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Abstract: The Cretaceous tectonic evolution of northern Tibet remains highly controversial,
significantly constraining our understanding of plateau uplift and the metallogenic background of
world-class Cu—Au resources in this region. To reconstruct the Cretaceous evolution of northern
Tibet, we conducted an integrated study on magmatic rocks from Jipusandui, Songxi, and Rutog in
western Northern Tibet. Results indicate that the Jipusandui (~120 Ma) and Songxi (~110 Ma)
intrusions are I-type high-K calc-alkaline granites that underwent complex processes of melting,
assimilation, storage, and homogenization, representing products of Meso-Tethys Ocean subduction.
The Rutog magmatic rocks (~90 Ma) is characterized by a bimodal volcanic association composed
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of Nb-enriched gabbro and A-type granite, reflecting post-orogenic extensional tectonics. From
120-110 Ma to ~90 Ma, western Northern Tibet experienced an ocean—continent transition from
subduction to collision. Inversion of crustal thickness and crustal contributions based on crust-
derived magmas reveals that the crust of western Northern Tibet maintained a normal thickness (~30
km) during 160-100 Ma, but significantly thickened after ~100 Ma, reaching ~60 km by ~90 Ma—
exceeding the present-day Iranian Plateau. The peak contribution of crustal materials at ~110 Ma
suggests the onset of initial collision. Synthesizing results with regional Late Cretaceous molasse
and mélange records, we propose that the Meso-Tethys Ocean underwent a diachronous ocean—
continent transition from east to west during the Cretaceous, with the transition in western Northern
Tibet occurring between 110 and 96 Ma. Following the closure of the Meso-Tethys Ocean, the
Lhasa—Qiangtang collision resulted in pronounced crustal thickening and surface uplift, with an
uplift magnitude at least comparable to that of the modern Iranian Plateau. This diachronous ocean—
continent transition and subsequent orogenesis elevated the oxygen fugacity of magmatic systems,
thereby creating favorable conditions for the enrichment and metallogenesis of giant Cu—Au
resources in northern Tibet. From the perspective of magmatic records, this study reconstructs the
Cretaceous ocean—continent transition and orogenic processes in northern Tibet, providing a

representative case study for understanding the orogenesis and metallogenesis in collisional orogens.
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Fig. 1 (a) Tectonic framework of the Tibet, modified after Fan et al.(2024a). (b) Simplified geological map of the
western segment of the Bangong-Nujiang Suture Zone in northern Tibet(revised from Hu ef al., 2022 and Zhang et
al., 2023). (c) Simplified geological map of the studied area, Songxi, Jipusandui and Rutog area.
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Fig. 2 Representative field photographs and photomicrographs of various magmatic samples from the Songxi,
Jipusandui and Rutog area
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Fig.3 Cathodoluminescence images, zircon U-Pb concordia and Th-U plots of zircon grains for magmatic rocks

from the Rutog-Songxi area, northern Tibet
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Table 1 LA-ICP-MS zircon U-Pb dating results of magmatic rocks from the Rutog-Songxi area, northern Tibet

. Th U Po U b & (£ 10) FERZER  (+10)
ppm  ppm  ppm 207ph/2%pp  + 1o 207ph/235y tlo 206ph/238Y tlo 07ph2%Ph 16 PPH/PBU +1o  %Pb/BBU tlo
B23T12-01 820 1463 36.2 0.56 0.049480  0.001460  0.128150  0.003930  0.018790 0.000420 171 34 122 4 120 3
B23T12-02 584 2395 55.3 0.24 0.050960  0.001480  0.130040  0.003920  0.018510 0.000420 239 33 124 4 118 3
B23T12-03 165 870 195 0.19 0.049930  0.002020  0.128730  0.005250  0.018700 0.000440 192 53 123 5 119 3
B23T12-04 239 453 10.7 0.53 0.049740  0.002360  0.125960  0.005980  0.018370 0.000440 183 67 120 5 117 3
B23T12-05 758 1794 44.8 0.42 0.048060  0.001440  0.126570  0.003940  0.019100 0.000430 102 35 121 4 122 3
B23T12-06 934 2955 72.4 0.32 0.050360  0.001970  0.127620  0.005060  0.018380 0.000430 212 50 122 5 117 3
B23T12-07 297 959 22.7 0.31 0.050270  0.002060  0.131110  0.005440  0.018920 0.000450 207 54 125 5 121 3
B23T12-08 581 744 21.1 0.78 0.050410  0.002310  0.127170  0.005860  0.018300 0.000440 214 63 122 5 117 3
B23T12-09 887 3452 77.6 0.26 0.050480  0.001540  0.131950  0.004180  0.018960 0.000430 217 36 126 4 121 3
B23T12-10 927 1580 35.3 0.59 0.047330  0.001730  0.118440  0.004440  0.018150 0.000420 66 46 114 4 116 3
B23T12-11 343 883 24.4 0.39 0.049480  0.002320  0.128540  0.006060  0.018840 0.000460 171 65 123 5 120 3
B23T12-12 359 991 21.3 0.36 0.050290  0.002770  0.127470  0.007020  0.018390 0.000460 208 82 122 6 117 3
B23T12-13 478 1566 37.6 0.31 0.051160  0.001790  0.133040  0.004800  0.018860 0.000440 248 43 127 4 120 3
B23T12-14 469 1203 48.3 0.39 0.049250  0.001440  0.127660  0.003940  0.018800 0.000430 160 34 122 4 120 3
B23T12-15 223 1100 23.4 0.20 0.050780  0.001890  0.130680  0.004980  0.018670 0.000440 231 47 125 4 119 3
B23T12-16 558 1304 28.9 0.43 0.049860  0.002390  0.129650  0.006300  0.018860 0.000450 188 69 124 6 120 3
B23T12-17 453 1514 35.0 0.30 0.049730  0.001750  0.129560  0.004710  0.018900 0.000450 182 43 124 4 121 3
B23T12-18 518 1496 31.1 0.35 0.048690  0.002480  0.125960  0.006440  0.018770 0.000470 133 73 120 6 120 3
B23T12-19 332 662 14.7 0.50 0.048920  0.003630  0.130270  0.009610  0.019320 0.000520 144 116 124 9 123 3
B19T21-01 1089 2612 50.6 0.42 0.051810  0.001460  0.116380  0.003590  0.016300 0.000400 277 32 112 3 104 3
B19T21-02 907 3153 60.1 0.29 0.050200  0.001460  0.117040  0.003710  0.016920 0.000420 204 34 112 3 108 3
B19T21-03 820 2460 45.9 0.33 0.052030  0.001560  0.121740  0.003950  0.016980 0.000420 287 35 117 4 109 3
B19T21-04 545 2034 39.9 0.27 0.047420  0.001510  0.115180  0.003910  0.017620 0.000440 70 38 111 4 113 3
B19T21-05 710 2076 44.7 0.34 0.052170  0.002220  0.127350  0.005540  0.017710 0.000460 293 54 122 5 113 3
B19T21-06 814 2628 52.8 031 0.052470  0.001860  0.122670  0.004570  0.016960 0.000430 306 42 117 4 108 3
B19T21-07 791 2451 44.7 0.32 0.052130  0.001620  0.125620  0.004180  0.017480 0.000440 291 36 120 4 112 3
B19T21-08 716 3443 72.9 0.21 0.052960  0.001810  0.120630  0.004340  0.016520 0.000420 327 40 116 4 106 3
B19T21-09 1151 2409 49.8 0.48 0.050900  0.001380  0.120930  0.003620  0.017230 0.000430 236 31 116 3 110 3
B19T21-10 486 904 20.1 0.54 0.049020  0.003240  0.118690  0.007760  0.017550 0.000520 149 95 114 7 112 3




