位 中 描 述 震 源 位

置的关键参数，定义为从观测台站指向震源方向与

正北方向的夹角，通常由 P 波或面波的质点运动分

析 获 得（Scholz et al.， 2017）. 在 台 网 密 度 固 定 的

情 况 下 ，单 台 地 震 定 位 的 反 方 位 角 误 差 越 小 ，地

震 定 位 精 度 越 高（黄 俊 等 ， 2011）. 然 而 ，受 复 杂 地

质 环 境 影 响 ，单 一 震 相 的 特 征 提 取 往 往 难 以 提 供

准 确 的 反 方 位 角 信 息 . 例 如 ，在 海 底 地 震 观 测 环

境 中 ，由 于 海 水 压 力 扰 动 和 仪 器 倾 斜 等 噪 声 干

扰 ，往 往 导 致 基 于 P 波 偏 振 的 反 方 位 角 估 计 的 精

度 和 稳 定 性 不 足（Bell et al.， 2015）. 基 于 面 波 的

方 法 尽 管 能 够 利 用 更 丰 富 的 波 形 信 息 ，却 容 易 因

波 形 传 播 路 径 的 非 均 匀 性 和 多 路 径 效 应 产 生 较

大 偏 差（Doran and Laske， 2017）. 为 克 服 这 些 局

限 性 ，研 究 者 需 深 入 探 索 多 元 震 相 信 息 以 提 高 反

方 位 角 估 计 精 度 . 这 包 括 利 用 复 杂 的 转 换 震 相

（Zheng et al.， 2019； Sun et al.， 2024）、分 析 各 向

异 性 震 相 特 性（Tian et al.， 2011）以 及 应 用 波 形

模 拟 技 术（Zhu et al.， 2020； Dai et al.， 2023）等 .
近年来，深度学习技术的快速发展为地震定位

提 供 了 新 的 研 究 范 式（Tan et al.， 2024）. 通 过 自 动

特征提取和非线性建模，深度学习能够从大规模地

震 波 形 数 据 中 挖 掘 地 震 震 相 的 深 层 模 式（蒋 策 等 ， 
2024），相 较 于 传 统 方 法 展 现 出 更 强 的 适 应 性 和 鲁

棒 性（Mousavi and Beroza， 2023）. 在 反 方 位 角 评 估

任务中，深度学习方法通过端到端的学习方式能够

直接从复杂波形数据中提取特征，从而显著提升评

估 的 精 度 与 时 效 性 . 例 如 ，Mousavi and Beroza
（2020）提出了一种基于贝叶斯深度学习的方法，成

功实现了从单台站 P 波观测数据中估计近场地震的

反 方 位 角 ，该 方 法 不 仅 提 高 了 定 位 精 度 ，还 能 够 量

化结果的不确定性，为反方位角评估提供了新的技

术 路 径 .Lara et al.（2023）开 发 的 集 成 学 习 算 法 ，仅

需使用单台站 P 波到达后的前 3 s 波形数据即可快

速准确评估近场地震事件的反方位角，进一步展现

了该技术的应用潜力 . 张基（2023）通过集成卷积神

经 网 络（Convolutional Neural Network， CNN）、长

短期记忆网络（Long Short⁃Term Memory， LSTM）

和 残 差 模 块 ，构 建 了 反 方 位 角 评 估 模 型 AziNet，该

模 型 在 四 川 地 区 小 震 数 据 测 试 中 的 平 均 绝 对 误 差
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约 为 22°. 因 此 ，尽 管 深 度 学 习 在 反 方 位 角 评 估 中

取 得 了 显 著 进 展 ，但 当 前 仍 有 较 大 的 探 索 空 间 和

研 究 价 值 . 例 如 ，面 波 和 全 波 形 信 息 蕴 含 了 更 丰

富 的 震 源 特 性 及 传 播 路 径 细 节 ，然 而 ，针 对 这 些

信 息 进 行 深 度 学 习 分 析 的 相 关 研 究 却 相 对 匮 乏 .
此 外 ，上 述 关 于 反 方 位 角 的 研 究 多 集 中 于 特 定 区

域 的 小 规 模 数 据 集 ，模 型 的 泛 化 性 能 仍 有 待 探 索 .
本研究利用 2014 年至 2024 年间中国数字地震

台网（China Digital Seismograph Network）记录的强

震 数 据 ，分 别 采 用 标 准 CNN 和 基 于 WaveNet（van 
den Oord et al.， 2016）的深度学习模型，系统地比较

了 P 波、面波及全波形输入在反方位角估计中的性

能表现 . 全球地震监测台网开源数据的泛化测试结

果 表 明 ，相 比 于 传 统 偏 振 分 析 方 法 ，深 度 学 习 显 著

提升了反方位角估计的稳定性和准确性 . 鉴于深度

学习方法的通用性和灵活性，未来该模型可进一步

应用于海底或行星地震仪的方位评估，为极端环境

下 的 地 震 监 测 及 仪 器 校 准 提 供 全 新 的 技 术 路 径 .

