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基于多传感器融合的煤矿井下巷道三维感知与重建方法 
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摘 要：煤矿作为重要的能源资源，其井下环境普遍存在结构复杂、空间狭窄、光照不足及防爆需求高等特点，这对精细化三

维感知与建模提出了严峻挑战。高精度三维重建不仅是保障矿山作业安全的关键环节，也是开展地层结构解析、透明地质体

系构建和动态环境监测的重要基础。针对传统单一传感器在井下场景中受遮挡严重、噪声干扰大、建模精度有限的问题，本

文提出了一种基于多传感器融合的三维建模方法。该方法在巷道清洗车上部署多线激光雷达阵列，并融合视觉与毫米波雷达

信息，通过结合局部特征描述与参数估计（LEPE-ICP）的自动拼接策略，提取多源数据中的稳定几何与纹理特征，采用基于

特征匹配的初始配准与基于概率分布优化的精细配准相结合的两阶段融合方法，有效克服井下环境中由重复结构、动态干扰

和光照变化引起的匹配歧义，逐步构建井下巷道的全局三维模型。实验结果表明，该方法在煤矿巷道环境中的平均平移误差

小于 0.12m，相较于传统方法拼接效率提升约 47%，同时目标识别准确率达到 92.7%。研究结果证明，多源信息融合能够显著

提升煤矿井下三维建模的精度与鲁棒性，为地层结构智能建模、透明地质构建及煤矿智能化发展提供了可靠的数据支撑与技

术参考。 
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Abstract：As a crucial energy resource, coal mines are characterized by complex structures, confined spaces, and insufficient 

illumination in their underground environments, posing significant challenges to fine-grained 3D perception and modeling. High-

precision 3D reconstruction is not only a key factor in ensuring mining operation safety but also serves as an essential foundation for 

analyzing stratigraphic structures, constructing transparent geological systems, and monitoring dynamic environments. To address the 

limitations of traditional single-sensor approaches in underground scenarios—such as severe occlusion, high noise interference, and 

limited modeling accuracy—this paper proposes a multi-sensor fusion-based 3D modeling method. The approach involves deploying a 

multi-line LiDAR array on a roadway cleaning vehicle and integrating visual and millimeter-wave radar data. By employing an automatic 
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stitching strategy that combines local feature description and parameter estimation, stable geometric and texture features from multi-

source data are extracted. A two-stage fusion method is adopted, which integrates initial registration based on feature matching and fine 

registration optimized via probability distribution, effectively overcoming matching ambiguities caused by repetitive structures, dynamic 

interference, and varying lighting conditions in underground environments. This process progressively constructs a global 3D model of 

the underground roadway. Experimental results demonstrate that the proposed method achieves an average registration error of less than 

0.12 m in coal mine roadway environments, improves stitching efficiency by approximately 47% compared to conventional methods, 

and reaches a target recognition accuracy of 92.7%. The findings confirm that multi-source information fusion significantly enhances 

the accuracy and robustness of 3D modeling in underground coal mines, providing reliable data support and technical reference for 

intelligent stratigraphic modeling, transparent geological construction, and the advancement of smart mining. 
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0 引言  

