基于应变特性的土工格栅加筋珊瑚砂超静孔压发展模型

周林1,陈建峰1*,朱艳2

1. 同济大学土木工程学院地下建筑与工程系,上海 200092

2. 中船第九设计研究院工程有限公司,上海 200090

摘 要:地震荷载下珊瑚砂中超静孔压增长,直至液化,是导致结构破坏的关键因素。本文开展了一系列不排水动三 轴试验,研究土工格栅层数、相对密实度 *D*_r和循环应力比 CSR 对加筋珊瑚砂超静孔压和轴向应变发展特性的影响。试 验结果表明:土工格栅加筋及增加格栅层数可减小珊瑚砂中超静孔压和轴向应变发展速率,提高珊瑚砂抗液化强度。 在相同循环振次比下,加筋珊瑚砂中超静孔压发展远高于硅质砂;随着 CSR 的增加,加筋珊瑚砂超静孔压发展曲线逐 渐由 *S* 型过渡到双曲线型,而经典的 Seed 孔压应力模型难以描述该种孔压发展趋势变化的特性。提出了基于应变特性 的加筋珊瑚砂超静孔压发展模型,该模型可较好地预测不同 *D*_r和 CSR 下加筋珊瑚砂超静孔压发展趋势,可为我国南海 珊瑚砂岛礁区基础设施抗震设计和基于有效应力的稳定性分析提供理论依据。 关键词:珊瑚砂;土工格栅加筋;液化;超静孔压;轴向应变

中图分类号: P642

收稿日期: 2025-02-16

Development model of excess pore pressure for geogrid reinforced coral sand based on strain characteristics

Zhou Lin¹, Chen Jianfeng^{*1}, Zhu Yan²

Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
China Shipbuilding NDRI Engineering Co., LTD, Shanghai 200090, China

Abstract: The accumulation of excess pore pressure in coral sand under seismic loading until liquefaction is a key factor leading to structural damage. A series of undrained cyclic triaxial tests were conducted in this study to investigate the effects of geogrid reinforcement layer, relative density (D_r) and cyclic stress ratio (CSR) on the development of excess pore pressure and axial strain in reinforced coral sand. The results indicate that geogrid reinforcement as well as an increase in the number of geogrid layers reduce the development rate of excess pore pressure and axial strain, thereby improving the liquefaction resistance of coral sand. The pore pressure of coral sand is much higher than that of siliceous sand under the same cyclic vibration ratio, and the pore pressure development curve of reinforced coral sand gradually transitions from an *S*-type to a hyperbolic type with the increase of cyclic stress ratio, thus the classic Seed pore pressure stress model is difficult to describe its pore pressure development trend. Based on the above findings, a strain-based excess pore pressure development model for geogrid-reinforced coral sand under different D_r and CSR, which provides a theoretical basis for the seismic design of infrastructure and stability analysis using effective stress in coral sand island reef area of the South China Sea.

Key words: coral sand; geogrid reinforcement; liquefaction; excess pore pressure; axial strain.

基金项目:中央高校基本科研业务费专项资金资助(No. 22120230302)

作者简介:周林 (1995-),男,博士研究生,从事土工合成材料加筋土结构动力特性研究.E-mail: 2111341@tongji.edu.cn. ORCID: 0009-0004-4825-3880. *通讯作者:陈建峰,教授,主要从事地质工程方向研究.E-mail: jf_chen@tongji.edu.cn. ORCID: 0000-0001-8266-4705.

0 引言

土体液化是地震灾害链中触发次生灾害的关键 环节,其引发的场地失稳不仅直接导致结构破坏(方 云等,2001; Mao et al.,2023; Li and Huang, 2023),更可能通过级联效应诱发滑坡、海堤坍塌等 灾害。我国南海海域位于亚欧板块、太平洋板块和 印度-澳大利亚板块的交汇处,地震活动频繁,近百 年来已多次发生中、强地震(吴杨等,2022,2024)。 在地震激励下,珊瑚砂的液化引发了一系列次生灾 害,如边坡失稳、海岸侵蚀以及基础设施损毁(Olson et al.,2012)。这些灾害的相互作用可能形成复杂的 地质灾害链,加剧区域地质环境的恶化,影响岛礁 的长期稳定性与安全性。因此,需要对珊瑚砂在地 震荷载下的超静孔压发展、液化特性及抗液化措施 开展研究。