1 数据与方法  

1.1　地震波形数据　

本 研 究 旨 在 测 试 中 国 大 陆 地 震 台 网 对 地 震 反

方 位 角 估 计 的 性 能 表 现 ，重 点 关 注 强 震 事 件 . 研 究

数 据 主 要 来 源 于 2014 年 1 月 1 日 至 2024 年 1 月 1
日 期 间 的 三 分 量 地 震 波 形（郑 秀 芬 等 ，2009）.
Deng et al.（2025）基 于 远 场 P 波 偏 振 方 法 对 中 国

数 字 地 震 台 网 1 056 个 宽 频 带 地 震 台 站 的 仪 器 方

位角进行了评估，结果表明，约 66% 的地震计方位

角 偏 差 小 于 3°，与 地 理 北 向 基 本 一 致 . 为 确 保 反 方

位角评估的精度和可靠性，本研究仅选取仪器方位

角 偏 差 最 小 的 60 个 台 站（图 1）的 波 形 作 为 数 据 .
考 虑 到 反 方 位 角 对 近 震 预 警 和 远 震 结 构 探

测（如 接 收 函 数 和 各 向 异 性）均 具 有 重 要 意 义 ，本

研 究 以 30°N 和 100°E 为 参 考 中 心 点 ，选 取 震 中 距

范 围 为 0°~130°、震 级 大 于 6.0 级 的 强 震 事 件 进 行

研 究 . 基 于 IRIS（Incorporated Research Institutions 
for Seismology）数 据 中 心 提 供 的 地 震 目 录 ，共 筛

选 出 1 417 个 满 足 条 件 的 强 震 事 件 . 这 些 事 件 空

间 分 布 均 匀 ，有 效 覆 盖 了 西 太 平 洋 俯 冲 带 、东 亚

环 形 俯 冲 带 、特 提 斯 构 造 带 、印 度 洋 中 脊 和 大 西

洋 中 脊 等 全 球 主 要 地 震 活 跃 区 域（图 1）. 为 保 证

数 据 质 量 与 一 致 性 ，本 研 究 仅 选 取 包 含 完 整 三 分

量（东 西 向 、南 北 向 和 垂 直 分 量）记 录 的 波 形 数

据 ，并 对 所 有 波 形 进 行 统 一 处 理 ：采 样 率 标 准 化 为

100 Hz，波 形 起 始 时 间 设 定 为 初 至 波 到 时 前 50 s，

记 录 时 长 统 一 为 5 000 s，以 涵 盖 完 整 地 震 信 号 .
数 据 预 处 理 为 构 建 高 质 量 的 反 方 位 角 评 估 模

型训练数据集，本研究对所有地震波形数据进行了

系 统 化 的 预 处 理 . 首 先 对 波 形 数 据 进 行 线 性 去 趋

势 和 去 均 值 处 理 ，以 消 除 数 据 中 的 长 周 期 漂 移 . 随

后应用带通滤波（0.02~0.5 Hz）消除高频噪声和长

周期干扰，并进行 1% 的锥形窗处理（taper）以减少

边 缘 效 应 . 所 有 波 形 均 重 采 样 至 1 Hz 以 统 一 数 据

格 式 并 降 低 计 算 复 杂 度 . 鉴 于 本 研 究 采 用 单 台 站

评估且波形已归一化，预处理阶段未对仪器响应进

行 单 独 校 正 . 基 于 地 震 波 偏 振 特 性 ，本 研 究 构 建 了

三种不同窗口的输入数据集（图 2）：（1）P 波窗口数

据 ：截 取 P 波 到 时 前 5 s 至 后 10 s 的 15 s 波 形 ，主 要

反 映 地 震 初 至 波 的 偏 振 特 性 ；（2）面 波 窗 口 数 据 ：

基 于 震 中 距 和 4.5 km/s 的 面 波 理 论 速 度 计 算 面 波

到 时 窗 口 ，截 取 900 s 面 波 记 录 ，重 点 表 征 面 波 偏

振 信 息 ；（3）全 波 形 数 据 ：提 取 长 度 为 4 800 s 的 完

整 波 形 ，包 含 P 波 、S 波 及 面 波 等 全 部 震 相 信 息 .
在此基础上，以理论 P 波到时为参考点，选取 P

波到时前 20 s 至前 5 s 作为噪声窗口，P 波到时前 5 s
至后 10 s 作为信号窗口，计算了每个地震事件的 P
波信噪比（SNR）. 然后，将三分量波形从 miniseed 格

式转换为 NumPy 矩阵，并采用最大‒最小值归一化

图 1　研究选取的地震台站与地震事件的空间分布

Fig.1　Spatial distribution of seismic stations and earthquake 
events in the study
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方 法 将 振 幅 映 射 至［-1，1］区 间 作 为 模 型 输 入 特