煤矿作为地球重要战略资源（毛先成等， 2025），

其安全生产与高效运营一直是关注的重点（张杰文

等，2025；王国法，2022）。智能制造发展战略作为

安全可控与资源高效利用的重要支撑与保障，推进

着我国制造业逐步迈向高新自动化；为满足社会生

产需求、打造智能生活，移动机器人产业迅速崛起

（Othman U and Yang E , 2023），井下无人驾驶与自

主作业装备需求越来越大，其前提是实现准确巷道

环境三维感知与重建。巷道环境三维感知不仅是实

现井下装备自主运行与智能避障的关键技术支撑，

更是构建地层环境智能建模与透明地质体系的核心

基础（王统荣等，2025；焦玉勇，2022），近年来，

基于激光雷达与视觉的地下空间高精度三维建模技

术已成为国际研究热点，为数字矿山与地质灾害识

别提供了新的解决方案（王国法等, 2018）；同时，

利用多源传感器进行时序监测以分析巷道结构稳定

性，也是保障井下安全的前沿方向（Wang, et al., 

2019）。对提升煤矿开采安全性、可视化和智能化水

平具有重要意义。 

目前，随着计算机视觉与图形学技术的不断突

破，基于图像的三维建模方法在多个应用领域的重

要性日益凸显。耿璇等（2020）借助深度相机获取人

体的多帧图像，运用双边滤波算法对深度图像缺失

的信息加以补充，进而重建出人体的三维模型。Bai

等（2023）基于机器视觉的农业机器人自主导航技

术，总结了传感器发展、视觉数据处理方法及环境

感知、定位与路径规划等应用；谭金石等（2025）基

于无人机倾斜摄影进行地质灾害场景三维重建的研

究，可构建高精度、高精细、逼真的灾害区场景。然

而，视觉传感器对光照条件的敏感性较高，在黑暗

或低纹理区域（如煤壁表面）易因信息缺失导致建

模失败（Yang 等，2021；高永军等，2025；马洪超，

2011）。  

激光雷达作为三维建模技术中另一大主流方法，

的推动下已取得显著进展（周治国等，2022）。毛清

华等（2025）基于激光雷达对煤矿掘进巷道进行三

维重建，通过体素化广义迭代最近点的回环检测算

法，有效降低煤矿巷道三维重建的累计漂移误差；

Maccarone 等（2023）构建了一套基于单光子探测技

术的全水下激光雷达系统，实现了在衰减长度达 7.5

的水下环境三维成像与视频重建；刘辉等（2025）提

出了一种基于激光点云和改进 ICP 算法的三维重建

方法，解决了柔性薄壁密封件的高精度、高效率三

维尺寸测量难题；然而，由于煤矿井下防爆需求，导

致检测设备性能受限，且单次测量只能获取物体的

局部点云数据，为了得到完整的三维模型，需要进

行多视角下的点云拼接（李江美和陈熙，2024）。 

为了实现巷道环境的全局感知，传统的单一传

感器方案在精度、效率和适用性上存在局限性（龚

元明等，2025；贾江伟等，2024）。田明昊等（2025）

通过融合二维激光雷达与多视角相机数据，结合点



云增强与全局对齐技术，有效提升了复杂地形场景

三维重建的精度与环境感知能力。LIC⁃Fusion 基于

MSCKF 框架，将激光雷达提取到的平面特征和边缘 

特征进行融合，并利用 IMU 测量值和视觉特征进行

位姿估计和地图构建(Zuo et al., 2019)；Lin 等（2022）

提出 R3LIVE 系统，包含激光惯导和视觉惯导两个

子系统，其中激光惯性里程计利用来自激光雷达和

惯性传感器的测量数据构建全局地图的几何结构，

视觉惯性里程计利用相机和惯性传感器的数据渲染

地图纹理，最终构建一个带有颜色信息的三维地图。 

针对以上问题，本文提出在巷道清洗车上分布

式部署多线激光雷达，并融合毫米波雷达与视觉传

感器，构建一套移动式井下全局三维感知系统。该

系统基于同名局部特征提取与空间变换参数估计实

现多视角点云自动配准，实时构建巷道整体三维模

型；同时实现对人员、障碍物等多目标的精准识别

与动态跟踪。通过多传感器协同感知，激光雷达提

供高精度空间结构信息，毫米波雷达保障在扬尘、

水雾等恶劣工况下对运动目标的稳定探测，视觉传

感器补充场景纹理与语义信息。深度融合算法有效

提升了系统在井下复杂动态环境中的感知可靠性、

精度与鲁棒性，为清洁车辆作业提供了实时的环境

理解与安全保障。 

此外，本研究构建的高精度三维感知系统，其

意义不仅限于移动平台的实时导航与避障，更深远

的价值在于为煤矿地球科学领域的核心问题提供了

全新的数据获取途径与技术支撑。该系统能够为巷

道结构的数字孪生提供毫米级精度的几何模型，通

过时序数据的比对，可定量分析巷道收敛、顶底板

移近等围岩变形规律，服务于巷道稳定性评估；同

时，重建模型能够清晰记录地质构造在巷道表面的

出露形态，为精细地质建模与透明地质保障体系的

构建提供原位、实景的三维数据基础，从而实现从

环境感知到地质认知的跨越。 

1 系统硬件架构 

该感知系统部署于矿用巷道清洗车，其传感器

系统主要由两大模块构成，如图 1 所示：其一为激

光雷达阵列模块，分别以水平及倾斜 45°姿态协同

作业，实现巷道前方主体区域与侧壁、顶底板的全

覆盖扫描，为高精度三维重建提供密集且一致的空

间点云数据；其二为视觉-毫米波融合感知模块，由

高分辨率防爆摄像头与多方位毫米波雷达组成，分

别捕获高纹理图像信息与不受烟尘光照影响的运动

目标点云，共同支撑语义识别、动态目标检测与精

准测距功能。整套系统通过多源传感数据的同步采

集与功能互补，构建了结构冗余、层次明晰的煤矿

井下三维感知硬件体系，为后续算法融合与智能决

策提供了可靠的数据基础。

2

注：1 处安装毫米波雷达于车头、车尾的；2处摄像头安装于驾驶室前；3处激光雷达安装于车顶

1

1

3

 

图 1 巷道清洗车传感器系统部署图

1.1 激光雷达阵列部署 由于井下环境的防爆需求，本研究选用 16 线防



爆激光雷达作为核心感知单元。该型号雷达相邻扫

描线间的垂直角分辨率为 2°，垂直视角范围为 30°，

如图 2 所示。现有巷道三维建模研究多集中于单点

测量或局部区域重建，针对大范围巷道空间的快速、

整体三维建模研究仍存在不足。为克服单一雷达视

野局限，实现巷道全景覆盖，本文设计采用三台激

光雷达协同部署的方案：中部激光雷达水平安装，

负责前方主体区域扫描；左右两台雷达分别向内倾

斜 45°安装，有效补盲两侧壁及顶底板区域，如图 3

所示。此部署策略旨在通过多视角点云数据的融合

拼接，构建完整、连续的巷道三维点云模型。 
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图 2 激光线束分布示意图 
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图 3 车顶激光雷达安装示意图 

