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Abstract: As human activities and major infrastructure construction extend into high-altitude mountainous regions, the risk of snow
avalanche disasters is increasingly severe. Generating avalanche hazard maps is a crucial foundational task. This study, focusing on the
Galongla Section of the Zhamo Highway in Xizang, developed a framework for identifying potential avalanche release areas and
conducting large-scale hazard assessments by integrating GIS and RAMMS numerical simulation technologies based on DEM data.
This study defined a "general scenario" based on standard terrain parameter thresholds and an "extreme scenario" in order to assess the
potential maximum hazard. The results indicate that under general and extreme scenarios, 539 and 526 potential release areas were
identified, respectively. In the general scenario, the avalanche-affected area was 43.89 km?, accounting for 54.58% of the total study
area; under the extreme scenario, the affected area expanded to 53.24 km?, representing 66.20%. Additionally, 16.7% and 25.8% of the

highway section in the Galongla area were classified as high hazard level under the two scenarios, with maximum avalanche impact
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pressures exceeding 580 kPa. The avalanche hazard in the Galongla Section of the Zhamo Highway, Xizang, can be categorized into
four hazard level levels: high, medium, low, and none. The high hazard zones are prioritized as target areas for mitigation engineering.
This research establishes a portable and efficient avalanche hazard assessment framework by combining GIS-DEM analysis and

RAMMS simulation, offering a practical solution for data-deficient high-mountain environments.
Keywords: Snow avalanche; RAMMS; Numerical simulation; Hazard assessment; Zhamo Highway; Qinghai-Xizang Plateau
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F RN TAEEE T RE TR E AR, T2 RKETaREELX(EEZ T, 1986;
Laute and Beylich, 2014; FAi#i%%, 2025), fE&EHMHIEZAME T, FAMNRERTIAE]200 km/h, 7=
J& J1ATIA500 kPa (Yariyan et al., 2022) . fEUISL R EAE IER T, 5B REME 5 2 SRR Ei
MFEREOE, FEATRET] R A T (I K 4%, 2013; Mayer et al., 2024). %40, 2011 4E3 H 24 H, %
S EIE e 11 RS B, R0 N EF(Chen et al., 2024); 20234FE1H17H, PH 2 i L & A A
BT X10° mP s i, SEL 17 SR EH LT, 28 NiBXfE(Zhang et al., 2025). BtAb, FREEHISARARRE
RSN T AR o o K AR B R AR AR AR R, RN s 1 e 28 1L X oK S bk, #ET S350 1 55 o F A
f) 3. 35 18 N (CC it 2024; Reuter et al., 2025).

FE T i R B, A A 6 P i P e — T 28 O B B A SRR Al % AR (RIBER, 2021) . 19534F Fifi - &
UCRAT T B R B B SE PR, Do R b RAE A 224 1R AR SO 2 B LA A LA R e
PR T OCRR IR AR (B Uhler et al., 2018). I & - BRI 30 T vk, SR I X M AR B
SRR TR AR OR RE SR X A, BT 2 A RUH UM SR (Aydin et al., 2014). FEE S B RS
(Geographic Information System, GIS)E AR MK &, Giit 7245 ARSI H (7K P15, 2024). Siit s
Pl AT S S S R AR B R RO R R AT TN, 3R TR, (H RS R AR
B S A 1) 5 MR G R WSS, 2020). 4T, HETYIELEN 1 E R BUE R EOR © SOV ENE T B,
RAMMS(Christen et al., 2010). SAMOS(Sampl and Zwinger, 2004) R4 i £ELE (BB, 2025). il
o AUL 7 958 R SR AR A 2 7 R AR AU L B A R, O TR R R B E A S M (B SR A,
2022) o F= T RV [ BB RS AN AR A 0 s B b B e A AR 5 0 A P e R, KR 4R MR 2y SE KA 2
FE GRS i R ) E5 2 T B (BUhler et al., 2022; Ortner et al., 2023). 4R, 3 E K G504 T
BB, 0T T e A 1 5 R v SR X S R AEAE AT T e i R R KRR R it A VI A 1) 7 e e S
AL XY RE, 55 A TR )RR R M LTI I, A 5% i) gl Al 75 51 RS B (B A 3R, 2024; HE
XA, 2025).