Be Th U Pb THU FIM R IE (+ 1o) FIfL =W (+ 1o)
ppm  ppm  ppm 207pp/20%ph  + Io 207ppy235y tlo 206ppy/238 tlo 07pp206ph  +1g  OPHABU 1o DPbRRU 1o
B19T21-11 1168 3383  50.1 0.35  0.049660 0.001470  0.118650  0.003800  0.017320  0.000430 179 35 114 3 111 3
B19T21-12 858 2648  50.4 0.32  0.047840 0.001250  0.114060  0.003310  0.017290  0.000430 91 31 110 3 111 3
B19T22-01 71 169  3.29 042  0.049960 0.004380 0.118690  0.010210  0.017230  0.000560 193 134 114 9 110 4
B19T22-02 253 411 856 0.62  0.050060 0.002600 0.118600  0.006200  0.017180  0.000470 198 72 114 6 110 3
B19T22-03 246 919 17.4 0.27  0.050830 0.002000 0.121060  0.004920  0.017270  0.000440 233 49 116 4 110 3
B19T22-04 68 117 232 0.58  0.049410 0.006760  0.111920  0.015070  0.016430  0.000610 167 230 108 14 105 4
B19T22-05 113 214  4.24 0.53  0.048920  0.003520  0.115210  0.008210  0.017080  0.000500 144 107 111 7 109 3
B19T22-06 23 67 1.31 0.34  0.048290 0.006590  0.115080  0.015240  0.017280  0.000750 114 212 111 14 110 5
B19T22-07 391 405  9.15 0.96  0.048260 0.003180  0.114830  0.007500  0.017260  0.000490 112 95 110 7 110 3
B19T22-08 307 537  9.90 0.57  0.048720  0.003140  0.114790  0.007350  0.017090  0.000480 134 94 110 7 109 3
B19T22-09 168 297 594 0.57  0.046020  0.004330  0.107390  0.010060  0.016920  0.000490 -1 152 104 9 108 3
B19T24-01 135 238  4.90 0.57  0.046370  0.002690  0.112270  0.006480  0.017560  0.000490 17 73 108 6 112 3
B19T24-02 148 395  7.70 0.37  0.049760  0.002780  0.118740  0.006620  0.017300  0.000480 184 79 114 6 111 3
B19T24-03 160 757 1397 021  0.048220 0.001810  0.115210  0.004490  0.017330  0.000440 110 47 111 4 111 3
B19T24-04 242 430 835 0.56  0.050530  0.002420  0.114700  0.005540  0.016460  0.000440 219 64 110 5 105 3
B19T24-05 177 369  7.30 048 0051230 0.005210 0.121950  0.012160  0.017270  0.000590 251 162 117 11 110 4
B19T24-06 226 328  6.86 0.69  0.052000 0.004310  0.119300  0.009700  0.016640  0.000530 285 127 114 9 106 3
B19T24-07 148 340  6.88 044 0050410 0.004080  0.120200  0.009580  0.017290  0.000540 214 124 115 9 111 3
B19T24-08 53 160 3.3 0.33  0.047880  0.004400 0.113630  0.010180  0.017210  0.000590 93 135 109 9 110 4
B19T24-09 123 251  4.90 049  0.048980 0.003150  0.109740  0.006970  0.016250  0.000470 147 92 106 6 104 3
B19T24-10 209 481  9.58 043  0.049600 0.003940  0.115560  0.008990  0.016900  0.000530 176 119 111 8 108 3
B19T24-11 179 515 10.4 0.35  0.047980  0.002930  0.115160  0.006970  0.017410  0.000490 98 85 111 6 111 3
B19T24-12 92 257  5.03 0.36  0.049370  0.004710  0.117020  0.010940  0.017190  0.000570 165 148 112 10 110 4
B19T24-13 67 186  3.64 0.36  0.045680  0.004500  0.108000  0.010390  0.017150  0.000590 -19 147 104 10 110 4
B19T24-14 131 335  6.63 0.39  0.050850 0.002910  0.119160  0.006780  0.017000  0.000470 234 81 114 6 109 3
B19T24-15 100 274  6.02 0.37  0.048050 0.005780  0.125640  0.014800  0.018960  0.000700 102 194 120 13 121 4
B23T9-01 254 312 501 0.81  0.048910  0.009060  0.095010  0.017270  0.014090  0.000630 144 287 92 16 90 4
B23T9-02 167 164  3.13 1.02  0.049240 0.010300 0.092640  0.019010  0.013640  0.000660 159 309 90 18 87 4
B23T9-03 130 765 12.6 0.17  0.046180  0.002380  0.093020  0.004840  0.014610  0.000370 7 65 90 4 94 2
B23T9-04 152 2017 322 0.08  0.045450  0.005270  0.090060  0.010310  0.014370  0.000460 -31 187 88 10 92 3




- Th u Pb THU Ff R (= 1o) [FIfL R FEW (+ 1o)
ppm  ppm  ppm 207pp/206ph £ 1o 207ppy/235 tlo 206pp/238 tlo 07pp/206ph  + 16 07PH/2BU 1o DPphBBY  + 1o
B23T9-05 108 136 252 0.79  0.050150 0.016720  0.093620  0.030630  0.013540  0.000930 202 473 91 28 87 6
B23T9-06 233 251 5.02 0.93  0.048560 0.004770  0.094310  0.009150  0.014080  0.000430 127 159 92 8 90 3
B23T9-07 288 581 10.1 050  0.048740 0.005520  0.093940  0.010470  0.013980  0.000460 135 188 91 10 89 3
B23T9-08 76 643 10.5 0.12  0.047780 0.007930  0.093660  0.015270  0.014220  0.000580 88 257 91 14 91 4
B23T9-09 91 1595 251 0.06  0.049240 0.001710  0.095700  0.003470  0.014090  0.000340 159 43 93 3 90 2
B23T9-10 120 523 856 0.23  0.047500 0.006040  0.092420  0.011560  0.014110  0.000500 74 210 90 11 90 3
B23T9-11 365 776 13.8 0.47  0.051920 0.004600  0.101000  0.008830  0.014110  0.000420 282 144 98 8 90 3
B23T10-01 401 750 12.3 0.53  0.047640 0.004000  0.090220  0.007500  0.013730  0.000400 81 130 88 7 88 3
B23T10-02 107 132 240 0.81  0.050750 0.015600  0.097630  0.029850  0.013950  0.000570 229 479 95 28 89 4
B23T10-03 123 139 270 0.89  0.046300 0.005550  0.093630  0.011060  0.014660  0.000490 13 195 91 10 %4 3
B23T10-04 88 124 220 0.71  0.048150 0.015110  0.087700  0.027140  0.013210  0.000780 107 435 85 25 85 5
B23T10-05 112 134 246 0.83  0.050970  0.008510  0.096950  0.015880  0.013790  0.000580 239 281 94 15 88 4
B23T10-06 111 122 235 0.91  0.046050 0.005810  0.091940  0.011380  0.014470  0.000510 199 89 11 93 3
B23T10-07 87 109 1.96 0.80  0.043120 0.004640  0.082860  0.008750  0.013930  0.000460 -117 154 81 8 89 3
B23T10-08 127 173  3.09 0.73  0.050380 0.006610  0.096650  0.012420  0.013910  0.000520 213 220 94 11 89 3
B23T10-09 125 147 285 0.85  0.047850  0.005550  0.093360  0.010640  0.014140  0.000470 92 192 91 10 91 3
B23T10-10 139 180  3.28 0.77  0.048090  0.006390  0.091390  0.011930  0.013770  0.000490 104 222 89 11 88 3
B23T10-11 139 141  2.69 0.99  0.049960  0.008850  0.092720  0.016120  0.013450  0.000580 193 285 90 15 86 4
B23T10-12 112 124  2.38 0.90  0.044540  0.004580  0.086490  0.008740  0.014080  0.000440 -43 162 84 8 90 3
B23T10-13 90 118 229 0.77  0.050000 0.007010  0.098840  0.013680  0.014330  0.000480 195 245 9 13 92 3
B23T10-14 138 173  3.27 0.80  0.046840  0.004260  0.090890  0.008160  0.014070  0.000410 4 143 88 8 90 3
B23T10-15 171 143 3,01 119  0.049950 0.009580  0.097280  0.018250  0.014120  0.000670 193 297 94 17 90 4
B23T10-16 90 102 1.98 0.89  0.050830 0.008250  0.096570  0.015360  0.013780  0.000570 233 275 94 14 88 4
B23T10-17 84 92 1.84 0.91  0.049320 0.008320  0.094930  0.015760  0.013960  0.000540 163 272 92 15 89 3
B23T10-18 116 143  2.66 0.81  0.051110 0.009470  0.093990  0.017130  0.013340  0.000560 246 302 91 16 85 4
B23T10-19 86 110 215 0.78  0.047790  0.007710  0.092210  0.014660  0.013990  0.000510 89 256 90 14 90 3
B23T19-01 388 305  6.32 127 0.049210 0.007760  0.093530  0.014440  0.013780  0.000560 158 255 91 13 88 4
B23T19-02 398 314  6.72 127 0050120 0.007410  0.094470  0.013710  0.013670  0.000520 201 252 92 13 88 3
B23T19-03 273 276 565 0.99  0.046710 0.005160  0.092800  0.010090  0.014410  0.000460 34 182 90 9 92 3
B23T19-04 394 335  6.69 118  0.049510 0.004800  0.093050  0.008870  0.013630  0.000420 172 157 90 8 87 3
B23T19-05 128 143  2.80 0.89  0.048700  0.010090  0.095990  0.019460  0.014300  0.000720 133 300 93 18 92 5