征 . 为避免角度值在 0°和 360°之间的不连续性以及

周期性问题，本研究将反方位角转换为正弦和余弦

两 个 分 量 组 成 的 单 位 向 量 ，作 为 模 型 预 测 目 标 . 数

据 集 按 照 7∶1.5∶1.5 的 比 例 划 分 为 训 练 集 、验 证 集

和 测 试 集 ，同 时 保 留 震 中 距 、震 级 和 P 波 信 噪 比 等

辅 助 特 征 信 息 ，为 后 续 结 果 分 析 提 供 支 持 . 通 过 以

上 预 处 理 流 程 ，最 终 分 别 获 得 了 58 107 个 P 波 样

本、61 048 个面波样本和 61 583 个全波形样本的高

质 量 数 据 集 ，每 个 样 本 均 包 含 三 分 量 波 形 数 据 .
为验证模型的泛化能力，本研究额外引入全球

地 震 监 测 台 网（Global Seismic Network， GSN）位

于中国大陆的台站（IC 台网）波形数据作为独立测

试 集（图 1）. 独 立 测 试 集 的 时 间 范 围 以 及 地 震 目 录

与 训 练 数 据 保 持 一 致 . 通 过 比 较 中 国 数 字 地 震 台

网和全球地震监测台网的模型表现，能够更好地评

估 深 度 学 习 模 型 的 鲁 棒 性 和 适 应 性 ，为 研 究 成 果

的 推 广 应 用 提 供 科 学 依 据 ，具 体 流 程 如 图 3 所 示 .
1.2　数据增强　

本 研 究 采 用 三 种 数 据 增 强 策 略 对 地 震 波 形 数

据进行处理，以提升模型对复杂地震信号的泛化能

力 和 鲁 棒 性 . 方 法 如 下 ：（1）随 机 噪 声 注 入 ：在 三 分

量波形中加入 6% 幅度的随机高斯白噪声，模拟真

实 地 震 观 测 中 普 遍 存 在 的 环 境 噪 声 和 仪 器 噪 声 干

扰 .（2）时间轴平移：在±100 个采样点范围内对波形

进行随机循环移位，模拟地震波理论到时的不确定

性，增强模型对震相识别的时间鲁棒性 .（3）动态振

幅 缩 放 ：对 波 形 振 幅 施 加 ±20% 的 随 机 缩 放 因 子 ，

通过线性插值调整信号长度后截取或补零，模拟由

震 源 深 度 、传 播 路 径 差 异 引 起 的 振 幅 变 化 ，使 模 型

能够适应不同震级和传播衰减条件下的波形特征 .
为避免过度增强导致特征失真并确保数据多样

性，采用概率触发机制，以 50% 的独立概率灵活应用

上述增强方法，使模型更好地适应实际地震观测中复

杂多变的数据特征 . 所有增强操作均在训练阶段实

时执行，不修改原始数据存储，提升数据利用效率 .
1.3　深度学习模型架构　

1.3.1　CNN 基线模型　基于 CNN 在噪声环境下检

测地震波相位的稳健性（Ross et al.， 2018），本研究

首先设计了一维 CNN 模型对地震波形时间序列进

行 处 理（图 4a）. 该 模 型 采 用 三 层 级 联 卷 积 架 构 ：第

一 层 将 3 通 道 输 入 转 换 为 64 通 道 特 征 ，第 二 、第 三

层 则 分 别 将 特 征 维 度 扩 展 至 128 和 256 通 道 ，所 有

卷积层均使用长度为 25 的一维卷积核以有效捕获

长 程 时 序 依 赖 . 每 层 卷 积 后 配 备 批 归 一 化（Batch 
Normalization）和 ReLU 激活函数，显著增强训练稳

定 性 和 非 线 性 表 达 能 力 ，并 通 过 最 大 池 化（ker⁃
nel_size=2， stride=2）逐步降低时间分辨率以扩大

感受野 . 随后输出表示地震反方位角的二维单位向

量，由正弦和余弦分量组成 . 为防止过拟合，模型在

图 2　单台三分量地震波形以及相应的震相信息时间窗口

Fig.2　Single-station three-component seismic waveforms 
and earthquake phase windows

图 3　基于深度学习的单台地震反方位角评估整体流程

Fig.3　Overall workflow for single-station back-azimuth esti⁃
mation using deep learning
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全 连 接 层 前 引 入 50% 概 率 的 Dropout 正 则 化 .
1.3.2　 基 于 WaveNet 的 时 序 特 征 增 强 模 型　 考 虑

到地震波形与音频信号在时序特性上的相似性，为

更好地捕获地震波形中的长距离依赖关系，本研究

借鉴音频信号处理领域的 WaveNet 架构，并将其应

用于地震反方位角评估任务 . 本文的目标是整段波

形 的 方 向 回 归 而 非 自 回 归 生 成 ，因 此 采 用 非 因 果

（non causal）扩张卷积，通过对称填充同时利用时间

序 列 两 侧 的 信 息 . 不 同 于 传 统 CNN 通 过 下 采 样 扩

大 感 受 野 的 策 略 ，WaveNet 保 持 全 时 间 分 辨 率 ，避

免了对长周期面波和转换震相等低频信息的损失 .
WaveNet 模 型 以 扩 张 卷 积（Dilated Convolution）为

核 心 ，通 过 指 数 增 长 的 感 受 野 高 效 覆 盖 长 序 列 信

息 ，并 结 合 残 差 连 接 机 制 确 保 梯 度 有 效 传 播 ，成 功

解 决 深 层 网 络 训 练 困 难 问 题（van den Oord et al.， 
2016）. 该模型结构始于一个初始 1×1 卷积层，将 3
通道输入映射至 128 通道特征空间，随后串联 10 个

WaveNet 残差块（图 4b）. 每个残差块内采用扩张卷

积（kernel_size=5），扩 张 率 从 2⁰到 2⁹指 数 递 增 ，显

著扩大模型感受野，从而实现对远距离时序依赖关

系 的 精 确 感 知 . 模 型 输 出 端 通 过 1×1 卷 积 结 合 全

局 平 均 池 化 ，生 成 表 示 反 方 位 角 的 2 维 单 位 向 量 .
WaveNet 模 型 的 训 练 和 推 理 的 计 算 复 杂 度 主

要 源 于 前 向 传 播 和 反 向 传 播 过 程 . 对 于 训 练 阶 段 ，

图 4　基于传统 CNN 的深度学习模型（a）与基于 WaveNet 的深度学习模型(b)
Fig.4　Deep learning model based on traditional CNN (a) and deep learning model based on WaveNet (b)
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输入数据维度为 D train ∈ R ( M × 3 × T )，其中 M 为训练样