目前国内外学者对珊瑚砂超静孔压发展特性已 开展一系列研究(Xiao et al., 2019; 马维嘉等, 2020; 沈扬等, 2023), 提出了一些用于预测珊瑚砂 超静孔压发展的经验模型,但多数为孔压应力模型 (Li et al., 2022; Zhou et al., 2022; 高冉和叶剑红, 2019; 马维嘉等, 2019; 刘汉龙等, 2021), 而涉及 孔压应变模型的研究还比较少。然而,应力模型无 法解释施加的偏应力卸荷时导致的超静孔压增长现 象,为解决这一弊端,将不排水条件下超静孔压增 长与应变发展联系起来,建立超静孔压应变模型已 成为当前研究的新方向。Chen et al. (2020)系统研 究了循环应力路径和循环应力比对饱和粉土不排水 特性的影响,发现超静孔压比与偏应变幅值唯一相 关,可采用反正切函数描述。Chen et al. (2021)进 一步发现不排水循环加载下珊瑚砂广义剪应变与超 静孔压比也存在唯一关系,且不受固结条件和循环 加载模式的影响,据此提出了珊瑚砂超静孔压应变 模型。虞海珍等(2006)等研究了主应力连续旋转 和方向角对珊瑚砂超静孔压增长特性的影响,指出 超静孔压比与广义剪应变之间符合双曲线发展模 式。吴琪等(2023)对饱和珊瑚砂开展了一系列循 环扭剪试验,分析了相对密实度、细颗粒含量和循 环应力比对其超静孔压发展的影响,建立了基于剪 应变特征的超静孔压发展模型。

地震荷载下珊瑚砂液化将影响其上部结构的稳定性,因此,采取适当的加固措施提高其抗液化性能很有必要。土工合成材料是一种绿色低碳新型材料,可显著提高土体抗液化强度(Zhou *et al.*, 2023),改善岩土体结构的抗震性能,故在岛礁区采用土工格栅构筑加筋珊瑚砂结构具有极好的应用前

景。

国内外学者对土工合成材料加筋珊瑚砂已开展 一些研究工作。Goodarzi and Shahnazari (2018) 对 土工布加筋珊瑚砂开展了三轴排水静力剪切试验, 研究了加筋层数、围压和相对密实度对其应力-应变 关系和剪切强度的影响,发现随着加筋层数的增加, 珊瑚砂强度增大; 围压的增大导致了加筋效率的降 低。Chen et al. (2023) 对土工格栅加筋珊瑚砂开展 了一系列排水大三轴试验,结果表明格栅加筋显著 提高了珊瑚砂剪切强度,减小了其剪胀。Ding et al. (2022) 对土工格栅加筋珊瑚砂开展了三轴排水静 力剪切试验,发现相比于无加筋珊瑚砂,加筋珊瑚 砂强度大幅提高,其偏应力-应变曲线逐渐由轻微应 变软化变为应变硬化。Akosah et al. (2024)和 Zhou et al. (2024) 开展了土工格栅加筋珊瑚砂动三轴试 验,发现土工格栅加筋可有效提高珊瑚砂抗液化强 度。

然而目前关于土工格栅加筋珊瑚砂动力特性的 研究还十分有限,且多关注于动强度特性,对超静 孔压累积特性及其应变模型的研究还未有报道。本 文对土工格栅加筋珊瑚砂开展了一系列不排水动三 轴试验,研究了土工格栅层数、相对密实度和循环 应力比对其超静孔压和轴向应变发展特性的影响, 建立了加筋珊瑚砂超静孔压与应变之间的联系,提 出了基于应变特性的超静孔压发展模型。研究成果 可为揭示地震荷载下加筋珊瑚砂的液化机制及土工 格栅在灾害链中防控作用提供科学支撑,并助力完 善南海珊瑚砂岛礁区基础设施的地质灾害链防灾韧 性理论与技术体系。

1 试验设计

1.1 试验设备及材料

试验仪器采用 KTL 动三轴仪,该仪器由配有相 应控制软件的计算机系统、信号放大和试验数据采 集系统、轴向力和轴向位移动态控制系统以及两个 用于施加反压和围压的标准压力控制器组成。仪器 可施加的最大轴向荷载为 10 kN,精度为 0.1 kN; 最大轴向位移为 100 mm,精度为满量程的 0.07%; 最大围压可达 2 MPa。

micrograph image of coral sand

试验用砂取自南海某珊瑚岛礁,是海洋生物碎 屑经各种生物、物理和化学作用形成的特殊产物, 碳酸钙含量高于 90%。图 1 为测试珊瑚砂的级配曲 线及电镜扫描图。由图可知,珊瑚砂颗粒形状不规 则且存在大量内孔隙。珊瑚砂最大干密度ρ_{dmax} 为 1.62 g/cm³,最小干密度ρ_{dmin}为 1.40 g/cm³,不均匀 系数 C_u为 3.62,曲率系数 C_c为 0.79,属于级配不 良砂。试验所用加筋材料为聚丙烯双向土工格栅。 土工格栅网孔尺寸为 20 mm×20 mm,肋条宽度和厚 度分别为 3.0 mm 和 2.5 mm。