- Th u Pb THU Ff R (= 1o) [FIfL R FEW (+ 1o)
ppm  ppm  ppm 207pp/206ph £ 1o 207ppy/235 tlo 206pp/238 tlo 07pp/206ph  + 16 07PH/2BU 1o DPphBBY  + 1o
B23T19-06 207 189  4.11 1.09  0.048700 0.008880  0.092740  0.016560  0.013810  0.000620 133 280 90 15 88 4
B23T19-07 270 266  4.69 1.01  0.048180 0.008810  0.090850  0.016270  0.013680  0.000610 108 281 88 15 88 4
B23T19-08 270 241 487 112 0.049170  0.015060  0.095700  0.028650  0.014120  0.000990 156 417 93 27 90 6
B23T19-09 463 319  7.05 145  0.047550 0.007250  0.091160  0.013620  0.013900  0.000550 77 238 89 13 89 3
B23T19-10 453 360  7.01 1.26  0.049170  0.006940  0.095730  0.013240  0.014120  0.000530 156 237 93 12 90 3
B23T19-11 247 201  4.14 1.22  0.048060 0.006300  0.094430  0.012160  0.014250  0.000510 102 218 92 1 91 3
B23T19-12 470 356 761 1.32  0.049020 0.005080  0.094970  0.009680  0.014050  0.000440 149 170 92 9 90 3
B23T19-13 261 227 463 115  0.049730 0.005910  0.095340  0.011130  0.013910  0.000470 182 200 92 10 89 3
B23T19-14 257 249 506 1.03  0.049250  0.006500  0.095540  0.012370  0.014070  0.000500 160 221 93 1 90 3
B23T11-01 127 378  6.35 0.34  0.048550  0.009140  0.092980  0.017160  0.013890  0.000620 126 292 9 16 89 4
B23T11-02 153 475  7.98 0.32  0.051400 0.006730  0.097010  0.012450  0.013690  0.000490 259 223 94 12 88 3
B23T11-03 107 387  6.63 0.28  0.049010  0.007450  0.095130  0.014180  0.014080  0.000540 148 251 92 13 90 3
B23T11-04 116 300  5.50 0.39  0.047990 0.010570  0.095780  0.020660  0.014480  0.000730 99 316 93 19 93 5
B23T11-05 26 199 3.3 0.13  0.051920 0.019880  0.098540  0.037280  0.013760  0.000880 282 569 95 34 88 6
B23T11-06 217 481  8.39 045  0.048480 0.004360  0.093350  0.008270  0.013960  0.000400 123 145 91 8 89 3
B23T11-07 122 625  9.94 0.19  0.049800  0.003840  0.092960  0.007070  0.013530  0.000370 186 122 90 7 87 2
B23T11-08 479 1338  22.8 0.36  0.046980  0.002970  0.092800  0.005820  0.014320  0.000370 48 89 90 5 92 2
B23T11-09 141 417  7.09 0.34  0.048310 0.003620 0.095830  0.007090  0.014380  0.000390 114 115 93 7 92 2
B23T11-10 235 650 10.7 0.36  0.051980  0.005550  0.097970  0.010260  0.013660  0.000440 285 177 95 9 87 3
B23T11-11 242 450  8.07 0.54  0.048270  0.004890  0.095540  0.009510  0.014350  0.000440 113 164 93 9 92 3
B23T11-12 295 1322 208 0.22  0.047710 0.002160  0.091800  0.004180  0.013950  0.000340 85 60 89 4 89 2
B23T11-13 166 433  7.31 0.38  0.048250  0.004850  0.094740  0.009370  0.014240  0.000440 112 162 92 9 91 3
B23T11-14 86 249 417 0.34  0.048460 0.006920  0.094190  0.013170  0.014090  0.000530 122 237 91 12 90 3
B23T11-15 162 358  6.10 045  0.047590 0.003570  0.094010  0.006980  0.014330  0.000390 79 113 91 6 92 2




3.2 ERHRLESTER

AR EALTEHR 22 fEEFAFEMBAT T A E MBS0 0, i ds RIEE 2, Hp
BILR ERBR R EARELE 100%.

321 HY=AIEKRNKA

= BAE A A BRI R R (0.40-0.90%) FIE R Si0, (72.5-78.8%)+ KO
(3.97-4.42%) Fl Na,O (2.60-3.86%) &, PARKEEMN Mg"E (39.2-43.2). fE SiO,-
Zr/Ti02*0.0001 B, BN ENRECE X (K 4a); 7E KoO-Si0, BT, FE G R I H &
LB RAE (1] 4c-d); 7E A/NK-A/CNK B, ¥ A 593840 504 £ X 5 (A/CNK=1.02-1.06,
Kl 4e). TEEIGHIISIRAE Z O RIRM BT, PR RS E 4 The U Pb, 54 Nb. Sr (&
5). TERRRIBRAARMEMHE Lo R ik b, e EEEm ok, sHEMLOR
(Lan/Ybn=3.74-7.24, K 4D, I HEA EFEM Eu FUR% (Eu* =0.42-0.72) (& 5).

3.2.2 MEERNKE

APEIERE (B19T21-22, 24) HIbeRERL (1.52-5.22%, “F352.41%). SiO, &&=
T 59.9-71.2%, Mg"E /T 32.5-55.5 (K] 4b), BAE SN K0 (2.30-4.77%) Fl Na,O (3.05-
391%) . 1 Si0x-Zr/Ti02*0.0001 FlH, FfMEAEMEIIE 25 /92 5 X (B 4a). {E
Ko0-SiO; B, #f it I i B B E AR AE (B 4e-d)s 7E A/NK-A/CNK K, & AL
B A A X (A/ICNK=0.94-1.18, & 4e). 7ERIGHIISHRAENZ TR KM E T, FraFE
B4 Th. U. Pb, THiNb. Ta (& 5). fERRKMRAARHEAH LT R HhZk b, EA1E%
BWtook, smEMLITR, BRERLOREE (Lav/Yby=12.9-53.8, &40, JFHAH
B Eu f153 % (Bu* =0.67-0.92) (& 5),

3.2.3 HEXUERKILZE

H K EREER S (4.02-4.83%), XEWHHEAET EKMAL. ETEKmELS
BUA A KIS TFoR A 0% (Ky Rb. St Ba %) KA, MHARBEAREEE & (Polatand
Hofmann, 2003). Bk, AT KA R R AE K o fns, Mz
EIKMAS SN O R, Bl ERITER. @mcRMMLITER (Polat er al,, 2002). ##
KA M SiO FEN T 55.1-55.7%, BAE R I Fe05" (8.75-9.03%) Fl MgO (5.64-5.99%)
HE, MgMEN T 60.0-61.3 (4 4b). 1E Kr0-SiOs Fll Fe,037/MgO-Si0, K, FEfh R I H
LR RE (] 4c-d); FEJFIAMISARHEM Z oo Rk B b, #EKE B4 Rb. Thy U,
Pb. Sr, THi Nb. Ta (E 5). fEERRLBRAARAEAH Lo REL M2 1, HEMEEREMm o
%, TWMEMRLIGER, BEM L RENEE (Lan/Ybn=6.23-6.79, K 40, J& Eu 5% (Eu’
=0.96-0.98) (& 5),