1.2 视觉-雷达冗余感知协同设计 

为克服传统单一传感器在感知精度、环境适应

性及系统可靠性方面的固有局限，本研究采用多传

感器融合技术，结合视觉与毫米波雷达的互补优势，

构建高鲁棒性井下感知系统。硬件部署上，顶部安

装 KBA12(B)矿用摄像仪（分辨率 1920×1080，0.01 

Lux 低光成像，86°视场角，25 fps 帧率），覆盖前

方及侧方影像，支持设备、行人等目标识别；车前/

后方各配置 GUIH80 毫米波雷达（频段 76-81GHz，

探测距离 0.3-80 米，测距精度 0.1 米，测速精度 0.1 

m/s，100°水平探测角），可在强粉尘、弱光环境下

稳定检测障碍物并获取其距离与速度。系统通过融

合视觉的语义信息与雷达的测距测速数据，生成包

含目标类型、实时速度、精确距离的多维环境态势

图，为井下无人设备提供导航决策和超前风险预警

的高可信数据支持。 

2 煤矿巷道多视角点云拼接方法 

点云拼接旨在通过空间变换，将分布于多个坐

标系中的局部点云集成至同一参考框架下，从而构

建覆盖完整场景的全局一致三维模型。传统方法通

常依赖特征点提取以建立两点云间的对应关系，该

方法要求待拼接点云之间存在足够重叠区域，且重

叠区内需具备显著的颜色或几何特征，因而对点云

质量具有较高依赖性。由于需遍历整个点云以提取

特征点，在处理大规模点云数据时，计算效率较低。

另一方面，人工设置标记点的方法虽可提供先验对

应信息，但在高密度点云中手动选取易受大量邻近

点干扰，操作繁琐且主观性强，需多次迭代以确定

最优匹配点对。 

针对上述挑战，本文结合等距分布式部署的三

台激光雷达系统，提出一种融合局部特征提取与参

数估计的多视角点云自动拼接方法。该方法充分利

用多雷达的空间分布特性，通过协同采集与分层配

准策略实现巷道全景三维重建。具体流程如图 4 所

示，主要包括以下步骤： 

(1) 对三个雷达采集的点云数据进行并行预处

理。采用直通滤波去除巷道背景干扰点；利用自适

应中值滤波算法，根据点云密度动态调整邻域大小，

有效抑制因粉尘、水雾引起的噪声；通过八叉树体

素下采样在保持特征完整性的同时显著降低数据量，

提高后续处理效率。 

(2) 为建立稳定的跨视角对应关系，在巷道环境

中布置五个非共线且非共面的高反射率标记点，作

为多雷达点云拼接的共同基准。在特征提取阶段，



将点云颜色信息由 RGB 转换至 HSV 空间以增强稳

定性，并采用内在形状签名 ISS(Intrinsic Shape 

Signature)算法提取标记点周围的几何特征点；结合

颜色一致性原则提取显著色彩特征点，构建多模态

特征集合。 

(3) 针对分布式雷达的视角差异，采用快速点特

征直方图 FPFH(Fast Point Feature Histogram)描述子

对特征点进行编码，通过特征相似性度量初步建立

匹配点对。基于标记点周边匹配点集，运用总体最

小二乘（TLS）估计算法鲁棒求解雷达点云间的位姿

变换参数，初步完成点云对齐。 

(4) 为进一步提升拼接精度，通过迭代优化匹配

点筛选策略，选取误差最小的匹配组合，并计算平

均旋转误差 E₁与平均平移误差 E₂以量化配准质量。

最后，采用迭代最近点（ICP）算法对初步拼接结果

进行精细优化，消除累积误差，实现多雷达点云的

高精度无缝融合。
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图 4 点云拼接

2.1 多级滤波与体素下采样预处理 

煤矿巷道点云数据采集过程中，原始数据常含

大量地面点与噪声点。地面点作为冗余信息，不仅

增加计算与存储负担，更会干扰后续点云配准及三

维重建的精度；噪声点则导致点云质量下降，引起

重建模型失真。因此，需在点云拼接前有效剔除地

面点并滤除噪声（刘尚国等，2019）。 

针对地面点与主体间存在明显高程分界的特点，

采用直通滤波器依据高程阈值快速剔除地面点。对

于点云噪声，采用自适应中值滤波算法进行滤除

（Long L J et al, 2020）。 

该算法通过统计点云最近邻距离的中位数确定

初始邻域尺寸 d，基于噪声近似高斯分布的特性，通

过添加模拟高斯噪声优化 RMSE 阈值 ε。滤波时对

每个点邻域内的点排序并取中值输出，有效抑制离

群噪声。每次滤波后计算去噪点云与原始点云之间

的 RMSE 值： 

2 2 2

0 0 0

1

1
( ) (y ) ( )

m

m

RMS

i

E x x y z z


      （1） 

其中（x0, y0, z0）为原始点云中的点，（x, y, z）为去

噪后的点云坐标，m 为中值滤波点个数。 

点云拼接前需要下采样，保留核心几何特征的

同时，降低数据量以提升拼接效率、减少冗余与噪



声以优化拼接精度，保障后续流程稳定运行（Baek 

J et al, 2022）。八叉树体素下采样如图 5 所示。八

叉树的每个节点表示一个正方体的体积元素，每个

节点有八个子节点，将八个子节点所表示的体积元

素加在一起就等于父节点的体积。完整的八叉树，

每个中间节点都有八个子节点，所有叶节点都有相

同的树深度 D，叶节点数为 8 的 D 次幂。 

0 subdivisions

=>1 node

1 subdivisions

=>9 nodes

2 subdivisions

=>73 nodes

3 subdivisions

=>585 nodes  

图 5 八叉树下采样 

 设原始点云为 P，下采样后点云为 P′。对于每

个体素 V，将其内所有点坐标平均，生成代表点： 

 
1 1 1

' ( , , )

i i i

i i i

P V P V P V

P x y z
V V V  

     (2) 