N BT B R E, AT SRR T AR S OB T AE B iIX (Potential Release Area,
PRA)(Sykes et al., 2022). #& T %5 = 4% A (Digital Elevation Model, DEM)iR 5 35 3Rl Lk H 3 . e
WM IEAERE BRI, HR RO RAGE R, 2022, 7881555, 2025; Woodard and
Mirus, 2025). XLE77 35S KEIHIEATESH,  HP AL A NN RE A E X073 A % 0 A
I, T A Sl 2R AR SRR B g N B DA TS AR 2 (5K %, 2024; Thakur etal., 2025). #H
KEHPRAMIE A FLfE % T LR BB . FAE19554F, Voellmy i 5 H Hu 3 B 78 U0 55 3 i 4 (X
g geE PEVE I (Bihler et al., 2018). BHAEFHORKIHBE, &7 HF 3 DEMAIE R HoR K JE B St B 4
MBS EH R RS B S R S R S BN T e, AT R E G 0 T PRARAR ARG (B Uhler
et al., 2022; Ortner et al., 2023; &7 R#ESE, 2023).
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Fig. 1 General overview of the study area
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Fig. 2 Flowchart of PRA identification and hazard mapping
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Fig. 3 Input layers for PRA identification: (a) hillshade; (b) slope; (c¢) roughness; (d) plan curvature; (e) aspect; (f) land-cover type
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MRS S T PRA, JE BB ERE (20°~60°), FFHIBRHERIRERE (> 0. 200, ~Fii
28 (> 1) FIRRMRAT o 1 DXCI, s PR ) A 2 3 A A B WM i 155 5 T RS B K 3 T 1P B o 10
PRA.

23 EEEMRAE

= S SRR AR KA E LR T 5 R W RIR LRI E - 55 2 T RR P i o e =5 i O AR 5 1l 5
JESE(he)o 2R ERIAR S B RETR Bi %l FE I, SRA0H T I 10 SR GTIE s R T 8Y 7 ik 2B BR 1
W&o Hrb, TR FIRT RIS R 77, P Jo W b 5 BT RN P E . I
G he v DUR A AT B AT 5L (B 5645, 2022):

F =Gsinf (D
Tg=c+otan@ =c+ GcosBtan @ 2)

p(sin 8—cos Bxtan @) 3)
R~G)H, FATWE, BAN; G ERERaE S, BArN; t NP 1 A7 N;
c AIREINE T, AL glem?s o NIERIN. ], 47 Pa; o NIEHEWINEEM, 24000 p WIRTEE,
AL glom’s GONRPE LT RKEET, BN 0, e,
fii % Bartelt et al., 2015)JB HELIARE NS, APFTORABT WK ¢ N S glem?, WEHE
R tang 9027, FHHEE p 5 300 glom’s AFXEESHRNAR (3) HHATRM, IR PRA
[T FEE

[

h, =




2.4 RAMMS E i {EEH

A BUE BT RAMMS BEWS = 80t B0 55 1 42 = 4E 8 i3 ) d #, i B 4sE shiE
BYL W, RIS S S RS A AR OB A 2 — T Voellmy-Salm (VS) AL,
SE RS B T FRER A . VS BURLKE S R A A R T A AR (VR A A, FE R BE R BH )
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Fig. 5 Schematic illustration of the physical processes and associated parameters in the RAMMS avalanche simulation model
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Fig. 6 PRA identification results under general conditions: (a) PRA distribution; (b) subdivided PRA; (c) slab thickness of PRA
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3.2 ERBERT R R EHIE

AHIFFEAE— A 58 5 A i 35 20 AT 1 539 YR 526 URIEALL, DA FE R AIT T IX (1 55 B A AL
SR, B 8 XFLL T RIS [FE S R MR X AT . T LR A B IR R T L X, BRI
S5 TH W 5 0 B o BPASEAE — MO SR, AU X S AR 24 B9 B9 DX dmT RESE A2 ool I Tl 500
kPa [ 1R 5% . ARG8T 5 R A X L) P A RE i A M s T A A HORBE R, T AT 0 AR KA
B Sy RN RN — Bl T AR 5 T 5 A KB ph i I 0, N DRER I E5K (P S5 S %
P AR it 1 2 R E E ) 1A 2 UK .