1.2 试样制备

本试验采用干沉法制备直径为 d=70 mm, 高为 H=140 mm 的珊瑚砂试样。将烘干的珊瑚砂用漏斗 分 4 层缓慢沉积至承膜筒中,每层所需珊瑚砂的质 量根据试样的设计相对密实度、珊瑚砂ρ_{dmax} 和ρ_{dmin} 和该层回填砂体积计算; 层间采用钢尺进行刮毛处 理,以保证相邻层之间的充分粘结。在珊瑚砂沉积 过程中,土工格栅被水平放置在预设位置。详细的 制样过程见 Zhou et al. (2024),不同加筋层数的土 工格栅布置方案见图 2。

Fig. 2 Schematic diagram of geogrid arrangement (*H*=sample height)

试样制备完成后,对其进行饱和处理,具体步骤如下:(1)通入二氧化碳置换土体中的空气,持续 60 min;(2)从试样的底部通入无气水,开展水

头饱和,持续120 min 以上,直至通入无气水的体积超过试样体积的2倍;(3)对试样进行分级反压饱和,当孔隙压力系数B值达到0.96及以上,可认为珊瑚砂试样达到饱和状态。饱和完成后,在预设围压下对试样开展各向同性固结。

1.3 试验方案

为研究土工格栅加筋珊瑚砂动力液化特性,本 文首先分析了土工格栅层数的影响(0 层~3 层)。 随后,以抗液化特性最好的3层土工格栅加筋珊瑚 砂为研究对象,分析相对密实度 *D*_r和循环应力比 CSR 对其超静孔压和轴向应变发展特性的影响。吹 填珊瑚砂场地通常采用振冲法或冲击碾压法等密实 化处理工艺(王鸾等,2021),经处理后的场地相对 密实度普遍较高。为模拟工程现场条件,本文在 *D*_r=50%~85%、CSR=0.15~0.33 和初始围压*d*_c=100 kPa 条件下开展一系列应力控制固结不排水动三轴 试验,CSR 可表示为:

$$\mathrm{CSR} = \frac{q}{2\sigma_{\mathrm{c}}'} \quad \circ \tag{1}$$

式中, q为循环偏应力。

已有研究表明,小震至强震的地震波主要频率 范围通常为 0.1~1.5 Hz (Hussain and Sachan, 2019)。 考虑到 0.1 Hz 的加载频率已被广泛应用于珊瑚砂地 震液化特性研究 (如 Rui *et al.*, 2021; 吴杨 等, 2024),本试验亦采用频率为 0.1 Hz 的规则正弦 波进行循环加载。

本文采用超静孔压和应变两种标准定义土体液 化:(1)超静孔压 Δu 首次等于 σ_c 定义为初始液化; (2)双幅轴向应变 $\varepsilon_{DA} \ge 5\%$ 定义为液化(Asadi *et al.*, 2018),其中 ε_{DA} 表示为一圈循环加载中最大与最小 轴向应变绝对值之和。 N_L 和 $N_{5\%}$ 分别表示为达到 $\Delta u = \sigma'_c 和 \varepsilon_{DA} \ge 5\%$ 所需的循环振次。

表1固结不排水动三轴试验工况

Table 1 Consolidated undrained	dynamic	triaxial	test	conditions
--------------------------------	---------	----------	------	------------

编 号	格栅层数	相对密实度 <i>D</i> r(%)	循环应力比 CSR
#1	0	70	0.24
#2	1	70	0.24
#3	2	70	0.24
#4	3	70	0.21, 0.24, 0.27, 0.30
#5	3	50	0.15、0.18、0.21、0.24
#6	3	85	0.24、0.27、0.30、0.33

2 试验结果分析

2.1 超静孔压、轴向应变与循环振次关系

图 3 为不同格栅层数(0,1,2和 3 层)、 $D_r=70\%$ 和 CSR=0.24条件下试样超静孔压 Δu 、轴向应变 ε_a 随循环振次 N 变化曲线图。由图 3 (a) 可见, 随着 N的增加,不同加筋层数的珊瑚砂试样的 Δu 均呈现 持续增长趋势,有效应力相应降低。当Δu 累积至较 高水平时,由于珊瑚砂试样发生剪胀, Δu 开始出现 显著波动,直至试样达到初始液化状态($\Delta u = \sigma_c$)。 此外,由图可见,循环加载初期∆u 增长较快,而随 着 N 的增加,其增速逐渐减小。其原因是,由于珊 瑚砂颗粒不规则形态、棱角度高和易于破碎的特性 使得颗粒接触点局部不稳定性的消除和颗粒重排列 现象在加载初期极为显著,进而加剧了∆u发展 (Asadi *et al.*, 2018)。对于不同格栅层数, *Δu* 发展 曲线的主要差异为: 增加格栅层数, ∆u 发展速率逐 渐减缓,试样需经历更多的N才能达到初始液化状 态。当格栅层数为0、1、2和3层时, NL分别为17、 20、23 和 50, 即增加土工格栅层数可有效提高珊瑚 砂的抗液化强度。Maheshwari et al. (2012) 对土 工格栅加筋饱和硅质砂地基开展的振动台试验也获 得了相似的结论。

strain-number of cycles

由图 3 (b) 可见, 珊瑚砂 ε₄ 呈喇叭状发展模式。 在大多数循环加载下, 试样均能抵抗刚度的降低, ε₄ 发展缓慢; 在临界初始液化时, ε₄ 急剧增大, 在 较少的 N 下即可达到 ε_{DA}≥5%。土工格栅加筋降低了 ε₄ 累积速率, 尤其是 3 层格栅加筋, N_{5%}达到了 56, 分别为 0、1 和 2 层格栅加筋的 2.8、2.2 和 2.2 倍。