本数，T 为时间序列长度 . 模型结构包含 3 个主要部

分 ：初 始 1×1 卷 积 层 ，复 杂 度 为 O ( M × 3 × 128 ×
T ) = O ( M × T )；随 后 是 B = 10 个 WaveNet 残 差

块 ，每 个 包 含 扩 张 卷 积 和 1 × 1 卷 积 ，处 理 F = 128
个 特 征 通 道 ，复 杂 度 为 O ( B × M × F 2 × T × K )，
其中 K = 5 为卷积核大小；最后是输出层，复杂度为

O ( M × F × T ). 总 体 训 练 时 间 复 杂 度 为 O ( E ×
B × M × F 2 × T × K )，其中 E 为训练轮数；推理阶

段 复 杂 度 为 O ( B × N test × F 2 × T × K )，其 中 N test

为测试样本数量 .WaveNet 架构的优势在于通过扩

张卷积策略，模型能够在保持参数量可控的前提下

指 数 级 扩 展 感 受 野 范 围 . 对 于 长 度 为 T 的 输 入 序

列 ，B 个 残 差 块 的 堆 叠 可 以 实 现 高 达 ( K - 1 )×
∑i = 0

B - 1 2i 的 感 受 野 ，这 一 特 性 使 其 特 别 适 合 处 理

包 含 多 种 震 相 信 息 的 长 时 间 序 列 地 震 波 形 数 据 .
1.4　模型训练与实现细节　

在 模 型 训 练 过 程 中 ，采 用 批 量 大 小（batch 
size）为 64 的 小 批 量 梯 度 下 降 法 ，训 练 总 轮 次（ep⁃
ochs）为 120 轮 . 模 型 优 化 采 用 均 方 误 差（Mean 
Squared Error， MSE）损 失 函 数 ：

          LMSE = 1
N ∑i = 1

N  yi - yi

2
， （1）

其 中 yi 表 示 真 实 的 反 方 位 角 单 位 向 量 ，yi 表 示 模

型 预 测 的 单 位 向 量 ，N 为 批 次 样 本 数 量 .MSE 损 失

函 数 直 接 优 化 预 测 方 向 与 真 实 方 向 的 欧 氏 距 离 ，

确 保 模 型 准 确 捕 捉 地 震 反 方 位 角 信 息 . 训 练 过 程

使 用 Adam 优 化 器 ，初 始 学 习 率 设 置 为 0.001，权 重

衰 减 系 数 为 10-5. 为 防 止 过 拟 合 并 提 高 模 型 泛 化

能 力 ，采 用 学 习 率 自 适 应 调 整 策 略 ，当 验 证 损 失

连 续 3 轮 未 改 善 时 ，学 习 率 自 动 降 低 50%.
本 研 究 的 深 度 学 习 框 架 基 于 PyTorch 2.5.1

实 现 ，充 分 利 用 其 动 态 计 算 图 和 GPU 加 速 能 力 .
所 有 模 型 训 练 均 在 配 备 NVIDIA GeForce RTX 
3090 GPU （24GB VRAM）的 工 作 站 上 进 行 ，模 型

训 练 采 用 CUDA 12.4 进 行 GPU 加 速 ，显 著 缩 短 了

训 练 时 间 . 在 此 硬 件 环 境 下 ，全 波 形 输 入 的 CNN
和 WaveNet 模 型 的 总 参 数 量 分 别 为 79 674 882 和

1 970 690. 单 轮 训 练 平 均 耗 时 分 别 约 45 s 和     
120 s，其 他 参 数 详 见 表 1. 整 个 训 练 过 程 中 ，保 存

验 证 损 失 最 低 的 模 型 权 重 作 为 最 终 模 型 .
1.5　模型评估指标　

为全面评估 CNN 和 WaveNet 两种模型在地震

反方位角预测中的性能，本研究采用多种定量评估

指 标 . 首 先 ，计 算 模 型 预 测 值 与 真 实 值 之 间 的 平 均

偏差和方差，用于衡量模型预测的系统误差和离散

程度 . 平均偏差反映了模型预测的整体趋势是否存

在系统性偏移，而方差则表征了预测结果的稳定性 .
其 次 ，采 用 决 定 系 数（Coefficient of Determination，

R2）作为拟合优度评估模型预测精度的整体水平：

          R2 = 1 -
∑i = 1

M  yi - yi

2

∑i = 1
M  yi - ȳ

2 ， （2）

其中 yi 表示模型预测的反方位角单位向量，yi 表示

真 实 的 反 方 位 角 单 位 向 量 ，ȳ 表 示 所 有 真 实 单 位 向

量的均值，M 为样本总数 .R2 值越接近 1，表明模型

预 测 越 接 近 真 实 值 ；当 R2 接 近 0 或 为 负 值 时 ，则 表

明模型性能不如简单地使用均值预测 . 该指标通过

对比模型预测误差与数据固有离散程度的比值，能

够 有 效 量 化 模 型 的 总 体 预 测 能 力 . 此 外 ，考 虑 到 地

震学实际应用中对反方位角精度的需求，本研究特

别 引 入 了 10° 误 差 范 围 内 的 推 理 成 功 率（Success 
Rate within 10°）作为关键评估指标 . 该指标计算模

型预测的反方位角与真实值偏差不超过 10°的样本

比例，直观反映了模型在实际应用场景中的可靠性 .