其中∣V∣为体素 V 内的点数。该方法在降低数据

量的同时，有效保持了点云的整体几何特征。 

2.2 多模态鲁棒特征提取 

ISS 是直接针对于点云数据的特征提取方法，其

思 想 的 核 心 在 于 主 成 分 分 析 PCA (Principal 

Component Analysis)分解之后，其最小的特征值必须

要足够大（Zhong Y, 2009）。设点云数据有 M 个点，

其任意一点
ip 坐标为 ( , , )i i ix y z , i = 0, 1, ……，M-

1，对点云上的每个点
ip 定义一个局部坐标系，并给

定每一个点一个搜索半径
framar 。查询点云数据中每

个点
ip 在半径

framar 周围内所有点，并计算其权值。 

 
1

,
ij i j frama

i j

w p p r
p p

  


 (3) 

计算每个点
ip 的协方差矩阵： 

 

( )( )

cov( )
i j f rame

i j f rame

T

i j i j i j

p p r

i

i j

p p r

w p p p p

p
w

 

 

 






(4) 

计算每个点
ip 的协方差矩阵 cov( )ip 的特征值

1 2 3{ , , }i i i    ,按从大到小的顺序排序。设置阈值

1 2 和 ，满足下式条件的点视为 ISS 特征点。 

 

2 3

1 21 2

/ /
,i i

i i

 
 

 
   (5) 

2.3 局部-全局约束匹配优化 

点特征直方图 PFH（Point Feature Histogram）

是基于点与其 k 邻域之间的关系以及他们的估计法

线(Rusu R B et al., 2009)。如图 6 所示，表示的是一

个查询点
qP 的 PFH 计算的影响区域，

qP 用红色标

注并放在圆球的中间位置，与点
qP 之间的距离小于

半径 r 的所有点全部相互连接在一个网络中，最终

的 PFH描述子通过计算邻域内所有两点关系而得到

的直方图。 

为了计算两点
sP 和

tP 及他们对应的法线 iN 和

jN 之间的相对偏差，在其中的一个点上定义一个

固定的局部坐标系，如图 7 所示。 
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图 6 PFH 示意图 
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图 7 局部坐标系 

其中： 
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
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 (6) 

 使用上图中的 uvw 坐标系，法线之间的偏差可

以用一组角度来表示： 

 

arctan( , )

t

t t

v n

Pt Ps
u

d

w n u n







 


 

  

 (7) 

 用 d 来表示
sP 与

tP 之间的欧氏距离：

2t s
d P P  ，这样做就把两点和它们法线相关的

12 个参数（x y z 坐标值和法线信息）减少到四个：

( , , , )d   。 

为了简化直方图的特征计算，对于每一个查询

点，计算这个点和它邻域点之间的一个元组

( , , )   ，结果称为简单的特征直方图 SPFH。重

新确定每个的 K 邻域，使用邻近的 SPFH 值来计算

最终的直方图（FPFH），其示意图如图 8 所示。 
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图 8 FPFH 示意图 

2.4 TLS-ICP 融合位姿估计 

点云位姿参数估计用于确定不同视角点云间的

空间变换关系，核心借助几何约束建立数学模型

（Huang et al, 2022）。点云位姿变换包含旋转与平

移，为精准描述，采用刚体变换模型，该模型保证点

云变换后形状、尺寸等几何属性不变，一个完整刚

体变换可由旋转矩阵 R 与平移向量 t 表示，形式如

下： 

 
0 1T

R t
T

 
  
 

 (9) 

其中，旋转矩阵 R 和平移向量 t 可细化定义为：旋

转矩阵 R 是 3×3 正交矩阵，满足 RRT=I（I 为单位

矩阵），用于描述点云绕坐标轴的旋转，形式如： 

 

11 12 13

21 22 23

31 32 33

r r r

R r r r

r r r

 
 


 
  

 (10) 

平移向量 t是 3×1 向量，用于描述点云在空间的平

移，形式如： 
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t t

t
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  (11) 

源点云 P 中的点 [ , , ]T

i pi pi piP x y z 与目标点云

Q 中的对应点 [ , , ]T

i qi qi qiq x y z ，其坐标变换过程

基于刚体变换模型，可近似表示为线性关系，构建

如下数学模型： 

 
i iq Rp t i    (12) 

式中 ϵi 为点云配准过程中的误差项，反映数据噪声、

对应点匹配残差等干扰，通过最小化误差（如采用 

ICP 算法迭代优化 R和 t），实现点云位姿参数 R与

t 的精准估计，完成不同视角点云的空间对齐。常用

的误差最小化目标函数为对应点之间的欧氏距离平

方和： 
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1

( ) ( ),
N

i i

i

E R t q Rp t


    (13) 

通过对上述目标函数进行优化求解，可得到最

优的旋转矩阵和平移向量。具体地，可通过以下步

骤求解： 

计算两个点云的质心： 

 
1 1

1 1
,

N N

p i q i

i i

u p u q
N N 

    (14) 



计算去质心坐标： 

 ,i i p i i qp p q q      (15) 

构建协方差矩阵： 

 
1

T

i i

N

i

p qH


   (16) 

对 H 进行奇异值分解（SVD）： 

 TH U V   (17) 

计算旋转矩阵： 

 TR VU  (18) 

若 det(R) = -1，则需对解进行校正（例如将 V

的最后一列取反）。 

计算平移向量： 

 
q pt R    (19) 