2 HAEH LRI DCE A ERIUER (%) MfEITR (ppm) 2 Hrai R

Table 2 Analytical results of major (%) and trace elements (ppm) of magmatic rocks from the Rutog-Songxi area, northern Tibet

o B23T B23T1 B23T1 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B23T9 B23T9 B23T9 B23T1 B23T1  B23T1 B23T1 B23T1 B23T1 B23T1 B23T1
s 12H1 2H2 2H3 1H1 1H2 1H3 2H1 2H2 4H1 4H2 4H3 H1 H2 H3 OH1 0H2 OH3 9H1 9H2 1H1 1H2 1H3
A W BB KA FAVGAE RS N HHAER NS g ak S
SiO, 76.59 78.34 71.66 68.81 69.78 70.22 63.99 57.30 69.46 69.96 69.17 67.64 66.11 65.89 64.98 63.99 64.70 60.55 60.81 52.79 52.55 53.02
TiO, 0.30 0.22 0.31 0.39 0.34 0.38 0.67 0.64 0.31 0.33 0.30 0.76 0.84 0.87 0.89 0.92 0.89 1.02 1.00 1.02 1.04 1.03
Al,03 11.57 10.91 14.36 15.68 15.47 14.40 15.68 16.33 15.40 15.40 15.47 14.28 14.77 15.03 15.15 15.27 15.29 16.31 16.38 15.67 15.87 15.76
Fe,05" 2.10 1.48 2.10 2.99 2.51 2.88 5.38 6.46 2.71 2.80 2.66 3.62 3.99 3.99 4.25 4.61 4.29 5.10 5.02 8.29 8.62 8.44
MnO 0.06 0.04 0.06 0.06 0.04 0.07 0.10 0.15 0.02 0.02 0.02 0.06 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.15 0.15 0.14
MgO 0.58 0.43 0.68 1.30 1.08 1.25 2.88 3.26 0.56 0.58 0.57 1.98 2.42 2.16 2.61 2.87 2.61 3.49 3.45 5.35 5.69 5.73
CaO 1.26 0.90 1.42 2.52 2.50 2.70 3.88 4.76 1.50 1.27 1.48 3.08 3.63 3.71 4.06 4.30 4.12 5.16 5.17 5.73 5.66 5.88
Na,O 2.85 2.58 3.81 3.52 3.82 3.24 3.42 2.92 3.53 3.50 3.84 3.56 3.90 3.88 3.78 4.03 3.83 4.46 4.44 3.86 3.78 3.64
K20 3.94 4.39 4.36 3.13 3.17 3.25 2.28 3.53 4.63 4.57 4.69 4.26 3.43 3.54 3.61 2.77 3.65 2.62 2.76 1.77 1.86 1.78
P,0s 0.08 0.06 0.10 0.26 0.19 0.25 0.52 0.27 0.09 0.09 0.08 0.22 0.23 0.24 0.25 0.27 0.25 0.29 0.28 0.22 0.22 0.23
LOI 0.40 0.41 0.90 1.73 1.61 1.88 1.52 5.22 2.52 2.44 2.39 0.48 0.39 0.25 0.29 0.43 0.30 0.48 0.39 4.83 431 4.02
Total 99.73 99.76 99.76 100.40 100.51 100.53 100.32 100.84 100.75 100.96 100.67 99.95 99.77 99.61 99.92 99.51 99.99 99.56 99.78 99.67 99.76 99.66
Li 31.21 25.28 41.46 66.54 61.93 54.93 118.04 78.70 29.75 30.53 - 39.48 57.39 45.06 42.06 54.92 45.17 36.35 35.04 106.50 101.50 115.30
Be 3.41 3.51 424 7.07 6.43 7.28 5.96 3.15 2.82 3.03 - 3.10 2.73 2.43 2.38 2.59 2.35 1.87 1.99 141 1.27 1.24
Sc 2.68 2.60 3.71 5.98 5.32 5.85 11.32 14.94 6.56 7.08 - 7.95 7.59 5.33 5.56 5.65 6.09 9.04 6.01 17.42 12.21 15.45
\% 25.63 18.74 28.69 47.27 39.27 45.29 91.49 140.66 45.52 46.32 - 94.69 105.1 101.0 104.8 117.8 103.6 130.1 129.0 231.6 228.2 245.7
Cr 10.39 16.72 25.79 18.67 16.74 17.00 58.70 30.05 14.48 15.23 - 58.01 240.5 62.56 48.95 55.91 58.19 42.74 41.14 77.98 74.23 80.02
Co 3.20 2.40 3.90 6.21 5.30 5.93 11.19 15.16 3.73 3.78 - 11.40 15.86 12.73 12.68 15.31 13.93 19.02 19.01 25.83 26.83 27.56
Ni 3.09 5.75 11.79 7.40 8.08 8.92 24.22 10.81 461 4.17 - 43.91 127.9 51.59 42.15 50.12 46.86 61.34 60.51 16.42 14.16 14.35
Cu 1.20 1.36 3.06 7.51 6.43 10.54 11.78 22.31 4.68 4.59 - 11.18 49.78 35.50 28.05 43.21 27.19 5.56 591 30.41 32.64 31.58
Zn 27.01 20.01 23.58 74.00 41.26 49.18 87.71 200.19 37.32 40.08 - 33.99 36.55 34.36 32.67 39.52 35.68 38.04 40.39 54.44 57.90 57.14
Ga 14.77 13.21 19.11 22.05 21.36 20.92 22.48 18.01 16.35 17.17 - 17.11 18.48 16.03 16.81 19.01 18.96 18.62 16.79 16.52 16.65 17.98
Rb 186.1 205.1 160.3 113.1 138.8 147.0 190.6 193.4 175.8 179.3 - 125.2 102.9 63.31 42.97 53.34 87.69 74.55 21.15 115.6 103.9 104.5
Sr 130.6 101.0 310.7 985.3 928.7 881.8 976.3 578.6 283.2 283.0 - 343.6 409.3 393.0 385.9 364.7 388.8 559.2 495.5 659.2 671.0 7015
Y 17.92 23.45 21.98 15.44 12.41 15.42 22.01 19.35 17.83 18.77 - 26.58 19.87 18.04 19.00 18.87 19.37 18.25 17.67 21.44 19.26 20.53
zr 155.2 123.6 167.2 177.4 1715 180.5 273.8 170.8 180.4 191.1 - 338.6 336.9 337.2 349.3 378.6 320.3 272.8 249.5 150.0 145.7 154.1
Nb 25.12 29.82 25.50 20.64 17.59 19.80 28.13 12.14 13.96 14.47 - 31.41 25.96 24.73 25.19 23.85 25.71 20.35 20.16 8.91 8.51 9.06
Ba 2435 243.0 615.0 1797.7 1325.8 1373.2 866.0 857.8 998.3 967.5 - 298.4 270.7 197.6 159.8 109.2 194.0 269.5 82.25 248.7 209.9 239.1




i B23T B23T1 B23T1 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B19T2 B23T9 B23T9 B23T9 B23T1 B23T1  B23T1 B23T1 B23T1 B23T1 B23T1 B23T1
e 12H1 2H2 2H3 1H1 1H2 1H3 2H1 2H2 4H1 4H2 4H3 H1 H2 H3 OH1 0H2 OH3 9H1 9H2 1H1 1H2 1H3
La 15.79 15.16 23.24 77.23 76.71 65.84 149.90 41.16 46.19 46.75 - 50.53 49.88 42.58 39.68 46.26 40.99 38.50 34.60 19.29 17.06 18.48
Ce 30.83 30.38 42.19 125.6 125.9 107.3 243.6 78.46 86.30 88.14 - 104.3 99.57 84.93 86.34 93.47 83.62 75.24 71.87 42.07 38.65 41.41
Pr 3.50 3.36 4.69 11.46 11.39 10.14 24.84 8.39 8.71 8.87 - 11.13 10.48 9.22 8.89 10.03 9.06 8.17 7.87 5.07 4.65 4.93
Nd 13.03 12.21 16.72 41.25 40.23 36.47 84.25 32.77 32.24 32.55 - 37.40 35.50 31.71 31.07 34.31 31.53 29.46 28.42 20.64 19.10 20.11
Sm 2.89 2.87 3.47 6.91 6.22 6.20 12.67 6.49 5.96 6.05 - 6.43 5.93 5.34 5.33 5.61 5.41 5.07 5.00 4.27 4.00 4.19
Eu 0.48 0.42 0.83 1.61 1.50 1.44 2.53 1.58 1.20 1.20 - 117 1.25 1.24 1.25 1.25 1.30 151 1.45 141 1.28 1.36
Gd 2.97 3.20 3.60 4.88 4.03 4.44 8.23 5.44 4.77 4.88 - 5.94 5.28 4.76 4.90 5.07 4.96 4.75 4.62 4.55 4.12 4.34
Tb 0.48 0.57 0.57 0.66 0.53 0.62 1.02 0.75 0.70 0.72 - 0.84 0.69 0.63 0.67 0.67 0.66 0.63 0.62 0.65 0.61 0.65
Dy 2.95 3.82 3.62 3.44 2.64 3.30 5.33 4.16 3.83 4.01 - 4.81 3.80 3.46 3.70 3.60 3.62 3.44 3.46 3.86 3.66 3.85
Ho 0.60 0.80 0.74 0.64 0.49 0.62 0.96 0.83 0.77 0.81 - 0.93 0.73 0.65 0.69 0.68 0.70 0.65 0.64 0.79 0.74 0.76
Er 1.82 2.58 2.20 1.66 1.33 1.69 2.38 2.30 2.22 2.30 - 2.75 2.02 1.82 1.99 1.92 1.97 1.81 1.80 2.23 2.12 2.18
Tm 0.29 0.42 0.34 0.25 0.21 0.26 0.33 0.36 0.34 0.36 - 0.40 0.28 0.26 0.28 0.28 0.28 0.26 0.25 0.31 0.30 0.32
Yb 1.98 291 2.30 1.57 1.33 1.58 2.00 2.29 2.24 2.31 - 2.74 1.81 1.66 1.80 1.77 1.80 1.57 1.58 2.04 1.96 2.08
Lu 0.31 0.43 0.34 0.23 0.20 0.23 0.28 0.36 0.35 0.36 - 0.40 0.26 0.25 0.27 0.26 0.26 0.23 0.23 0.31 0.29 0.32
Hf 4.07 3.66 411 5.10 4.99 517 7.65 4.88 5.43 5.75 - 7.67 7.44 7.24 7.38 7.89 6.74 5.48 5.19 3.23 3.12 3.25
Ta 2.59 4.25 2.43 1.56 1.35 1.33 1.49 0.87 1.26 1.21 - 2.79 1.73 1.69 1.77 1.53 1.72 1.23 1.23 0.49 0.46 0.49
Pb 24.50 26.35 26.24 61.02 34.96 36.40 24.21 53.53 27.30 27.50 - 15.06 10.86 8.27 6.36 5.12 8.88 10.73 4.54 5.55 4.18 5.56
Th 21.00 19.76 19.20 38.90 38.48 41.57 72.28 13.15 21.78 22.40 - 44.66 38.06 30.03 28.51 35.98 28.10 14.68 18.39 3.19 2.48 2.85
U 3.62 5.06 2.00 2.62 3.30 3.22 5.22 3.18 4.19 4.27 - 9.58 4.01 3.33 3.07 4.25 4.57 2.76 2.50 0.81 0.73 0.73
Eu” 0.50 0.42 0.72 0.85 0.92 0.84 0.76 0.81 0.69 0.67 - 0.58 0.68 0.75 0.75 0.72 0.77 0.94 0.92 0.98 0.96 0.97
Mg* 39.18 40.65 43.23 50.38 50.12 50.35 55.50 54.04 32.46 32.63 33.48 55.99 58.56 55.81 58.84 59.18 58.69 61.46 61.56 60.04 60.62 61.29
(La/Yb)n 5.72 3.74 7.24 35.39 41.37 29.95 53.83 12.89 14.81 14.50 13.25 19.72 18.44 15.81 18.79 16.38 17.59 15.71 6.79 6.23 6.37
A/CNK 1.03 1.02 1.06 1.14 1.09 1.05 1.04 0.94 1.14 1.18 1.10 0.89 0.88 0.89 0.87 0.88 0.86 0.83 0.83 0.84 0.86 0.85