29°50'N

29°48'N

95°40'E

95°42'E

95°44'E

95°40'E

95°42'E

29°50'N

29°48'N

Z Z
¥ ¥
& &
N o
A=, =
z BRI | o A W 5
¥ ww > 500 kPa | F ww > 500 kPa
a &
B 0 kPa B ) kpa

& 8 RAMMS BH B AT R AR (a0 —BERM (b) BIRFR

Fig. 8 Maximum pressure from RAMMS simulations: (a) general-condition scenario (b) extreme-condition scenario

NEATH X ZFH B I, R LIS T ARG R TS fgmmil. £—RIEET, i
[X N PRA [EE A 5394, EHFRA 20.27 km?,  HHFFLIXC TR 25.21%. FHNHE, 55 /5 52 0 AR
L F] 43.89 km?, (HHFFUXCR A 54.58%. ERImIESE T, /R PRA RS D & 526 4, (HHE
SRR FEIEINE 30.70 km?, (5 HUHETH 2 38.17%; Ty g sgma AR B 2 9 K2 53.24 km?, (HHFFLIX
SR 66.20%. X —XF R, HRmiG S K 7IE DS AR X a2 2 R T 5
- Bee 1 SRemafa L, AR X NA =0 2 X T H B2 T .

R 1 IR R RS R TS R St

Table 1 Statistics of simulation results under different scenarios in the study area
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Fig. 9 Comparison between avalanche-affected areas mapped from optical satellite data and simulation outputs: (a) Sentinel-2 image;

(b) overlay of remote-sensing mapped and simulated avalanche extents under the general-condition scenario; (c) detailed zoom-in

3.4 XL EARAIRM

FLEE A B A R VG e A B S AR R ) A B g, N Py Bt b mnfE kL X, B R 2,
AL, AR ™ A S B (R EEEESS, 2018). MRIE E PR S UKE B A bR, Rl A
L% 3 kPa, BERTREBUM A B I ZEFRFIAT N2 4x: phili i J7ik %) 30 kPa, AT ARG A 2% 1134 ZE A
R i 78 3] 500 kPa, 3 BUECK SR S B MERR A, 35 R4 ) i SEOR TR ZE AR 0 8 1%
Jifi(Ortner et al., 2023). {E—MAEEE T, WEERBA B2 RIS i b & ) £ 2L R IR 3500~4500
m L X, feo ki IR ATk 539 kPa (& 10a). FEREANWFFHEBLN, 62.8% 1 X 8] 54T 52 31 55 i
E, T 16.7%28 B2 25 A I 3 Bl . AENOm B BE T, A RRSZF S B (1 52 AR o Ll B
I, R 7RIk 580 kPa (J&] 10b). T3 MV [ BN R4 K, 32355 12 25 U 1) A BR T
T HIk B 25.8%, AHELT — MBI T 9.1%. (EAEENE, BT AMEARM LA, a4
WA HTEZE E X A BB K. 5 IZ g5 ARSI B R T R b R IR X

BT REIEAR . BUEBAU AT A SMRE L35 08, B FUR L AR A BRI R Bl o o e S
X o A oA 6 DXORIMI S B X AN TE SR X DY AN (B 100D m fE R X 2 200 A7 78 2 i rh B AN fi 1 i )
O, XX ERER . MREE. MEReEtE, SRTHRA PRI ER K. PakX
S AERETE tH AR, DX TE) Y A R R X 2 bl ARG XA T AR IRM, B EEARA 2
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TR, ABBEER A TR T L, IR RS RN, O N R .
TR 55 s TRROLEA R SR e T RS T SRH A A A i S
IARA A, ML SOB IR S bR SR AR D PR, RS
RN SR 0T, SR PR OB

AR & E A A E A
@D 0kpa @ okPa
. - _|C D0-3kpa . COo-3kP |
< 25 ® |C3-30 kPa 3- A @ 3-30kPa 3 \~
& @ . | € 30-539 kPa | & ()< | € 30-580kPa | o Gk

B 10 L BARBENBEE HrbiE I RERESX () —BERTABZINSHIEES (b) RIRERTARZE
RZEHMPEERA (o) FHERESX RERET 20224 2 B 7 HH Sentinel-2 LEFA)
Fig. 10 Avalanche impact pressure and risk zoning along the Galongla section of the Zhamo Highway: (a) avalanche impact pressure
on the highway under the general-condition scenario, (b) avalanche impact pressure on the highway under the extreme-condition

scenario, (c) avalanche risk zoning (base map from Sentinel-2 image acquired on 7 February 2022)
4 Bhig
4.1 K%