通过以上过程，可精确估计点云之间的位姿变

换参数，实现点云的高精度配准。 

2.5 多传感器数据像素级融合 

在本研究中，为实现对煤矿井下环境的全面感

知，提出了一种基于激光雷达、相机与毫米波雷达

的多源传感器像素级融合方法，如图 9 所示。 

激光雷达（LIDAR）

摄像头（camera）

毫米波雷达（Radar）

LIDAR

感知算法

Camera

感知算法

Radar

感知算法

结果

汇总融合

Raw Date 识别结果

Raw Date 识别结果

Raw Date 识别结果

 
图 9 多传感器像素级融合 

该方法首先将激光雷达点云和毫米波雷达探测

结果通过坐标变换，投影至相机图像的像素坐标系，

实现了数据的像素级对齐。在此基础上然后，我们

从对齐后的融合数据中提取统一的多模态特征向量，

这些特征同时包含了图像的纹理信息、点云的几何

结构信息以及毫米波雷达的速度信息。最后，将该

融合特征向量输入到一个基于 YOLOv5 架构并进行

适应性改进的卷积神经网络中进行目标识别与分类。

该方法充分利用了多源信息的互补性，从而在井下

复杂环境中实现了高精度的目标检测。该方法充分

保留了原始数据的完整性，实现了信息互补，显著

提升了复杂环境下障碍物识别与距离估计的准确性

与鲁棒性。 

3. 系统性能验证与分析 

3.1 模拟实验场景 

为验证本文提出的点云拼接算法及环境感知性

能，本研究在中国地质大学（武汉）实验隧道中开展

了系统测试。该隧道全长约 200 米，截面为典型的

煤矿巷道拱形结构，内壁材质与真实巷道相似，并

设置了模拟支护、管线等障碍物，以高度还原井下

复杂空间结构。该隧道与真实巷道具有相似的几何

结构和空间约束, 可以提供可靠的实验条件，为算

法评估提供了可靠的实验条件。 

在此场景下，我们采集了超过 30 组有效数据序

列。每组数据包含三个激光雷达同步采集的点云，

单帧点云平均点数约为 30000 点，累计用于拼接和

评估的点云数据总量超过 5 百万点。实验分析部分

将从定量与定性两个维度全面评估算法性能：在定

量方面，计算配准后的平均旋转误差
1E 、平均平移

误差
2E 、重叠区域点云间均方根误差（RMSE）以及

配准耗时，以客观评价算法精度与效率；在定性方

面，通过可视化点云拼接效果（见图 10）、结构完

整性、染色一致性及关键特征保持程度，综合评估

算法在复杂环境下的感知与重建能力。 

 为定量评估点云-图像融合感知算法的性能，图

12 展示了行人目标在图像中的检测结果及其对应点

云的深度估计效果。从图中可见，融合算法能够准

确识别图像中的行人区域（图中以绿色边界框标注），

并成功关联三维点云数据。通过对目标区域内点云

的聚类分析及距离计算，可获得行人相对于传感器

的精确距离信息。 



 

图 10 不同倾斜角度点云拼接效果 

 

图 11 不同光照强度的点云拼接效果 

 

图 12 点云与图像数据融合 

多目标场景下距离估计结果如表 3-1 所示，实

验结果表明，本文所提出的融合方法在复杂巷道环

境中仍能保持稳定的感知性能：选择 YOLOv5 作为

基础目标检测框架，因其在速度与精度间具有良好

的平衡。然而，我们对其进行了关键性改进以适应

井下环境： 

输入层修改：将网络的输入通道从标准的 3 通

道（RGB）扩展至 6 通道，以同时接纳 RGB 图像、

深度图和多普勒速度图。 

注意力机制引入：在特征金字塔网络（FPN）中

嵌入了卷积块注意力模块（CBAM）。该模块能引导

网络在训练和推理过程中，自适应地关注于融合后

更具判别力的特征通道和空间位置（例如，动态目

标的雷达反射点、具有显著几何特征的障碍物边缘），

从而有效抑制井下弥漫性粉尘和水雾带来的背景噪

声干扰。 

  

  

  

图 13 不同程度水雾建图效果 

表 3-1 多目标场景下距离估计结果 

目标类别 场景描述 
系统估计

距离 (米) 

实测距离 

(米) 

行人 1 
巷道中部，

光照良好 
10.25 10.12 

行人 2 
巷道侧壁，

有阴影 
7.68 7.80 

车辆 近场 3.41 3.50 

该目标检测方法准确率可达 92.7%，距离估计



的平均平移误差为 0.15 米，同时，为评估系统的实

时性，我们统计了所有测试帧的目标检测全流程处

理时间。在所述硬件平台上，平均检测耗时约为 0.15

秒，该方法有效克服了单一传感器在光照变化等条

件下的局限性， 为井下智能感知系统提供了可靠的

技术支持。 

3.2 真实实验场景 

数据采集在国能榆林郭家湾煤矿的真实井下巷

道中进行，真实井下环境综合存在粉尘、水雾、光照

不均及结构复杂性等多种挑战，测试路段包含直道、

弯道及岔路口等多种典型结构。在为期 3 个月的测

试中，采集了总长度约 30 公里的巷道数据。系统性

地采集了超过 100 小时数据进行对比分析 ，系统比

较了点云质量、拼接精度及障碍物感知能力随环境

能见度变化的响应特性。 

(a) (b) (c)

(d)