总体而言,增加加筋层数可提高珊瑚砂抗液化 强度,降低Δu和εa的发展速率。其中,3层格栅的 加筋效果显著优于其他加筋层数。这是由于土工格 栅主要通过其与土界面摩擦力及其网孔对砂颗粒的 约束作用来提高试样的强度和刚度,而格栅层数越 多,界面所提供的摩擦力和网孔约束作用越大,Δu 和 *ε*a 发展越慢,试样的抗液化强度越高。因此,下 文主要针对 3 层格栅加筋珊瑚砂动力液化特性开展 深入研究。

2.2 超静孔压比发展特性

超静孔压比ru定义为每一加载周期峰值超静孔 压与初始围压比值(马维嘉等,2019;吴琪等,2023)。 图 4 为 3 层格栅加筋珊瑚砂超静孔压比ru与循环振 次比 N/NL关系曲线。由图可见,不同 Dr和 CSR下 3 层格栅加筋珊瑚砂ru随 N/NL变化特征存在较大差 异。当 Dr相同时,随 CSR 的增加,相同 N/NL下ru 总体呈逐渐增大趋势;而当 CSR 相同时,随 Dr的 增加,相同 N/NL下ru变化并不唯一。ru发展模式总 体可归结为 3 类: S 型曲线、双曲线型曲线及介于 S 型和双曲线型之间的过度型曲线。由图可见,随着 CSR 的增加,加筋珊瑚砂ru发展模式逐渐由 S 型过 度到双曲线型。刘汉龙等(2021)在微生物固化钙 质砂动三轴试验中也得出了类似结论,即随着 CSR 和固化程度的增加,钙质砂ru发展曲线逐渐由 S 型 向双曲线型过渡。

of cycle ratio of reinforced coral sand

为对比珊瑚砂和硅质砂 r_u产生机制的差异,图 4 中给出了 Monterey 硅质砂 r_u发展范围(Lee and Albaisa, 1974),见灰色阴影区域。由图可见,珊瑚 砂的 r_u发展明显偏离了 Lee and Albaisa(1974)所 给出的硅质砂范围,相同 *N*/*N*_L下,珊瑚砂 r_u远高 于硅质砂。其原因是由于珊瑚砂颗粒具有棱角度高 和易破碎特性,加载初期试样内部土颗粒重排和局 部不稳定接触点消除的现象较硅质砂更为显著,进 而加剧了 r_u发展。图 4 中红色虚线是马维嘉等 (2019)给出的南沙珊瑚砂 r_u发展范围,可见本文 测试珊瑚砂 r_u发展与其试验结果整体趋势较为一 致,唯一差异为在 D_r =50%、CSR=0.24时,本文 r_u 发展曲线超出了其所给出的范围。究其原因,试样 在 D_r =50%时处于相对松散状态,其抗液化强度较 低,较高的循环应力比(CSR=0.24)导致试样在仅 经历 6 次循环加载后即达到初始液化状态 ($\Delta u = \sigma_c$)。这种快速液化过程使得 r_u 在加载初期即 呈现急剧上升趋势,从而造成其发展轨迹超出马维 嘉等(2019)给出的范围。

2.3 经典超静孔压模型拟合结果对比

建立饱和土超静孔压发展模型是研究土体液化特性的关键,也是开展液化场地岩土体结构动力稳定性分析的基础。应用最为广泛的超静孔压发展模型为 Seed 孔压应力模型 (Seed *et al.*, 1976),可表示为:

$$r_{\rm u} = \frac{1}{2} + \frac{1}{\pi} \arcsin\left(2 \cdot \left(N / N_L\right)^{1/\theta} - 1\right) \quad . \tag{2}$$

式中,N为循环振次; N_L 为触发液化的循环振次; θ 为试验参数。随后,式(2)被简化为(马维嘉等, 2019);

$$r_{\rm u} = \frac{2}{\pi} \arcsin \left(N / N_L \right)^{1/2\theta} \quad . \tag{3}$$

为研究 Seed 模型对加筋珊瑚砂的适用性,采用 式(3)对不同 *D*_r和 CSR 下 3 层格栅加筋珊瑚砂 *r*_u 发展趋势进行拟合,结果如图 5 所示。由图可见, Seed 模型对 *S*型 *r*_u发展曲线拟合效果较好,而对双 曲线型和过度型 *r*_u发展曲线拟合效果较差。这表明 Seed 孔压应力模型难以反映随着 CSR 增大,加筋 珊瑚砂 *r*_u发展模式由 *S*型逐渐过渡到双曲线型这一 特性,因此直接用于加筋珊瑚砂 *r*_u发展趋势预测是 不适宜的。

