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Abstract: Earthquake location is fundamental to both early warning systems and studies of the Earth’s deep structure, yet its
accuracy remains challenging to be improved. Using three-component waveform data from the China National Seismic Network,
this study develops a single-station back-azimuth estimation method based on deep learning. We compare the performance of a
standard convolutional neural network with that of a WaveNet architecture under three input settings: P-wave only, surface-wave
only, and full-waveform input. Results show that WaveNet combined with full-waveform input performs best, benefiting from
dilated convolutions and residual connections that enhance its ability to extract long-range temporal features. The model achieves

an average back-azimuth deviation of only 0.04°, with a coefficient of determination (R?) of 0.99. Independent tests demonstrate
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strong generalization capability, with the mean absolute deviation and variance reduced by 58.70% and 28.21%, respectively,

compared with the traditional surface-wave polarization method. The findings indicate that deep learning with full-waveform

input can substantially improve single-station location accuracy, offering effective technical support for earthquake early warning

and seismic monitoring in challenging environments.
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Fig.5 Testing results of the CNN model for P-wave, surface wave, and full waveform inputs
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Fig.7 Analysis of influencing factors on back-azimuth prediction errors of CNN and WaveNet models based on P-wave input
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