2 结果与分析  

2.1　模型性能对比　

表 1 展 示 了 CNN 和 WaveNet 两 种 深 度 学 习 模

型在不同输入类型（P 波、面波和全波形）下的性能对

比 . 与 Mousavi and Beroza（2020）在近震 P 波上取得

的 R2≈0.87 相比，本文 WaveNet 在远震 P 波输入下

已达到同等水平 . 同时，相较张基（2023）以 60 s 近震

波形训练的 AziNet（平均绝对偏差≈22°），本文模型

的平均偏差控制具备精度优势 . 当进一步融入面波

和全波形信息时，R2 分别提升至 0.98 和 0.99，充分体

现了多震相信息对地震反方位角估计的显著增益 .
对 于 P 波 输 入 ，CNN（图 5a~5c）和 WaveNet

（图 6a~6c）的平均偏差分别为-0.34°和-0.26°，方

差 为 28.97 和 25.33，R²值 分 别 为 0.83 和 0.87，10°误
差范围内的成功率分别为 0.559 和 0.580. 这表明仅

用 P 波信息时模型性能有限，但 WaveNet 在各项指

标上略优于 CNN. 面波输入显著提升了模型性能，

CNN（图 5d~5f）和 WaveNet（图 6d~6f）的平均偏差

减 至 -0.05°和 0.09°，方 差 降 至 8.86 和 9.77，R²值 升

至 0.98，成功率分别达 0.915 和 0.929，表明面波的传
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播 路 径 和 震 源 信 息 对 反 方 位 角 估 计 至 关 重 要 . 全

波 形 输 入 表 现 最 佳 ，CNN（图 5g~5i）和 WaveNet
（图 6g~6i）的 平 均 偏 差 分 别 为 0.08°和 0.04°，方 差

进 一 步 降 至 7.65 和 6.24，R²值 均 达 0.99，成 功 率 分

别 提 升 至 0.968 和 0.988. 全 波 形 融 合 了 P 波 初 至 震

相 、面 波 强 振 幅 特 征 及 多 种 转 换 震 相 ，提 供 多 维

度 、多 尺 度 信 息 ，使 模 型 更 全 面 地 捕 捉 地 震 波 传

播 特 征 ，从 而 显 著 降 低 误 差 并 提 升 预 测 稳 定 性 .
针对 P 波预测效果相对较差的现象，进行了深

入的影响因素分析 . 图 7 对比了 CNN 与 WaveNet 两

种模型在 P 波信噪比、震级和震中距三个关键参数

上的误差分布情况，特别聚焦于 30°偏差阈值的分布

规律 . 从 P 波信噪比和震级分布直方图来看，偏差大

于 30°和小于 30°的样本分布模式几乎无显著差异，

表 明 单 纯 的 信 噪 比 高 低 或 震 级 大 小 并 非 导 致 大 误

差 预 测 的 主 导 因 素 . 然 而 ，震 中 距 分 布 图 显 示 出 明

显的规律性：随着震中距增加，尤其超过 80°后，误差

大于 30°的样本比例显著上升 . 该区间对应 P 波逐渐

进入并穿越地核边界附近的影区，直达波能量因低

速 层 及 核 幔 界 面 的 强 烈 折 射 与 绕 射 效 应 而 显 著 衰

减（Lehmann， 1958），进而降低了模型的预测精度 .
此外，CNN 和 WaveNet 模型中误差大于 30°的样本

分布模式高度一致，表明 P 波模型性能的瓶颈主要

源于数据质量而非模型结构差异 . 由此推测 P 波预

图 5　CNN 模型对 P 波、面波和全波形输入的测试结果

Fig.5　Testing results of the CNN model for P-wave, surface wave, and full waveform inputs

表 1　模型训练与测试结果统计

Table 1　Statistics of model training and testing results

输入

P 波

面波

全波形

模型

CNN

WaveNet

CNN

WaveNet

CNN
WaveNet

参数量

64 450

33 346

15 711 746

198 146

79 674 882
1 970 690

训练时长(s)
Nvidia RTX 3090

6×120

7×120

11.4×120

13.5×120

45×120
121×120

单次推理平均时间(s)
MAC M1

0.000 1

0.000 5

0.001 7

0.032 9

0.006 2
0.778 1

平均偏差

‒0.34

‒0.26

‒0.05

0.09

0.08
0.04

平均方差

28.97

25.33

8.86

9.77

7.65
6.24

R2

0.83

0.87

0.98

0.98

0.99
0.99

成功率 10°误差

0.559

0.580

0.915

0.929

0.968
0.988
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测效果较差的主要原因与 P 波信号的低信噪比以及

远震中地球内部结构引起的影区效应密切相关 .
虽然 CNN 和 WaveNet 在全波形输入条件下表

现相近，但 WaveNet 模型在方差和成功率指标上表

现 更 优 ，同 时 模 型 参 数 量 远 低 于 CNN 模 型（表 1）.