Mg*= (Mg0/40.31)/(MgO/40.31+Fe;03*0.8998/71.85*0.85)*100; Eu"= EU/SQRT(Sm*Gd); (La/Yb)n, N=ERKIFRAFrUELL, FruEfbEdER EH Sun and McDonough (1989)



HAAE R N (B23T9-10) HH A (B23T19) A BKMIFE K& (0.25-0.48%),
A ARG AR AR L (18 24 4D, A SO HA IR R FEM I Sio B & T 61.1-
68.0%, fE SiOx-Zr/TiO2*0.0001 &, FEfh FARNVE RO I 2 G/ 26 X, 5 HATERE
fE—% (B 4a). FEEARFEN KO (2.65-4.29%) F1 NaO (3.58-4.50%) &, M
1) Mg"E (55.8-61.6, & 4b). £ KoO-SiO, FffH, FF i3RI H = 8 A5 il PERRAE (B 4e-dDs
£ A/NK-A/CNK B, FfVEERER IS A X d (A/CNK=0.83-0.89, & 4e). £ /5 4AH1Z
WA Z ORI I, 5 = AE R NS B 5 Thy Ul Pb, 54t Nb. Ta (& 5). Ffdn
EEEM LR, THREMTICR, RERLSREE (LavYbh=13.3-19.7, E 40, HH
HABAWER Bu 7% (Bu* =0.58-0.94, 735 0.76) (K 5).,
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Bl 4. (a) SiO2vs. Zr/TiO2*0.0001 Ef#; (b) Mg vs. SiO2 Elff#: (d) FeO/MgO vs. SiO: Ff#; (e) A/NK
vs. A/CNK FEfi#; (£) (La/Yb) nvs. Ybn Ef#
Fig. 4 Diagram of (a) SiO2 vs. Zr/Ti02*0.0001; (b) Mg” vs. SiO2; (c) K20 vs. SiOz; (d) FeO™/MgO vs. SiO2; (¢)
A/NK vs. A/CNK; (f) (La/Yb)n vs. Ybn
A/NK = (A203/101.94)/[(Na20/61.982) + (K20/94.2)]. A/CNK = (A203/101.94)/[(Ca0/56.08) + (Na20/61.982) +
(K20/94.2)]. JALVEHEE (120, 110 190 Ma) HERMEAE K AL (Lietal, 2018; Lei et al., 2020; Hu et al.,

2022; Bai et al., 2024b; Gong et al., 2024 F F i (&% k)
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Fig. 5 Primitive-normalized muti-element spider diagram and chondrite-normalized REE diagram for magmatic
rocks from the Rutog-Songxi area, northern Tibet
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3.3 &% Sr-Nd M A R Lu-Hf L REHR

AT 5 AR INKAERER (B23T9HT. B23T10H1. B23T19H2 & B23TI12HI-H2)
2 KA R (B23T1IH2-H3) AT 7 4% Sr-Nd [Ffi=ille, 4R5TH 3. HiF=
BATE B NS TG 37Se/%0Sr LA N 0.706085-0.707183, [ exa(t){E A — B BUE 20 4E 8
AA-6.95 2-6.91 Fl 1474-1476 Ma( & 6a). H T4 5 INK W16 37Sr/3Sr LLAE A 0.705259-
0.705700, THE 1) ena()fE 0.78-2.40 (& 6a), B FiE (827-694 Ma) EifFf. Ht
WK B WIEE S7Sr/20Sr LU A 0.704486-0.704683, enxa(t)fEi N 0.57-0.61 (& 6a), —BrBAE=
RSN 917-899 Ma.
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Table 3 Whole-rock Sr-Nd isotope analysis results of magmatic rocks in the Rutog-Songxi area, northern Tibet

Y FiE (Ma) 87Rb/8Sr 87Sr/86Sr 20 (87Sr/88Sr); 147Sm/44Nd 143N d/*44Nd 20 end(t) Tom(Ma) T2om(Ma) fsmind
B23T9H1 90 1.054143 0.706804 0.000013 0.705456 0.103973 0.512694 0.000005 2.16 634 714 -0.47
B23T10H1 90 0.322114 0.706112 0.000014 0.705700 0.103691 0.512623 0.000005 0.78 731 827 -0.47
B23T11H2 90 0.507245 0.705135 0.000014 0.704486 0.124983 0.512627 0.000005 0.61 899 840 -0.36
B23T11H3 90 0.447894 0.705256 0.000012 0.704683 0.126577 0.512626 0.000005 0.57 917 843 -0.36
B23T19H2 90 0.123469 0.705417 0.000018 0.705259 0.106449 0.512708 0.000006 2.40 629 694 -0.46
B23T12H1 119 4.125381 0.714160 0.000016 0.707183 0.134169 0.512235 0.000005 -6.91 1749 1474 -0.32
B23T12H2 119 5.880098 0.716030 0.000017 0.706085 0.141942 0.512239 0.000006 -6.95 1929 1476 -0.28
R 4 AL H R P HBDCE JE 5 A Lu-HE [RIALZR 04l