Fig.5 Excess pore pressure ratio curve fitting analysis

由式(3)可见, Seed 孔压应力模型将超静孔 压增长与施加的循环应力联系,即通过 N_L隐现循环 应力幅值的影响,但该模型难以解释偏应力增大时 导致的超静孔压减小以及偏应力卸荷时引起的超静 孔压增长的重要现象。图 6 为 D_r=70%和 CSR=0.30 时 3 层格栅加筋珊瑚砂偏应力 q 和超静孔压比 r_u 与 循环振次 N 关系曲线。由图可见,加载初期, q 峰 值对应着 r_u峰值(见图中点 M 和 M'所示),而在珊 瑚砂临界液化时,q 峰值对应着 r_u最小值(见图中 点 P 和 P'所示)。这表明,加筋珊瑚砂在偏应力卸 荷过程中表现出超静孔压增长的现象,呈现出明显 的反向剪缩特性。因此,传统的孔压应力模型难以 准确描述其 r_u 的发展趋势。为弥补孔压应力模型 在本研究中的局限性,需要构建能够适用于加筋珊 瑚砂的其他类型孔压模型。

Fig.6 Relationship curves of deviator stress and excess pore pressure ratio-number of cycles

3 基于应变特性的超静孔压发展模型

3.1 超静孔压比与轴向应变相关性分析

本文采用双幅轴向应变 ϵ_{DA} 反映珊瑚砂变形发 展。图 7 为不同相对密实度 D_r 及循环应力比 CSR 下 3 层格栅加筋珊瑚砂 $r_u = \epsilon_{DA}$ 关系图。由图可见, 加筋珊瑚砂 $r_u - \epsilon_{DA}$ 关系呈双曲线型发展模式,可分 为 3 个阶段: (1) 当 $\epsilon_{DA} \leq 1\%$ 时, r_u 随 ϵ_{DA} 增加呈线 性增长; (2) 当 1%< $\epsilon_{DA} \leq 2.5\%$ 时, r_u 随 ϵ_{DA} 增加呈 缓慢增加,增速逐渐减小; (3) 当 $\epsilon_{DA} > 2.5\%$ 时, r_u 随 ϵ_{DA} 增加趋于稳定。

为深入研究 *r*_u-*s*_{DA} 关系发展规律,图 8 对比分 析了 CSR 和 *D*_r 对加筋珊瑚砂 *r*_u-*s*_{DA} 关系的影响。 由图 8 (a) 可见,当 *r*_u 和 *D*_r 相同时,CSR 对加筋 珊瑚砂 *s*_{DA} 发展速率影响较小。由图 8 (b) 可见, 当 *r*_u 和 CSR 相同时,随 *D*_r 增大, *s*_{DA} 发展速率逐渐 减小,且 *D*_r 对 *r*_u-*s*_{DA} 关系曲线的影响随 *D*_r 的增加 而减小。

图 8 不同循环应力比和相对密实度下加筋珊瑚砂超静孔压 比-双幅轴向应变关系曲线

Fig.8 Relationship curves of excess pore pressure ratio-double-amplitude axial strain for reinforced coral sand

under various CSRs and relative densities

3.2 超静孔压发展模型的建立

吴琪等(2023)基于空心圆柱扭剪试验研究了 细粒含量、相对密实度和循环应力比对洁净珊瑚砂 超静孔压发展特性的影响,发现超静孔压比 r_u与剪 应变幅值₂₆之间关系可由下式表征:

$$r_u = A \times \arctan\left(\frac{\gamma_a}{B}\right)$$
 . (4)

式中, A 和 B 为拟合参数, 可通过不排水循环加载 试验确定。

为分析该模型对加筋珊瑚砂的适用性,采用式 (4)对 *D*_r=85%,不同 CSR 下的加筋珊瑚砂 *r*_u发 展曲线进行拟合,结果如图 9 中实线所示。由图可 见,式(4)的预测趋势与本文实测 *r*_u数据存在一 定差异,*R*²介于 0.84~0.89 之间。造成这种差异的 原因可能与土工格栅加筋、试验仪器和应变类型(剪 应变与双幅轴向应变)有关。鉴于此,为了更好地 表征加筋珊瑚砂 *r*_u发展模式,本文遵循吴琪等 (2023)基于洁净珊瑚砂提出的孔压模型理论框架, 即式(4),构建了适用于加筋珊瑚砂的基于应变特 性的超静孔压发展模型,可表示为:

$$r_{u} = \frac{2}{\pi} \cdot \arctan\left(\frac{\varepsilon_{DA} - A}{B}\right) \quad . \tag{5}$$