图 8 展示了 CNN 和 WaveNet 在全波形输入下的损

失 变 化 趋 势 . 两 者 训 练 和 验 证 损 失 在 初 期 快 速 下

降，约 20 轮后趋于平稳 .CNN 损失在 10~40 轮间波

动 较 大 ，最 终 稳 定 在 0.02 左 右 ，表 明 学 习 复 杂 震 相

信息时稳定性不足 .WaveNet 损失下降更平滑，波动

图 7　CNN 与 WaveNet 模型基于 P 波输入的反方位角预测误差影响因素分析

Fig.7　Analysis of influencing factors on back-azimuth prediction errors of CNN and WaveNet models based on P-wave input

图 6　WaveNet 模型对 P 波、面波和全波形输入的测试结果

Fig.6　Testing results of the WaveNet model for P-wave, surface wave, and full waveform inputs
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小，最终稳定在 0.01 左右，验证损失更低，显示更强

的泛化能力和稳定性 . 这与其高效结构和较小参数

量相符，证明 WaveNet 在处理全波形数据时更具优

势 .CNN 模型因采用深层卷积和全连接层处理全波

形 数 据 ，导 致 参 数 量 较 大 ，而 WaveNet 通 过 扩 张 卷

积 和 残 差 连 接 优 化 了 参 数 效 率 . 然 而 ，由 于

WaveNet 采 用 扩 张 卷 积 和 残 差 连 接 设 计 以 捕 捉 长

期 依 赖 关 系 ，其 训 练 和 推 理 时 间 较 长 ，在 计 算 效 率

上 稍 逊 . 尽 管 如 此 ，WaveNet 在 全 波 形 输 入 下 的 预

测精度更高，使其在精度优先的场景中具有显著优

势 . 此外，从实际部署角度考虑，在 Mac M1 芯片的

CPU 环境下进行了测试，单次推理时间约为 0.78 s，

结果表明该延迟仍处于预警系统的可接受范围内，

说明 WaveNet 在保持精度的同时具备应用潜力 .
2.2　WaveNet 消融实验　

为探究 WaveNet 模型性能的关键因素，本研究

通过消融实验分析了残差块数量、数据增强策略和

学习率调度器的影响 . 实验设置包括：（1）调整残差

块 数 量（block=5 和 block=12）；（2）分 别 评 估 单 一

数据增强策略（仅时间平移、仅噪声增强、仅振幅缩

放）或完全移除数据增强；（3）移除学习率调度器 . 实

验 基 于 面 波 输 入 数 据 集（900 s 窗 口），训 练 和 评 估

流 程 遵 循 2.5 节 中 的 方 法 ，采 用 平 均 偏 差 、方 差 、R2

和 10° 误 差 范 围 内 的 推 理 成 功 率 作 为 评 估 指 标 .
消 融 实 验 结 果 表 明（表 2），WaveNet 模 型 性 能

受 多 个 关 键 因 素 影 响 ，其 中 网 络 深 度 最 为 关 键 . 将

残 差 块 数 从 5 增 至 12 显 著 提 升 了 性 能（成 功 率 由

0.901 5 提 高 至 0.932 6，方 差 降 低 至 10.87），证 实 更

深 层 网 络 结 构 对 捕 捉 面 波 长 时 序 特 征 具 有 显 著 优

势 . 数据增强策略具有一定影响，其中振幅缩放（成

功 率 0.925 4）较 时 间 平 移（0.918 8）和 噪 声 增 强

（0.913 5）表 现 更 佳 ，而 完 全 移 除 数 据 增 强 则 导 致

性 能 下 降（成 功 率 0.907 9）. 学 习 率 调 度 器 对 训 练

稳 定 性 表 现 出 重 要 影 响 ，其 缺 失 导 致 平 均 偏 差 显

著 增 大（0.48°）且 成 功 率 降 至 最 低（0.880 9）.
2.3　泛化能力验证　

表 3展示了应用 WaveNet全波形模型对全球地震

监测台网中国大陆 10 个地震台站（IC 台网）的泛化测

试结果 .总体而言，模型在未训练过的独立数据集上表

现出色，平均 R2 值达 0.975，10°误差范围内的平均成

功率达 0.928 19，证实了模型具有较好的泛化能力 .
从 区 域 分 布 来 看 ，北 京（IC. BJT）、上 海（IC.

SSE）和敦煌（IC.ENH）等台站的成功率较高（分别

为 0.982 9、0.975 2 和 0.962 7），而 拉 萨（IC.LSA）和

乌鲁木齐（IC.WMQ）台站的成功率相对较低（分别

为 0.78 和 0.871 3）. 这 种 差 异 可 能 与 区 域 地 质 构 造

复杂性有关 . 拉萨和乌鲁木齐台站分别位于青藏高

原和天山构造带，特殊的深部结构可能导致波形传

播 路 径 更 为 复 杂 ，增 加 了 反 方 位 角 估 计 的 难 度

（Xiao et al.， 2023）. 此外，本研究的训练数据集所覆

表 2　WaveNet 面波输入消融实验结果统计

Table 2　Statistics of the ablation experiment results for sur⁃
face wave input in the WaveNet model

实验设置

完整 WaveNet
残差块数=5

残差块数=12
仅时间平移

仅噪声增强

仅振幅缩放

无数据增强

无学习率调度器

平均偏差

0.09
‒0.09
‒0.22
‒0.19
‒0.14
‒0.15
‒0.19
0.48

方差

9.77
14.38
10.87
11.24
12.04
11.66
11.87
12.04

R2

0.98
0.95
0.97
0.97
0.97
0.97
0.97
0.97

成功率(10°)
0.928 9
0.901 5
0.932 6
0.918 8
0.913 5
0.925 4
0.907 9
0.880 9

图 8　CNN（a）与 WaveNet（b）模型全波形输入损失函数曲线

Fig.8　Full waveform input loss function curves of the CNN (a) and WaveNet (b) models
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盖 的 台 站 主 要 分 布 在 100°E 以 东 地 区（图 2），缺 乏