Table 4 Zircon Lu-Hf isotope analysis results of magmatic rocks in the Rutog-Songxi area, northern Tibet
s W (Ma) 176y p/1TTHF 26 178y 7T HF 26 LB FATTHE 26 gHf(0) gHAf(t) 26 Tom(Ma) Tom® (Ma) fiLumn
B23T12-1 119 0.063454 0.000227 0.002106 0.000008 0.282567 0.000022 -7.2 -4.80 0.8 999 1480 -0.94
B23T12-2 119 0.064496 0.000713 0.002254 0.000029 0.282399 0.000028 -13.2 -10.77 1.0 1248 1858 -0.93
B23T12-3 119 0.051307 0.000589 0.001755 0.000021 0.282572 0.000025 -7.1 -4.59 0.9 983 1468 -0.95
B23T12-4 119 0.082331 0.003998 0.002633 0.000114 0.282542 0.000021 -8.1 -5.75 0.7 1052 1541 -0.92
B23T12-5 119 0.051922 0.000853 0.001828 0.000021 0.282506 0.000027 -9.4 -6.96 1.0 1080 1617 -0.94
B19T21-1 110 0.025318 0.000297 0.000889 0.000014 0.282446 0.000015 -115 -9.2 0.5 1137 1752 -0.97
B19T21-2 110 0.029006 0.000287 0.001025 0.000008 0.282450 0.000014 -11.4 -9.1 0.5 1136 1744 -0.97
B19T21-3 110 0.037515 0.000262 0.001293 0.000007 0.282459 0.000016 -111 -8.8 0.6 1132 1725 -0.96
B19T21-4 110 0.030468 0.000188 0.001088 0.000005 0.282440 0.000013 -11.7 -9.4 0.4 1151 1766 -0.97
B19T21-5 110 0.042463 0.000633 0.001415 0.000017 0.282459 0.000018 -111 -8.7 0.6 1134 1724 -0.96
B19T22-1 109 0.016941 0.000196 0.000592 0.000008 0.282280 0.000016 -17.4 -15.0 0.6 1358 2121 -0.98
B19T22-2 109 0.030525 0.000340 0.001115 0.000009 0.282308 0.000018 -16.4 -14.1 0.7 1338 2062 -0.97
B19T22-3 109 0.043274 0.001176 0.001451 0.000040 0.282253 0.000015 -18.3 -16.1 0.5 1427 2185 -0.96
B19T22-4 109 0.021696 0.000078 0.000798 0.000003 0.282307 0.000019 -16.5 -14.1 0.7 1329 2063 -0.98
B19T22-5 109 0.026829 0.000606 0.000987 0.000019 0.282308 0.000018 -16.4 -14.1 0.6 1334 2062 -0.97
B19T24-1 110 0.028216 0.000296 0.001057 0.000008 0.282422 0.000021 -12.4 -10.1 0.7 1176 1807 -0.97
B19T24-2 110 0.026138 0.000221 0.000941 0.000007 0.282380 0.000018 -13.9 -11.5 0.6 1231 1899 -0.97
B19T24-3 110 0.045867 0.000824 0.001623 0.000029 0.282374 0.000018 -14.1 -11.8 0.6 1262 1915 -0.95
B19T24-4 110 0.026023 0.000440 0.000927 0.000014 0.282389 0.000018 -13.6 -11.2 0.6 1218 1880 -0.97
B19T24-5 110 0.042094 0.000584 0.001458 0.000018 0.282416 0.000017 -12.6 -10.3 0.6 1197 1822 -0.96
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4.1.1 RARHRR T ER

R EBEF A0 N 1. Sv A MM B (Whalen et al.,1987; Chappell etal.,2012). 75
ZBAAIFA FEAE R N KA 1) MnO &8 (0.02%-0.16%, 71 0.06%) ZA%T M AL K A 1P
B (0.11%, Whaleneral., 1987), Hii =LK NKEBAG 11 ea)fH (B 6b), S5IHHE
FrAE T HUIS YRR ) M BUTE R S B AR (Whalen et al., 1987). FERASBIN A VBRI
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Fig. 7 Diagram of (a) (Na20 + K20)/CaO vs. (Zr + Nb + Ce + Y); (b) TiO2/MgO vs. SiO2; (c) P20z vs. SiO2; (d)
ALOs vs. SiO2; (e) La/Sm vs. La; (f) Th/Nd vs. Th; (g) Rb vs. Sr; (h) Ba/Sr vs. Sr
EALTEEE (120, 110 Al 90 Ma) hERYEE FEEIRKIEWIE 4, 70455 : Amp =M N, Bt=B =Bk Kf =
#EA, PL=RK A

T = A SR TR 5 N A KBS 2B R 7E (Na2O + K20)/( Zr + Nb + Ce +Y) Elfif -
TR AR S X (B 72), RFTAIIEER IS I B 45 SRR . 7E La/Sm-La il
Th/Nd-Th Elfg, #f RIS (B 7e, Do XURHE, 256 FE MmN Si02 &
& (59.92-73.83%). KM endt)fl (-16.1~-4.6) FIH Z 1) M B AR (2.19-1.47 Ga),
FUEATR B Z TS A1 (Zhuetal.,2011) . {HIXEERE T BA B 1) Mg
fH (32.46-55.50, V340 43.82), W& T HUFE B MY B4 7k (55 <40) (Rapp et al., 1999),
TR RGTRE T, BB . HEAh, X EERE 5 B K et (57
A e LD, Wik—P 3R T BiRHER .

O = BN SRATEAE B N KA A i R R e AR, M D SFERRE (B 5D,
HA5 Bu F% (Eu"=0.42-0.92), H Nb. Sr t&R 5, REMNARKAIESFEL
MREFORAE T S B4 d . 7E Ba-Sr il Ba/Sr-Sr B, 3 = PARIRA PUAE B TN K Sl R R IR
A AR AT 2 B s e (B 7g-h), HE—BUEsE T RidHER .

gi EPR, AR = AFIRA TEAE R Nk B T 2 T e s i mt, HE
T — e R A ER, AT AR T, KA T MINARRH A ST 0 7 B 4
fr, FEE IR S MASH 2 (IER- R 77-3— 16D RFAE.

4.1.2 B EEHWESERE

~90 Ma H LKA 5K INKALE SiO, & & EAA/EW] R Daly [EWr (737024 52.55—
53.02%, 60.55-67.64%), Jyt R Klig . S HAA 4GS ) Nb (8.51-9.06 ppm)
HSEAMNb/U (10.9-12.5) HfE, RIHE Nb XA (NEBs) KIsEZM: (K 8a, Hastie et
al., 2011), ‘& Nb ZEAH WA EAMM, (1) HHE OIB B4 75511 ") MORB
R _EHB YR RS (Castillo et al., 2007), (20 RIE TR ISR HIEH (Hastie
et al., 2011). XFR G R KA REEEE R AR UBIRHI2E ena(t)E (Yang er al., 2006).
SR, H MR AR enaEHES— (B 7D, AL RIS S KRS IR . Hofmann ef al.

(1986) fii, OIB 1 MORB [ Nb/U il Ce/Pb LLEBNAL, 40514 47 £ 10 F125 £ 5,
H B MK 1 Nb/U #1 Ce/Pb FLEAR, 2308 10.9-12.5 F1 7.45-9.25, X —DHERR T €A1
& B AR EL OIB ZY MR 20 7 57 i ISR & IR I Pl B . H LKA B & Zr &5 (146-154
ppm) M Ze/Y WAE (>7.51) BIKRRGEZ B CARHE, HEGESR TV IE (26.3-28.7), ¥
BT RINKRE (<2000 18 Zo/Y-Ze FU KT, Fra e s AR % sUE X (B 8b).,
IXLERFAERR B H KA 1 R R T e SR A o AR F A G, TR IIUE SRR B A AR b AR s 1
ZACHIEHLA KA (Sun and McDonough, 1989; & 9b). 7£ Th/Hf-Ta/Hf EIf#H, FEFIEN
KRty /TR 24 K A XA (1 8D, 1t B H A B P A R 5t 28 RIS B =400
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HbAh, FERES R TR L BT, KA RAS OB Ml (B S. Fik, &
WV KA TR R R T 5 N R LR E R. BR0B IR 2 Lt R rp, w4
ZRNAFEREE IR e . MK A BB ¥Sr/8Sr (0.705135-0.705256) AR ena(t)
(+40.57~+0.61) ( 6a), AN[FTH#AH OIB B3 s, e B imnkhseamk, imaE
(La/Nb)pm-(Th/Nb)pn Bl H, KA il S0 H VR bl A2 (a3 (B 8dD « (R, ARHIFFEA3
H WA A R 55T I b 9 i A e R VR e o 72 T T
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8 (a) Nb/U vs. Nb Efi#; (b) Zt/Y vs.Zr Blfi#: (c) Th/Hf vs. Ta/Hf Blfi#; (d) (La/Nb)em vs. (Th/Nb)em [EIfi#
Fig. 8 (a) Nb/U vs. Nb; (b) Zt/Y vs. Zr diagram, (c) (La/Nb)em vs. (Th/Nb)pw, (d) Th/HF vs. Ta/Hf diagram.