式中, *A* 和 *B* 为经验参数,与土性和测试条件有关。 采用式(5)对 *D*_r=85%,不同 CSR 下的加筋珊瑚砂 *r*_u发展曲线进行拟合,结果如图 9 中虚线所示。由 图可见,本文提出的孔压应变模型对加筋珊瑚砂实 测 *r*_u数据拟合效果较好,*R*²均可达 0.97 及以上。

图 9 D_r=85%时加筋珊瑚砂超静孔压比实测发展模式和不同 模型拟合结果对比图

Fig.9 Comparison of the measured development pattern of excess pore pressure ratio and the fitting results of different

models for reinforced coral sand at Dr=85%

为进一步分析提出的超静孔压应变模型在不同 D_r下适用性,采用式(5)对加筋珊瑚砂所有 r_u-*ɛ*DA 实测数据进行拟合分析。图 10 对比了式(5)预测 r_u值与试验实测 r_u值。由图可见,预测值和实测值 吻合度较好,表明提出的超静孔压应变模型在不同 D_r依然适用。

图 11 为密度修正的参数 A (即 A×D_r) 和参数 B 与 CSR 关系图。由图 11 (a) 可见,在给定 D_r下, 参数 A×D_r基本不受 CSR 影响,可视为常数。据此, 模型参数 A 与 D_r的关系可表示为:

$$A = 0.8661 \cdot D_r \quad \circ \tag{6}$$

由图 11(b)可见,参数 *B* 为与土性相关的常数,对本文加筋珊瑚砂可取 *B*=0.13。为统一表征不同 *D*_r和 CSR 下加筋珊瑚砂 *r*_u-*s*_{DA} 关系,将式(6)

及 B=0.13 代入式 (5), 可得基于应变特性的加筋珊 瑚砂超静孔压发展模型:

$$r_{u} = \frac{2}{\pi} \cdot \arctan\left(\frac{\varepsilon_{DA} - 0.8661 \cdot D_{r}}{0.13}\right).$$
(7)

Fig.11 Relationship curves of parameter A×Dr and B-cyclic

stress ratio

图 12 给出了式(7)预测趋势与试验实测数据的对比。由图可见,所提出的基于应变特性的超静 孔压发展模型可较好地预测加筋珊瑚砂 *r*u 发展趋势。

图 12 超静孔压比-双幅轴向应变关系试验数据和预测趋势 对比图

Fig.12 Comparison of test data and predicted trend of excess pore pressure ratio-double-amplitude axial strain relationship

4 结 论

本文开展了一系列不排水动三轴试验,研究了 土工格栅层数、相对密实度和循环应力比对加筋珊 瑚砂超静孔压和轴向应变发展特性的影响,主要结 论如下:

(1)土工格栅加筋及增加格栅层数可减小循环 荷载下珊瑚砂中超静孔压和轴向应变发展速率,增 加试样达到液化状态所需的循环振次,提高珊瑚砂 抗液化强度。加筋珊瑚砂超静孔压发展明显偏离了 硅质砂范围,在相同循环振次比下,其值远高于硅 质砂。

(2)加筋珊瑚砂超静孔压比随循环振次比发展 模式可分为三类: *S*型曲线、双曲线型曲线及介于 *S* 型和双曲线型之间的过度型曲线。随着循环应力比 的增加,其超静孔压发展曲线逐渐由 *S*型过度到双 曲线型,而经典的 Seed 孔压应力模型难以描述该种 孔压发展趋势变化的特性,因此不适用于描述加筋 珊瑚砂超静孔压发展规律。

(3)循环荷载下加筋珊瑚砂中超静孔压比随双 幅轴向应变增加呈双曲线型发展模式,可分为三个 阶段:加载初期超静孔压比呈线性增长,随后增速 逐渐减缓,最终趋于稳定。

(4)提出了基于应变特性的加筋珊瑚砂超静孔 压发展模型,该模型可较好地预测不同相对密实度 和循环应力比下加筋珊瑚砂超静孔压发展趋势。

References

- Akosah, S., Zhou, L., Chen, J. F., et al., 2024. Experimental Investigation on Cyclic Behavior of Geogrid-Reinforced Coral Sand from the South China Sea. *Marine Georesources and Geotechnology*, 42(6): 707-720. https://doi.org/ 10.1080/1064119X.2023.2214933
- Asadi, M. S., Asadi, M. B., Orense, R. P., et al., 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. *Journal of Geotechnical and Geoenvironmental Engineering*, 144(8): 04018045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001912
- Chen, G. X., Wu, Q., Zhou, Z. L., et al., 2020. Undrained Anisotropy and Cyclic Resistance of Saturated Silt Subjected to Various Patterns of Principal Stress Rotation. *G éotechnique*, 70(4): 317-331. https://doi.org/ 10.1680/jgeot.18.P.180
- Chen, G. X., Ma, W. J., Qin, Y., et al., 2021. Liquefaction Susceptibility of Saturated Coral Sand Subjected to Various Patterns of Principal Stress Rotation. *Journal of*