来 自 西 部 构 造 带 的 样 本 ，也 可 能 是 造 成 IC.LSA 和

IC.WMQ 等 台 站 泛 化 性 能 偏 低 的 重 要 原 因 .
总 体 而 言 ，各 台 站 的 R2 值 普 遍 较 高（0.95~

0.99），即 使 对 于 方 差 较 大 的 台 站 ，模 型 仍 保 持

较 高 的 整 体 预 测 准 确 性 ，表 明 模 型 能 够 有 效 解

释 不 同 地 质 环 境 下 的 波 形 变 异 性 . 这 一 结 果 验

证 了 基 于 WaveNet 的 深 度 学 习 方 法 在 复 杂 地 震

环 境 下 的 适 应 性 和 鲁 棒 性 .
为评估模型在较小震级事件中的适用性，在北

京台（IC.BJT）补充测试了 5.0~5.9 级地震（图 9）. 结

果显示，随着震级降低，模型预测误差逐渐增大，且

偏差>30°的事件显著增多；当震级低于 5.5 级时，平

均 偏 差 和 方 差 均 快 速 上 升 . 该 现 象 与 远 震 体 波

（Lin et al.， 2025）和 面 波（Fu et al.， 2019）研 究 中

的 震 级 选 取 阈 值 一 致 ，说 明 5.5 级 以 上 地 震 具 备

更 高 的 体 波 和 面 波 信 噪 比 ，可 完 整 保 留 方 位 角 信

息 . 结 果 表 明 ，WaveNet 能 够 有 效 学 习 震 相 中 的

方 向 特 征 ，其 预 测 精 度 取 决 于 输 入 波 形 方 位 信 息

的 清 晰 程 度 . 因 此 ，实 际 应 用 中 建 议 优 先 使 用 震

级 ≥5.5 级 的 事 件 进 行 单 台 反 方 位 角 估 计 .
2.4　深度学习方法与传统偏振分析的性能对比　

为 了 更 全 面 地 评 价 本 研 究 提 出 的 深 度 学 习

模 型 的 性 能 ，使 用 IC 独 立 测 试 集 与 传 统 基 于 物

理 规 则 的 反 方 位 角 评 估 方 法 DLOPy（Doran and 
Laske， 2017）进 行 了 对 比 .DLOPy 通 过 重 复 测 量

远 震 面 波 不 同 频 率（20~100 s）的 偏 振 信 息 来 获

取 反 方 位 角 ，以 减 少 结 构 不 均 匀 性 引 起 的 偏 差 .
表 4 展示了基于 WaveNet 和全波形的深度学习

方法（AI）与传统偏振分析方法（DLOPy）在 IC 独立

测 试 集 上 的 对 比 结 果 . 从 整 体 来 看 ，深 度 学 习 方 法

将 平 均 系 统 绝 对 偏 差 从 3.68°降 低 至 1.52°，降 幅 约

58.70%；平均方差从 14.89°大幅减至 10.69°，降幅约

28.21%. 这 种 系 统 性 的 改 进 表 明 ，深 度 学 习 方 法 能

够 更 有 效 地 处 理 独 立 测 试 集 中 地 震 波 形 的 复 杂 信

息 ，显 著 提 高 反 方 位 角 估 计 的 稳 定 性 . 在 误 差 分 布

方面，两种方法的平均偏差虽然在部分台站上相近

（如 IC.BJT 和 IC.QIZ），但在多数台站上 AI 方法展

现出更小的系统偏差 .R2 值的比较表明，AI 方法与

传统方法在独立测试集上的表现均较高（R²均超过

0.95）. 然而，AI 方法在多数台站表现更优，其中 IC.
ENH、IC.KMI、IC.SSE 三 个 台 站 的 R²值 均 提 升 了

表 3　模型泛化能力测试结果统计

Table 3　Statistics of model generalization capability test  
results

台站

IC.BJT
IC.ENH
IC.HIA
IC.KMI
IC.LSA
IC.MDJ
IC.QIZ
IC.SSE

IC.WMQ
IC.XAN

平均

区域

北京

恩施

呼伦贝尔

昆明

拉萨

牡丹江

琼中

上海

乌鲁木齐

西安

事件

数

1 112
1 072
1 107
1 054
915

1 058
1 111
1 047
1 041
1 042

平均

偏差

‒0.78
1.91
0.94
1.85
4.45
‒1.5
1.33
‒0.8
1.5

‒0.13

方差

8.47
10.65
8.47

11.18
15.57
9.24

11.92
7.37

12.36
11.67

R2

0.98
0.98
0.98
0.98
0.95
0.98
0.98
0.99
0.96
0.97

0.975

成功率

(10°)
0.982 9
0.962 7
0.955 7
0.904 2
0.780 0
0.957 5
0.943 3
0.975 2
0.871 3
0.949 1

0.928 19

图 9　WaveNet 模型对 IC.BJT 台站更小震级事件的反方位角预测误差分布

Fig.9　Influencing factors on back-azimuth prediction errors of WaveNet model for smaller magnitude earthquake events at IC.
BJT station
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0.03. 此外，在独立测试集的有效事件数量上，传统