左侧激光雷达 中间激光雷达 右侧激光雷达

拼接后点云效果

 

图 14 点云效果展示 

为系统评估多雷达点云拼接算法的性能，本研

究采用平均旋转误差（
1

E ）、平均平移误差（
2

E ）

作为核心量化指标。图 14-a、图 14-b 与图 14-c 分别

呈现了左、中、右雷达采集的原始点云分布。从中可

观察到，各雷达点云仅覆盖有限局部区域，且在不

同空间位置存在明显的点密度不均匀性与遮挡导致

的缺失，此类异构特性为后续配准带来了显著挑战。 

本文基于融合局部特征与联合参数估计的拼接

算法处理，实现了多源点云间的高精度空间对齐与

无缝融合（结果如图 14-d 所示）。定量结果表明，

最终拼接点云的平均旋转误差
1

E 低于 0.05°，平均平

移误差
2

E 控制在 0.12 m 以内，显著优于传统迭代最

近点（ICP）与正态分布变换（NDT）方法在效率方

面，所提算法将拼接时间较基准方法缩短了 65%，

体现出其在处理效率与配准精度方面的双重优势。

算法还能够有效抑制误匹配点对及重叠区域异常，

增强了点云模型的一致性和完整性，为后续建图、

定位与三维重建等任务提供了更可靠的数据基础。 

(a)

(b)

岔路口

 

 图 15 巷道岔口点云拼接效果   

(a)

(b)  



图 16 对向车道来车情况 

在结构复杂性较高的区域（如巷道岔口图 15 所

示，对向车道来车图 16 所示），算法仍能保持较高

的配准精度，证明了其对井下典型场景的适应能力。

定量实验结果表明，本文提出的多雷达点云拼接算

法在多项性能指标上表现优异，其对比实验结果如

表 3-2 所示。配准后点云的平均旋转误差为 0.076°，

平均平移误差为 0.14 m，较传统 ICP方法提升约 32%。

本算法在点云拼接效率上较基准方法平均提升 41%，

拼接误差降低 28%，与 NDT 方法相比，在计算效率

与配准精度方面均表现出显著优势，验证了其在复

杂点云融合任务中具有优异的几何一致性与结构保

持能力。 

表 3-2 对比实验结果 

性能指标  
LEPE-

ICP 
ICP 算法 NDT 算法 

E1(°) 0.076 0.112 0.095 

E2(m) 0.12 0.18 0.16 

耗时(s) 0.22 0.36 0.31 

为实现车辆周围环境的全方位感知，本研究开

发一套多传感器融合感知系统。通过融合摄像头、

毫米波雷达与激光雷达的数据，最终将感知结果实

时、直观地融合在一张车体俯视图，如图 17 所示。 

距离：4.1 m

水平角度：10 °

距离：4.3 m

水平角度：-12 

°

距离：1.9 m

水平角度：70 °

倾斜角：27 °距离：1.7 m

距离：0.9 m

距离：2.8 m

距离：2.0 m

距离：4.4 m

          突出长度：0.35 m

 

图 17 车身俯视图 

多传感器数据通过紧密耦合与协同融合，有效

构建出稳定可靠的环境感知体系，不仅显著提升了

空间测量的精度与鲁棒性，也为后续复杂场景下的

巷道三维语义重建、动态障碍物的实时识别与轨迹

预测等关键任务，提供了高一致性、多模态互补的

数据基础，从而全面增强了系统在真实环境中的感

知与决策能力。 

4. 总结与展望 

本研究基于局部特征增强与参数优化估计的多

雷达点云拼接方法，实现了平均平移误差低于 0.12 

m、点云拼接时间较传统方法缩短 47%；构建了点云

-视觉跨模态融合感知框架，在巷道环境中实现了对

行人、设备等目标的精准检测与测距，识别准确率

达到 92.7%，平均检测耗时降低至 0.15 秒，为煤矿

井下智能感知提供了高效可靠的技术路径。 

然而，当前系统仍存在明显的局限性。点云数

据处理流程涉及大量计算密集型操作，包括特征提

取、高维描述子匹配与迭代优化等算法，对嵌入式

防爆计算平台的实时处理能力提出了严峻挑战。现

有实现尚难以稳定达到井下无人装备控制所需的实



时性要求（≥10 Hz）。 

其次，本研究在煤矿巷道三维感知与重建方面

取得了预期成果，但仍存在若干亟待解决的问题。

首要挑战在于巷道环境中弥漫的水雾与粉尘对感知

数据质量的显著影响：水雾颗粒对激光束的吸收与

散射作用导致点云密度降低、噪声显著增加；同时，

悬浮颗粒物对可见光的散射造成图像对比度下降、

纹理特征退化，严重制约视觉特征的提取与匹配精

度。尽管本研究通过多源传感融合与自适应滤波策

略在一定程度上抑制了环境影响，但在高浓度粉尘

工况下，感知性能仍有待进一步提升。 

面向未来，本研究方向将从以下方面深入探索： 

1）开发融合物理模型与深度学习的鲁棒感知方

法，通过散射建模与生成式去噪增强算法提升系统

在极端工况下的感知能力； 

2）研究点云处理的轻量化与硬件加速技术，依

托专用计算架构与模型压缩方法推动算法在边缘侧

的高效部署； 

3）引入语义 SLAM 技术，实现动态目标剔除、

静态环境重建与实时位姿估计的协同优化； 

4）深化与地球科学领域的交叉研究。重点包括：

系统量化研究不同巷道材质（煤、岩、金属）对激光

雷达反射特性的影响，建立反射强度校正模型以提

升数据准确性；深入分析不同巷道形态（直巷、弯

道、岔口）下的配准误差规律，开发自适应的配准策

略以明确并拓展算法的性能边界；最终，旨在将本

系统获取的高精度时序三维数据，深度融合于巷道

变形监测、围岩稳定性分析与透明地质建模等核心

地学应用中，构建真正的矿山安全“数字孪生”平

台。 

References 

Zhang, J.W., Ma, J., Jiang D., et al. Coal Mine U

nderground Personnel Detection Algorithm Bas

ed on Improved YOLOv7. Coal Mine Machin

ery, 2025, 46(08): 213-217. (in Chinese with 

English abstract). 