Geotechnical and Geoenvironmental Engineering, 147(9): 04021093.

https://doi.org/10.1061/(ASCE)GT.1943-5606.0002590

- Chen, J. F., Akosah, S., Ma, C., et al., 2023. Large-Scale Triaxial Tests of Reinforced Coral Sand with Different Grain Size Distributions. *Marine Georesources and Geotechnology*, 41(5): 544-554. https://doi.org/10.1080/1064119X.2022.2068462
- Ding, X. M., Luo, Z. G., Ou, Q., 2022. Mechanical Property and Deformation Behavior of Geogrid Reinforced Calcareous Sand. *Geotextiles and Geomembranes*, 50(4): 618-631.

https://doi.org/10.1016/j.geotexmem.2022.03.002

- Fang, Y., Towhata, I., Ghalandarzadeh, A., et al., 2001. Mechanism of Deformation and Failure of Gravity-Type Quay Walls under Earthquake Liquefaction. *Earth Science*, 26(4): 415-418 (in Chinese with English abstract).
- Gao, R., Ye J. H., 2019. Experimental Investigation on the Dynamic Characteristics of Calcareous Sand from the Reclaimed Coral Reef Islands in The South China Sea. *Rock and Soil Mechanics*, 40(10): 3897-3908+3919 (in Chinese with English abstract).
- Goodarzi, S., Shahnazari, H., 2018. Strength Enhancement of Geotextile-Reinforced Carbonate Sand. *Geotextiles and Geomembranes*, 47(2): 128-139. https://doi.org/ 10.1016/j.geotexmem.2018.12.004
- Hussain, M., Sachan, A., 2019. Dynamic Characteristics of Natural Kutch Sandy Soils. *Soil Dynamics and Earthquake Engineering*, 125: 105717. https://doi.org/10.1016/j.soildyn.2019.105717
- Lee, K. L., Albaisa, A., 1974. Earthquake Induced Settlements in Saturated Sands. *Journal of the Geotechnical Engineering Division*, 100(4): 387-406. https://doi.org/10.1061/AJGEB6.0000034
- Li, X., Liu, J. L., Nan, J., 2022. Prediction of Dynamic Pore Water Pressure for Calcareous Sand Mixed with Fine-Grained Soil under Cyclic Loading. *Soil Dynamics* and Earthquake Engineering, 157: 107276. https://doi.org/ 10.1016/j.soildyn.2022.107276
- Liu, H. L., Zhang, Y., Guo, W., et al., 2021. A Prediction Model of Dynamic Pore Water Pressure for MICP-Treated Calcareous Sand. *Chinese Journal of Rock Mechanics and Engineering*, 40(4): 790-801 (in Chinese with English abstract).

- Li, W. Y., Huang, Y., 2023. Model Tests on the Effect of Dip Angles on Flow Behavior of Liquefied Sand. *Journal of Earth Science*, 34(2): 381-385. https://doi.org/10.1007/s12583-021-1498-8
- Ma, W. J., Chen, G. X., Li, L., et al., 2019, Experimental Study on Liquefaction Characteristics of Saturated Coral Sand in Nansha Islands under Cyclic Loading. *Chinese Journal of Geotechnical Engineering*, 41(5): 981-988. (in Chinese with English abstract).
- Ma, W. J., Chen, G. X., Qin, Y., et al., 2020. Experimental Studies on Effects of Initial Major Stress Direction Angles on Liquefaction Characteristics of Saturated Coral Sand. *Chinese Journal of Geotechnical Engineering*, 42(3): 592-600. (in Chinese with English abstract).
- Maheshwari, B. K., Singh, H. P., Saran, S., 2012. Effects of Reinforcement on Liquefaction Resistance of Solani Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(7): 831-840. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0000645
- Mao, W. W., Li, W., Rasouli, R., et al., 2023. Numerical Simulation of Liquefaction-Induced Settlement of Existing Structures. *Journal of Earth Science*, 34(2): 339-346. https://doi.org/10.1007/s12583-021-1531-y
- Olson, S. M., Green, R. A., Lasley, S., et al., 2012. Documenting Liquefaction and Lateral Spreading Triggered by the 12 January 2010 Haiti Earthquake. *Earthquake Spectra*, 27(S1): S93-S116. https://doi.org/10.1193/1.3639270
- Rui, S. J., Guo, Z., Si, T. L., et al., 2020. Effect of Particle Shape on The Liquefaction Resistance of Calcareous Sands. *Soil Dynamics and Earthquake Engineering*, 137: 106302. https://doi.org/10.1016/j.soildyn.2020.106302
- Seed, H. B., Lysmer, J., Martin, P. P., 1976. Pore-Water Pressure Changes during Soil Liquefaction. *Journal of the Geotechnical Engineering*, 102 (4): 323-346. https://doi.org/ 10.1061/AJGEB6.0000258
- Shen, Y., Ma, Y. H., Rui, X. X., 2023. Experimental Study on Pore Water Pressure Characteristics and Accumulated Loss Energy of Saturated Calcareous Sand under Wave Loading. *Rock and Soil Mechanics*, 44(8): 2195-2204 (in Chinese with English abstract).
- Wang, L., Wang, Y. L., Yuan, X. M., et al., 2021. Experimental Study on Liquefaction Resistance of Hydraulic Fill Coralline Soils at Artificial Sites Based on Large-Scale

第 卷

Dynamic Triaxial Apparatus. *Rock and Soil Mechanics*, 42(10): 2819-2829 (in Chinese with English abstract).