DLOPy 方法明显少于 AI 方法 . 以北京站（IC.BJT）

为例，DLOPy 方法仅处理了 695 个事件，而 AI 方法

成功处理了 1 112 个事件，增幅约 60%. 这种差异主

要源于传统方法依赖基于互相关系数的质量控制，

而深度学习方法能够从噪声较大或信号复杂的数据

中提取有用特征，大幅提高了测试数据集的利用率 .
为了直观展示两种方法的性能差异，图 10 呈现

了两种方法在 10 个 IC 台站独立测试数据集上的角

度误差分布对比 . 图中绿色小提琴图表示深度学习

方法的误差分布，仅包含 95% 置信区间内的数据，

避免极端值对分布宽度产生过度影响；粉色小提琴

图展示传统偏振方法的结果，仅统计互相关系数大

于 0.7 的 数 据 ，在 保 证 结 果 可 靠 性 的 同 时 保 留 尽 可

能 多 的 有 效 事 件 数 量（表 4）. 结 果 显 示 深 度 学 习 方

法在所有台站上都表现出明显更窄的误差分布，表

明其预测结果更为集中和稳定 . 特别是在 IC.ENH、

IC.KMI 和 IC.XAN 等台站，传统方法的误差分布明

显 更 宽 ，且 存 在 较 长 的 尾 部 ，显 示 其 预 测 结 果 中 包

含 较 多 的 极 端 误 差 值 . 此 外 ，深 度 学 习 方 法 的 平 均

误差（绿色圆点）更接近零线，表明其系统偏差更小 .

3 结论与展望  

基于 2014 年至 2024 年中国大陆测震台网记录的

1 417 个强震事件的三分量波形数据，本研究系统比

较了 CNN 与基于 WaveNet 的深度学习模型在 P 波、

面波及全波形输入下的反方位角评估性能 . 结果显

示，WaveNet 结合全波形输入在强震定位中表现出卓

越的精度与鲁棒性，泛化能力突出，且性能显著优于

传统偏振分析方法 DLOPy.WaveNet 通过扩张卷积

和残差连接设计有效捕捉地震波形的长期依赖关系，

图 10　WaveNet 和传统偏振方法在独立测试数据集上的角度误差分布对比

Fig.10　Comparison of angular error distributions between WaveNet and traditional polarization methods on the independent test 
dataset

WaveNet 选 取 全 波 形 输 入 的 推 理 结 果 . 传 统 面 波 偏 振 分 析 方 法 为 DLOPy，仅 统 计 互 相 关 系 数 >0.7 的 样 本 数 据 . 绿 色 小 提 琴 图 展 示 深 度

学 习 方 法 的 误 差 分 布 ，粉 色 小 提 琴 图 表 示 传 统 方 法 的 误 差 分 布 ，圆 点 标 记 平 均 误 差
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特别适合处理包含多种震相的全波形数据，能够应

对复杂地质环境及远震影区效应引起的信号衰减，

为单台地震定位提供了高精度、快速的解决方案 .
本 研 究 提 出 的 WaveNet 模 型 为 区 域 地 震 预 警

提 供 技 术 支 持 ，能 快 速 提 供 高 精 度 反 方 位 角 估 计 ，

尤 其 在 台 站 稀 疏 的 深 海 或 偏 远 山 区 弥 补 多 台 定 位

局 限 ，为 震 源 定 位 和 灾 害 响 应 争 取 关 键 时 间 . 模 型

在 全 球 地 震 监 测 台 网 的 泛 化 测 试 中 表 现 出 较 强 适

应 性 ，为 全 球 推 广 应 用 奠 定 了 基 础 . 虽 然 本 研 究 主

要 基 于 强 震 数 据 训 练 ，但 由 于 全 波 形 输 入 不 依 赖

震 相 拾 取 ，该 方 法 具 有 向 中 小 震 推 广 的 潜 力 ，可 用

于 单 台 仪 器 方 位 标 定 以 及 低 信 噪 比 事 件 的 快 速 定

位 ，在 极 端 环 境 地 震 监 测 中 具 有 广 阔 前 景 . 例 如 ，

深 海 地 震 仪 常 受 海 水 压 力 扰 动 和 仪 器 倾 斜 影

响 ，传 统 方 法 难 以 准 确 估 计 反 方 位 角 ，而 全 波 形

分 析 可 有 效 提 取 复 杂 震 相 特 征 ，提 升 定 位 精 度 .
同 样 ，在 火 星 、月 球 等 行 星 地 震 监 测 中 ，由 于 台

站 数 量 极 为 有 限 ，单 台 定 位 具 有 重 要 应 用 前 景 .
尽 管 取 得 一 定 认 识 ，本 研 究 仍 存 在 局 限 性 .

例 如 ，拉 萨 和 乌 鲁 木 齐 台 站 受 复 杂 地 质 构 造 影

响 ，预 测 偏 差 相 对 较 大 ，可 能 因 训 练 数 据 未 充 分

覆 盖 复 杂 传 播 路 径 . 未 来 可 引 入 小 震 数 据 、模 拟

波 形 或 跨 区 域 数 据 集 ，增 强 模 型 泛 化 能 力 . 同

时 ，方 位 角 集 中 分 布 可 能 导 致 模 型 对 稀 疏 角 度

预 测 不 足 ，可 通 过 旋 转 波 形 或 合 成 数 据 生 成 均

匀 分 布 样 本 ，并 结 合 贝 叶 斯 方 法 量 化 不 确 定

性 ，提 升 可 靠 性 . 此 外 ，尽 管 WaveNet 参 数 量 较

低 ，但 在 资 源 受 限 的 边 缘 设 备 上 计 算 需 求 仍 较

高 . 未 来 可 通 过 模 型 剪 枝 、量 化 或 知 识 蒸 馏 降 低 复

杂 度 ，优 化 推 理 速 度 ，满 足 毫 秒 级 实 时 监 测 需 求 .
致谢：感谢中国地震局地球物理研究所地震科

学国际数据中心为本研究提供地震波形数据！
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