Mao, X.C., Duan, X.M., Deng, H., et al. Theory, 

Methods and Challenges of three-dimensional 

Intelligent Prediction of Deep Mineral Resourc

es. Earth Science, 1-34[2025-11-28]. (in Chine

se with English abstract). 

Wang, G.F., Discussion on the Latest Technologica

l Progress and Issues of Intelligent Coal Mine

s. Coal Science and Technology, 2022, 50(01):

 1-27. (in Chinese with English abstract). 

Othman U, Yang E. Human–robot collaborations in

 smart manufacturing environments: review an

d outlook. Sensors, 2023, 23(12): 5663. 

Wang, T.R., Ji, X.B., Wang, J.B., et al. Implicit 3

D Geological Modeling Based on Machine Le

arning: A Case Study of the Lazigou Gold M

ine in the Mulu Mineralization Belt. Earth Sc

ience, 2025, 50(08): 3167-3181. (in Chinese 

with English abstract). 

Jiao, Y.Y., How can the New Generation of Infor

mation Technology Support the Construction o

f Transparent Urban Geology? Earth Science,2

022, 47(10): 3918. (in Chinese with English a

bstract). 

Wang, G.F., Wang H., Ren, H.W. et al. The scena

rio goals and development paths of Smart Co

al Mines in 2025. Journal of China Coal Soc

iety, 2018, 43(02): 295-305. 

Wang, Y.S., Zheng, G.P., and Wang, X., "Develop

ment and application of a goaf-safety monitori

ng system using multi-sensor information fusio

n." Tunnelling and Underground Space Technol

ogy 94 (2019): 103112. 

Geng, X., Wang, Z.B., Jin, Y., et al. Three-dimens



ional human body reconstruction based on a s

ingle depth camera. Foreign Electronic Measu

rement Technology, 2020, 39(09): 143-146. (in

 Chinese with English abstract). 

Bai, Y., Zhang, B., Xu, N., et al. Vision-based na

vigation and guidance for agricultural autonom

ous vehicles and robots: A review. Computers 

and Electronics in Agriculture, 2023, 205: 107

584. 

Tan, J.S., Zhu, W.G., Du, X.F., Three-dimensional 

reconstruction and investigation analysis of ge

ological disaster scenes based on unmanned a

erial vehicle oblique photography. Engineering 

Investigation, 2020, 53(07): 72-78. (in Chinese

 with English abstract). 

Yang, J., Wang, C., Luo, W., et al. Research on p

oint cloud registering method of tunneling roa

dway based on 3D NDT-ICP algorithm. Senso

rs, 2021, 21(13): 4448. 

Gao, Y.J., Tan Z., Ma L., et al. Research Status a

nd Application of Unmanned Driving Technol

ogy for Underground Rubber-Tyred Vehicles w

ithout Tracks. China Coal, 2020, 51(06): 93-1

03. (in Chinese with English abstract). 

Ma, H.C. Several Applications of Lidar Measurem

ent Technology in Geoscience. Earth Science 

(Journal of China University of Geosciences), 

2011, 36(02): 347-354. (in Chinese with Engli

sh abstract). 

Zhou, Z.G., Cao. J.W., Di, S.F. A Review of 3D 

LiDAR SLAM Algorithms. Journal of Scientif

ic Instrument, 2021, 42(09): 13-27. (in Chines

e with English abstract). 

Mao, Q.H., Chai, J.Q., Chen, Y.Z., et al. A three-

dimensional reconstruction method for coal mi

ne tunneling roadways based on the fusion of 

LiDAR and IMU. Coal Science and Technolo

gy, 2020,53(02):351-362. (in Chinese with En

glish abstract). 

Maccarone, Aurora, et al. "Submerged single-photo

n LiDAR imaging sensor used for real-time 3

D scene reconstruction in scattering underwate

r environments." Optics Express 31.10 (2023): 

16690-16708. 

Li, J.M., Chen, X., Image Texture Feature Extracti

on Method Based on Local Adaptive Light an

d Dark Mode. Laser Journal, 2020, 46(07): 1

01-110. (in Chinese with English abstract). 

Gong, Y.M., Xiao, D.Y., Wang, J.J. Application of 

Multi-Sensor Data Fusion Technology in Self-

Controlled Vertical Drilling Detection System. 

Earth Science,2001, (05): 524-528. (in Chinese

 with English abstract). 

Jia, J.W., Lu, Q.H., Li, H.S., et al. Research on t

he Application of Multi-LiDAR in Three-Dim

ensional Reconstruction System of Coal Mine 

Roadways. China Coal, 2024, 50(10): 84-90. 

(in Chinese with English abstract). 