12- KB S+ KR A2 LR TVI-BE A BB+ KR SR BRI X IV2-R BRI X R
He IV3- KBRS AIERA il JEMGHIE ) bR B K IE T Sun and McDonough (1989). 15
5T 7 i EdE KIE T Rudnick and Gao (2014)

H 16 5 N K B BRI Ze & 8:(250-379 ppm) Al Zr+Nb+Ce+Y fE(359-515 ppm),
ARSI A BIE AR AL (B 72, b)o BRI Rb &8 (21.2-125, <270 ppm) iH
AR R 1 B A FIEM (Condie, 1989). 1AL, BT A MATRE A 659-
859°C, V14 789°C, SEinsktt PRI A BIIE R 5 —3 (Patifio Douce, 1997). K,
H 76 5 N K A AR A BUTE 8 R4k

KT A BRI AR, B TR %, B4G: (1D H ST A58 7 445 fil (Skjerlie and Johnston,
1993; Landenberger and Collins, 1996; Frost ez al.,2011); (2) W& A [F k-4 B 45 b (AFC)
o PRl Sr B 45 (FC) (Boztug ef al., 2007; Zhang et al., 2023); (3) 1Y 57 A RIES

(Yang et al., 2006); (4) JKAZ X FHUFEH 14 (Wu et al., 2002; Shen et al., 2011).
SIS A F R IR BT 58 2 A BE K A B AR A8 RO R o 9k 6 i B A
BRI Si02 (>70%) A AT MR FE (>900°C) . K FeO' (<2.5%) (Skjerlie and Johnston,
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1993), {HH ALK NK A Si0r (61.11-68.00%) Ak F Ha A3 FE ¥ AR HAK (659-859°C,
145 789°C), FeO' Eifm (3.28-4.64%), 5ik/Z 7R B KBl B & RAFEAFT . 1
Ah, BER BRI FeOT & & Al FeO'/(FeO™+Mg0) (0.57-0.62) B R AR[FF & F-Cl FHiFEH#k
LB B AR 0 s R R K A BUAE R (Shen eral., 2011) . [AIG, HEBRHSE 8401k A o
HIREM- B ST (AFC) BiBaliny B 4s (FC) TERN A UL K A8 R K B3 A
#& (Wuetal,2002; Shen et al., 2011, {HGACPUERIE A B EM S RG U RTER, 5
ABERHEATT . H7IBIRE TR A BUA R @ RAAEHIRBEACA . g A6
BRI endt)s ena(fE (Yang et al., 20060, $R1f H 48 5 MK E R S BR & A HUg Ak 4,
FARRIER A HIL, X R R N A A KT RE R 5 I8IR & R . $EIE, AT,
H 46 5 N B T R AR K U0 R e 3 /I i 7= 4. ‘A& & Rb. Th. Pb %
LILEs, 1fi H.(7Sr/%Sr); (0.705456-0.705700) Fl ena(t)fE (+0.78 ~+2.40) g IEIH AR 4
THLFERFEARL (B 62), HAGHFERN M B ER (827-694 Ma), ¥ FF Fikdf

-i//b\o

42 MEER: WA B LG RELRHZ

AR SO U IRAL H A PG 3 X 3 B 2055 5 W E— B4 43 ~120, ~110 F1~90 Ma =
W, AT NS S, SRR T TR R A E R, BT T — e R g
TRATER, I EoR HKREIUE JE IS5 E . o MRV R 5T R W, 8L 78 350 1) i 9 7 A
FNRLGEHAALE 120-115 Ma HATH] 540 25 ~825 + 600 km (Cao et al., 2020), BE—HESE T %4
[B] AR ST PR AR AL, DEIIR S SR A TR BT 1Y 5t AL PG H6~90 Ma 259K # A
s, R T A BRI, MmN E N KA, 456 DX I8 i 3 i A
BERCAUTRY, HRR TG E s A IR DU SR EM S (Dini et al., 2002; Allen, 20100, [l
e, AH - FA VX LA SR RERE ,  JAL TG 5 AR SR e AE A AL AL T
BB B, B EHAS FEE O T R TR B, W A K T PR TR PR A S
i Al 43

N T BE— NS 2 AR AL TG R R T e R R, AR ST G i T H B
PO X Ok 2 — (B 20 5 A T R OISR R . SR 40 SR 2 T S 1 M S 47 55 SRR 5 DA
FIEN -Gk P - AR L VIRET (B9,

BRI FEIEE () >~1.0 GPa) WIERK S AERE RS, Y M Yb mm ik
JeHER AR AN A, {H Sty La GRS, FERHAE R SrY M La/Yb HfE
Br. M2 N, fEEREMF NS (5] <~1.0GPa) H, St nE&&esmERKAF,
MY Yo TENGFEARAM, SHGRZESRK Sr/Y M La/Yb ELAEFAK (Chapman ef al., 2015),
Rl 2 2A Hh Sr/Y A La/Yb LU AE AT AT 20 DA 5% SR8, %07 K ey 2R Rl e i
A7 58 S 3E A (Hu et al., 2017a, 20200 AT [ H LA X k2 - L L5 K E
¥4, A Chapman ef al. (2015) F1 Hu et al. (2017a) J73F3ET 1 00 At 5 )5 B2 il
iR, (D) b IX7E 160-100 Ma 70 )3 BEHEAKR AL (8] 9b), 4ERFAE~30 km [f)



KPP FeJE R, fa8 TR AR 31 5. (2) 7E~100Ma LU, HRBEME, K
AAE~90 Ma IS F|IE(E (~60 Km) (J& 9b), F&/x 1 [FIMEEIAEL; (3) ~90 Ma L5, Hi5EH]
I, FEN TG LR AR R S XA B IR SCRE T R SCHE S, RITGELPEE~120 FI~110
Ma ‘53 E TR PRI PR B S 55, ~90 Ma 3 T T3t L 5 5 A FEL IR URS 5t R 10
UiFESZS

BT Th, La, Nb fEAFEZEHECHT R IEBAE SIRX EERZES, W HERER
B2 SR BRI 245 h5 (Pietruszka er al., 2009; Jung et al.,2023). A SCH 5818 7
i TGRSO ST R G 0 1 S A A TR U (R e IR TR ] o 45 R, SRR T
BREL B 7E~110 Ma INSEBIEAE (] 9e), 15 EIVEE-WIOIE K Pl W AR RE 7 [ B £b T S Y5 fil i 5ig e
FILH Y Th/Lay Th/Nb $#4EAH{L (Chung et al., 2003; Mo et al., 2007). P ASHF 78 HEM
R BT G By 5% - S b AR 1) ) GG R I 1] B 7E~110 Ma.

FEVIRUEF b, ARG AR Gy DR IR IR A DO s . WA R
VRGO I 2R R A UAR-BRIR £ 5 B A i . R B = AR i B E b
NE (B 9a; XISCEE, 2019; Luoeral., 2020, 2022), ¥4 NEHERERZERF, 103 7 5
PRI R PR SRR 4 R . 96 Ma VUG, AXBETFbE, K& RhARBS R A # i K&
HERRIEMAES (B 9a, Liueral,2014; ZEHEZL, 2016), RUFE/DLEME,
RV TG BPE R A e A O, Bl R L2 T 46
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Fig. 9 Schematic diagram showing the multi-element comprehensive characterization of ocean-continent transition processes in the northern Tibet. (a) Stratigraphic column of the
Middle-Late Jurassic-Cretaceous in the Bangong-Nujiang suture zone (BNSZ); (b) Plot of the crustal thickness versus age for the Mid-Late Jurassic-Cretaceous intermediate-felsic
magmatic rocks in the western segment of the northern Tibet, the crustal thickness was calculated with the method referred to (Hu ef al., 2017a, 2020); (c) Water depth estimated based
on sedimentary facies environments; (d) Global sea-level evolution history (refer to Ruban, 2015); () Trend of crustal contribution proportion estimated by binary mixing simulation
of crust-mantle end-members using Ba/La, Th/Nb and Th/La elements in the Cretaceous magmatic rocks from the western segment of the northern Tibet. The selected crustal end-
member compositions (Ba = 628 ppm, La =31.0 ppm, Th = 10.5 ppm, Nb = 12 ppm) and mantle end-member compositions (Ba = 29.2 ppm, La =5.21 ppm, Th = 0.404 ppm, Nb =
5.24 ppm) are taken from Rudnick and Gao (2014) and Gale et al. (2013), respectively; (f) Schematic diagram of Cretaceous paleogeographic reconstruction of the western segment of

Meso-Tethys Ocean
AR RETFE 4, 45 BNSZ: PEAW-RIL4S, SQT: mEHiMifl, NLT: JbhipEhifg