AHFHEH T DEM K& HATASHER A PRA A A KA RAMMS #5400 AE S5 i f o 1 1 ]
W75, AU B RERAPE PP TR ot TR0 8, EAESSE PRI TR N . E o,
ZITVE RO IATE T H N EE 1 g 2ok, RIUER DEM BUs MR M 05 5, IXAE S (AR
BT HATHE . FLU TR SR T RIEE . B B S B R T R B S
SLEZMIEE T RIPHEAESE, MRS T AR TR R £ BEET, &7kl s g R
SIS BB A B S S fE R, Oy ORI S B O S AR AR s FERm BT,
207 A T S BRI W R S S A DAPPAS AT AL 55 3 ROV FE S R, e A s it
SRR TR KAl U AR SR Bk SRR . o), IR IRI 1A% 40 5 35 il 0 K2 e AT
REBREARAS, $ETE T SE R ] B ) R AT B . SRR AT DA . B — B A R X

FERER A . XA IR T 1 H R, BRI T — MR AR R E VA e,
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DN FAL KR B = 11 v 5 1 X T i 9 T XSG B R AL T R KT P SE R 23 BT iR R
4.2 ERMFRE

FUE AR SR I AR T R RCR AT e B WS, (B R 52 3 2 AR e M)
M. 1, EEdERNZE, et EEIET DEM K E . DEM [0 #ER &R migh Fnl Sa ki w
BREK. K% DEM AR FIF oS KL RURE, 330 PRA RAE: RZ, =70 # % DEM
VU B SR Bt 2 i T, S BT 5 S R b P R B (TR R A, 2024) . ik, TERERYZERE T,
AN 5 1 R S AR I RIS S EUUBE . AR FUONIR T AR, XS 5 8 1 2 A A
BT T A, RFEBERERMEMIER . SORBN, DUEIARY TR (npiEREmeEid) 1
BAER . AN, B KRB S8 (B R AL WER IS BBUE X RIS ok A4 B 2%
oM. e, TESSRICUEZEM, ANEHE MR T 50 UE B 1 Z FB B R IR 22 . TE N T E 1T
e JE B DO 55 S S M B AT A R S SR AR B PRt . Tz XS A AR A S, B A
R D S HH s PR AN E 7 1 S e P B g A SO T B A IR AR A SCERHIE . A, BT REIERGAR I I
= 500V R R R R AR AR R 22, BRI T Bl 4 R 4R 8 IE

It A SRICE AR (R 8 A AR R AT R, AR T2 IR N B b 3 S o 1) KR Ak, AT RAR)
FITE AMUTINE A B 2055 B - B BT RS R A, IX AR IR B 2 SR ks B 5 AR 2545 5
AT (VFOREE, 2019). J3#5 5E m F E B0E 1 1232 58 X b TR AR AR 5 1) = 4ERAE,
M4 =R PRA I fo M b B A B2, RSB 48R =5 B 5 30 X 518 3l B A2 X TR 4% H1I BT A1 (Sykes et
al., 2022). 74, EXAFERIRIH T 5, RSN [F K S A 3 7 AR AT AL T e I 28 A s B
et E R B, R AR RO AT DL i 2R I 1 S8 B 2 AR 4F (1) 2 % (Zhuang et al,
2024). NI, AL HER S S SR RAMMS:EXTENDED 4 3% 3 1A 1) 4 8 4%  (Bartelt et
al,, 2015). X —FHICHEBR GRS 2200 YRS 7K AR FE R AR SRR, AT PP AG
FE RS E (GRS KSR RE . B, RREic ORI ek 5k X 55 1R 1 sk A R
oy B, IXAM R HEAT TS (AR T O6 U RS A A A, AR B R X S A T S
T HSF S AR T R P O B

5 45 ig

b6 25 NS 2 A E R B R it W 1 = SE L XY, 9k R H i R A S AP ERFL B
NI R BN, 45 S GISHEBUERIUEIR, g |5 T DEMEUE I = 3 fa S rE vr A Ze, 7330
N EELERFIINM:

(1) 857 7@ T HHE B = w58 WL X 2 3 A B Ve = RO Al 77 . T DEMEURE & HAT A S5
(HERE. HhFHRERE . ~Fiti e, Sm) , RSN 25100 H 5394 5526 M AE B TIUX
S e i B ASEADL A l TR B2 1) 25 B 1 1

(2) fE—MAEEE T, BUEEALLE RIS A 5200 [ AR5 £1)43.89 km?, A7 XU [ #H 1) 54.58%;
W I 55~ 55 A3 9 Bl AE /0 5 s v B B R G OK, B e AR Y K £263.24 km?, (ST X S AR
£166.20%.

(3) HLAENBIE R B S MU B3, SIS T, FLERA BRI h B2 il 16.7%A1
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