Tian, M.H., Li, P., Yan, S., et al. 3D-RGB point c

loud Imaging Based on data level Fusion of t

wo-dimensional LiDAR and multi-view Camer

a. Data Collection and Processing, 1-13[2025-

09-09]. (in Chinese with English abstract). 

Liang, Q.J., Yang, L., Luo, Z., et al. A Siamese 

Network-Based Method for Automatic Stitchin

g of Artifact Fragments. IEEE Transactions o

n Instrumentation and Measurement, 2023, 72:

 1-13. 



Zuo, X.X., et al. "Lic-fusion: Lidar-inertial-camera 

odometry." 2019 IEEE/RSJ International Confe

rence on Intelligent Robots and Systems (IRO

S). IEEE, 2019.  

Lin, J.R., and Fu, Z., "R 3 LIVE: A Robust, Real

-time, RGB-colored, LiDAR-Inertial-Visual tigh

tly-coupled state Estimation and mapping pack

age." 2022 international conference on robotics

 and automation (ICRA). IEEE, 2022. 

Liu, S.G., Xie, Z., Han, Y.M., et al. Point cloud d

enoising based on Improved statistical Filterin

g Algorithm and moving least squares method.

 Acta Optica Sinica, 2019, 39(9): 0915002. (i

n Chinese with English abstract). 

Long, L.J., Xia, Y.H., Huang, D. Fast modeling m

ethod for substation based on 3D laser scanni

ng point cloud data. Laser & Optoelectronics 

Progress, 2020, 57(20): 202801.  

Baek J, Park J, Cho S, et al. 3D global localizati

on in the underground mine environment usin

g mobile LiDAR mapping and point cloud re

gistration. Sensors, 2022, 22(8): 2873. 

Zhong Y. Intrinsic shape signatures: A shape descr

iptor for 3D object recognition. 2009 IEEE 12

th international conference on computer vision

 workshops, ICCV Workshops. IEEE, 2009: 68

9-696. 

Rusu R B, Blodow N, Beetz M. Fast point featur

e histograms (FPFH) for 3D registration. 2009

 IEEE international conference on robotics an

d automation. IEEE, 2009: 3212-3217. 

Huang, C.Q., et al. "Dual-graph attention convoluti

on network for 3-D point cloud classification.

" IEEE Transactions on Neural Networks and 

Learning Systems 35.4 (2022): 4813-4825. 

附中文参考文献 

张杰文, 马骥, 蒋栋, 等. 基于改进 YOLOv7 的煤矿

井下人员检测算法. 煤矿机械, 2025, 46(08): 

213-217. 

毛先成, 段新明, 邓浩, 等. 深部矿产三维智能预测

理论、方法与挑战. 地球科学, 1-34[2025-11-28]. 

王国法. 煤矿智能化最新技术进展与问题探讨. 煤

炭科学技术, 2022, 50(01): 1-27.  

王统荣, 纪旭波, 王江波, 等.基于机器学习的隐式

三维地质建模： 以牟乳成矿带腊子沟金矿为例.

 地球科学, 2025, 50(08): 3167-3181. 

焦玉勇. 新一代信息科技如何支持城市透明地质建

设？. 地球科学, 2022, 47(10): 3918. 

王国法, 王虹, 任怀伟, 等. 智慧煤矿 2025 情景目

标和发展路径. 煤炭学报, 2018, 43(02): 295-3

05. 

耿璇, 王召巴, 金永, 等. 基于单个深度相机的人体

三维重建. 国外电子测量技术, 2020, 39(09): 

143-146. 

谭金石, 祖为国, 杜向锋. 基于无人机倾斜摄影的

地质灾害场景三维重建及调查分析.工程勘察, 

2025, 53(07): 72-78. 

高永军, 谭震, 马亮, 等. 井下无轨胶轮车无人驾驶

技术研究现状及应用. 中国煤炭, 2025, 51(06):

 93-103. 

马洪超. 激光雷达测量技术在地学中的若干应用. 

地球科学(中国地质大学学报), 2011, 36(02): 3

47-354. 

周治国, 曹江微, 邸顺帆. 3D 激光雷达 SLAM 算法

综述. 仪器仪表学报,2021,42(09):13-27. 

毛清华,柴建权,陈彦璋,等. 激光雷达和 IMU 融合的



煤矿掘进巷道三维重建方法.煤炭科学技术,202

5, 53(02): 351-362. 

李江美, 陈熙. 基于局部自适应明暗模式的图像纹

理特征提取方法. 激光杂志, 2025, 46(07): 10

1-110. 

崔海华, 姜涛, 杜坤鹏, 国荣辉等. 基于深度学习位

姿估计的多视结构光三维成像方法. 光学学报,

 2021, 41(17): 1712001. 

龚元明, 萧德云, 王俊杰. 多传感器数据融合技术

在自控垂钻检测系统中的应用. 地球科学, 200

1, (05): 524-528. 

贾江伟, 路前海, 李洪胜, 等. 多激光雷达在煤矿巷

道三维重构系统中的应用研究. 中国煤炭, 202

4, 50(10): 84-90. 

田明昊, 李攀, 阎肃, 等. 基于二维激光雷达和多视

角相机数据级融合的 3D-RGB 点云成像. 数据

采集与处理, 1-13[2025-09-09]. 

刘尚国, 谢政, 韩友美, 等. 基于改进的统计滤波算

法与移动最小二乘法的点云去噪. 光学学报, 2

019, 39(9): 0915002. 