4.3 BALHBLHEREHR 5E IR

BT RALTE I A R DU A TSR AT L, AR SCUC PR BN P B AE~110 Ma K
AT IR, BEJS R T RRMTERE e, $1~96 Ma TPRFSRETESTE A A, Bl B S
BOhseIZ W, 2~90 Ma, & 1L1EHBE GG, B R R HOK, B I U6 R sl ,
JERH L X ~90 Ma XA IR A . Ik, ARSCAE IR OB SCREIL PE i 7E 1 22 20 B A4 4k
TPERERE AR B, T ARRG R AR L B (H AT AR AR, TR AR LRS- T — s,
I W S 2 A B TR SR A e I O R P (~147 Ma;  Zhong et al., 2017; Zhu et
al.,2019; Tangetal.,2020), TRACE Z EABEEGE SHE GRS H-F OB R IH, Fa%
AR BE B A DA SE (Zhuetal.,2019; Maetal., 2017, 2024). IXFERE A FHI34E T R4
TFHE 2 B 12 [X 70 15 0k 5 - L 5 S 4 L] (~147-120 Ma) kb T-VERGE64e, J 2 /b 7E~120 Ma
PAE, C& kARG . AR el —7, B KRR SR B BT T 145~132
Ma (Faneral., 2021, 2024a, 2024b), 5 MHEE #3052 B AT AK)9~113 Ma (Luo et
al., 2020, 2022), FHUNZX B RHRITERR LA 2 5 B G AL T i~105 Ma £ H
FLLHRHAR SRS XS T RIBACE A G, RINZIX AT (RIS, 2014;
Luo et al., 20205 %29, 2022). I\ R FEORAHES H, jBlAb 2 s A R L B AR,
TEVZIN 3 A RE R A TEAE 28 D7 MR 1) 6 (1 5 B 30 ok e 45 RO B B 48, 52807 1R — B A [ [X
OGS AR PERE A e AR ) R AE

gie R GORL, AT E @ AL A LA R (B 10D a1F

(1) 147-96 Ma, HURFFZITE VG ) 28 58 I VERG R 4B B B AR B0 4E 147120 Ma ]
] OV TF AR TR G 4, IR 2D TE~120 Ma HENRIEREE 1L, T RORE BBl Bt AH S A DR (Zhu
etal,2019) Fi& LG EHKE (Huetal,2017b), {HIEES, B FE300 40 TS 5t R
AR EE, TERT T2 M E B YR (~126-113 Ma; Luo et al., 2020, 2021). F~96Ma, H
R A o8 BT R e e, E NPl i Al R o B

(2) <96 Ma, PFfiFfifiif#I B B hig=-p JesE R R, HI5E4E~90 Ma NS 2 5
R, Z B A 78 s b 52 S B RO 50~60 Kmeo 1% 55 BR AR AT 1K 3175 7 i JR L4 11 b
FEJEEE (HHEF-)~70-90 km, Murodov ef al., 2022), {H B AR R MR EE CF
~40-50 km, Tuninietal.,2014). ~90Ma PLJ5, INJE S A BT AR DTE ) B0, TERUX
B ERER A BTERE . g KA. OB BUMEK A BRIk i i A 41 S kR R ) 5 3%
# (Wueral,2019; 255, 2024; JAE T4, 2024; Xiao et al., 2025).
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Fig. 10 Schematic diagram of ocean-continent transition and orogenic process evolution of the Meso-Tethys Ocean
during the Middle-Late Jurassic—Cretaceous

45 SQT: FJe¥ihik, NLT: Jbfrgéhigk

4.4 BIL OB FBRAREE LX ERASE RN KT

FRALPE AWV L8 S KA G e I, Th BRI E R EZE R e — Qe
&, 2012), ORI, 6. . BEEZ SR T IHREREL, RIEIK () 600 AL, H
HOL DRG0 R R RO B (B 1 B %5E, 2017, 2024: Liuer al., 2024). %X
S AR S A PR B R T R 1 R RN 1 S, 200 DU R B 2 R e AR X
(122-115 Ma, BKA-Gn%, 2012; JEZP4%E, 2017, 2024; Liuetal., 2024) FIZURT5-R4r
A& 4EX (89-87 Ma, Zhang et al., 2015; k&S, 2017) ARFE. KTHALAELH
FAER &SRB R B T RS 57, H AT AU R AR AR SRR AL R A I AL I RS



B HH L SRR AT I VA it A A G 1 S 32 1 S A R AR T AL 1 2 A A 4
BRI B o

(1) HRHR IR Bt T8 R RUREE, b R R 6 s SR A T A
Ak KU, VEREFERIT B, BEE KIS, KRLS A BRI (a4 KRR
PRI KBS B N RS0, 2 S A R oAk s ik (B AL
A R TS RERRBA A S A B SISy, AT IR R
FEJEAMA (Kelley and Cottrell, 2009) . ASH FEHRHE Trail eral. (2011) 724k 5 (1) it FE 45
BIRTFIX N, HE =R INKE (120 Ma) 1 1g(fOo){l N-29.4~-9.66, “F-1J-19.8,
2 FIATEER KA (110 Ma) 1 1g(fO)E N-27.4~-12.5, “F33-18.8, HEAR I =)
SGRRE . BUAh, VERG RIS A A I Bt SR D3 IR, SR 2 o 1 5 b e i R A i B R
18, R N T A S s, &0 T )2 14 S o A R AL TR 444 (Farner and Lee, 2017) .
TE AR, —SRFERI Y UMM f . M40, Fe-Ti B0 S04 & a4
Hor S, AR R A AR AR & AR R R 5y (i Fe*t), A OB SR i — 2D Tt
= (Brounce ef al., 2014). XEEMHIERSIEEHRAYIEEF, N Cu. Au SFEBIERA T
B TR ST GG A FIZE (Richards, 2015), F % 5517 (1) El Teniente BT A40H
HAR BRI SN, w028 AR Bt A IRIE ) 7 %2451 (Richards, 2011).,

(2) flfA fo R AR R S A7 BB AR T s LRI AR 1 I . A < ' SR A
Wil s 51 A b e 1Y JEE RN 5 10 A BRI, 189 5T 7 (R R I 2 51 R B e 0 ) DR A
e BRI MR IEIR (Kaislaniemi e al., 2014) . BBl EIR AR ML T #vig, & T
RESINE BRI 4 B TR, XSRS A g R A RIER, TR T B & 48
(A P S, N EE AL T I RE (Griffin e al., 2013). AMERIFE bR EHAT B
e ELRHTAE T e, SRS AN EKILFEIER, Befs A RamblE Ka e,
M E— AL Cu Au 75 LATE 5 5 b s B2 0 B 2 R UR A1 e (Hou et al., 2015
GRS, 2025), IXARA W BRI AR 55 VR hr b X 4 4> DR U B AR R A

5 &1

o VE AR A AT 2 BRI - - VE R AR R TR U, R BT SRR RN
WHFL, AMET] LA & FUR JEAR A IE B i, 38 v] DLF R 20 7= PR, RS 1B RE&5F . SR,
HI TP Bl A 17 S L S 2%, n SRR AT P SR M A A TR A s 2 — o AR SR T
Va2 IR J A -DURVE LR G WAL, JRES & KB B BORE, B T PR S 0 o A e 441
(D YoF o 2 A0 AR i 1) o e O 48 32 1L 2, SRR T BT Xk 5 i 4 R VR o e ™ 1)
FhE R RALE] . A SIS AR

(1) ARSCIRIE T & = AFIRA P X I T BT8R (4dila2 119 Ma #1110 Ma), LA
H X & Nb FFEKA R A B 5 2 4 i sl 0k s (90 Mads BTS2 4 T T 2441
MASH AR, 52 M3 )5 T se PR 5] R SR Bl g by, R T 7 i o
FE TR 1 o



(2) 7E 147-96 Ma HJ[a], HRESRETAE E VG F) 22 20 I AT, HG o D B R e o R R 2
£ 110-96 Ma, B 5t NFGFEREARERT B, 51 re B35 5 . fE~90 Ma I, Hi5g CLIg )5 %2
50~60 Km, i ILA B s R RS R B CFI~40-50 km), Tind B3 I HIER BT .
Wb, HRESR TR A S R - IS I M A R i et AR 5 | T SR TR S SR T G B T
R I A R TE B8 T TR . ~90 Ma LAJS, 3R R b Fe R AERDL, AR VI m R
HENE LS A T B

(3) FRAL R 3 A 4 b B R vh KB 2 ) LR DAL EE AT J 48, DL A
FOIN A U R AE 1A SRIB A EURE TS, N Cu. Au 588 B R i 7 A R %
(G NS B S TR Y B NN T SOl O LG I (S G 87/ gl o P 1 il W =i 2
WHITERL, B AR Cuy Au HEHb & HE Bl 2 S R A T A
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