- Wu, Q., Wang, L. Y., Liu, Q. F., et al., 2023. Experimental Study on Development Model of Excess Pore Pressure for Saturated Coral Sand Based on Shear Strain Characteristics. *Chinese Journal of Geotechnical Engineering*, 45(10): 2091-2099 (in Chinese with English abstract).
- Wu, Y., Cui, J., Li, C., et al., 2022. Experimental Study on the Effect of Fines on the Maximum Dynamic Shear Modulus of Coral Sand in A Hydraulic Fill Island-Reef. *Chinese Journal of Rock Mechanics and Engineering*, 41(1): 205-216 (in Chinese with English abstract).
- Wu, Y., Wu, Y. H., Ma, L. J., et al., 2024. Experimental Study on Dynamic Characteristics of Calcareous Sand-Gravel Mixtures from Islands in the South China Sea. *Chinese Journal of Geotechnical Engineering*, 46(1): 63-71 (in Chinese with English abstract).
- Xiao, P., Liu, H. L., Stuedlein, A. W., et al., 2019. Effect of Relative Density and Biocementation on Cyclic Response of Calcareous Sand. *Canadian Geotechnical Journal*, 56(12): 1849-1862. https://doi.org/10.1139/cgj-2018-0573
- Yu, H. Z., Wang, R., Zhao, W. G., et al., 2006. Experimental Research on Development Pattern of Pore Water Pressure of Carbonate Sand under Wave Loads. *Journal of Wuhan University of Technology*, 28(11): 86-89 (in Chinese with English abstract).
- Zhou, L., Chen, J. F., Peng, M., et al., 2022. Liquefaction Behavior of Fiber-Reinforced Calcareous Sands in Unidirectional and Multidirectional Simple Shear Tests. *Geotextiles and Geomembranes*, 50(4): 794-806. https://doi.org/10.1016/j.geotexmem.2022.04.003.
- Zhou, L., Chen, J. F., Zhuang, X. Y., 2023. Undrained Cyclic Behaviors of Fiber-Reinforced Calcareous Sand under Multidirectional Simple Shear Stress Path. Acta Geotechnica, 18(6): 2929-2943. https://doi.org/ 10.1007/s11440-022-01780-6
- Zhou, L., Chen, J. F., Zhu, Y., et al., 2024. Liquefaction and Post-Liquefaction Behaviors of Unreinforced and Geogrid Reinforced Calcareous Sand. *Geotextiles and Geomembranes*, 52(3): 286-303. https://doi.org/ 10.1016/j.geotexmem.2023.11.002

中文参考文献

方云,东烟郁生, Ghalandarzadeh, A 等, 2001. 地震液化

条件下重力式码头的变形破坏机理.地球科学,26(4): 415-418.

- 高冉,叶剑红,2019. 中国南海吹填岛礁钙质砂动力特性试验研究.岩土力学,40(10):3897-3908+3919.
- 刘汉龙,张宇,郭伟,等,2021. 微生物加固钙质砂动孔压 模型研究. 岩石力学与工程学报,40(4): 790-801.
- 马维嘉,陈国兴,秦悠,等,2020.初始主应力方向角对饱 和珊瑚砂液化特性影响的试验.岩土工程学报,42(3): 592-600.
- 沈扬,马英豪,芮笑曦. 2020. 波浪荷载作用下饱和钙质砂 孔压特性及累积损失能量试验研究. 岩土力学,44(8): 2195-2204.
- 王鸾, 汪云龙, 袁晓铭, 等, 2021. 人工场地吹填珊瑚土抗 液化强度大粒径动三轴试验研究. 岩土力学, 42(10): 2819-2829.
- 吴琪,王路阳,刘启菲,等,2023. 基于剪切应变特征的饱 和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报, 45(10): 2091-2099.
- 吴杨,崔杰,李晨,等,2022. 细粒含量对岛礁吹填珊瑚砂 最大动剪切模量影响的试验研究. 岩石力学与工程学 报,41(1):205-216.
- 吴杨,吴毅航,马林建,等,2024. 南海岛礁珊瑚砂砾混合 料动力特性试验研究. 岩土工程学报,46(1):63-71.
- 虞海珍,汪稔,赵文光,等,2006.波浪荷载下钙质砂孔压 增长特性的试验研究.武汉理工大学学报,28(11): 86-89.