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基于混合注意力机制的矿田尺度三维岩性

建模:以焦家金矿田为例 
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摘  要：矿田尺度深部地质结构“透明化”是矿产勘查与成矿预测的核心，三维岩性建模是实现这一目标

的关键技术。然而，当前矿田尺度三维岩性建模主要依赖效率较低的显式建模方法，难以满足多阶段矿产

勘查和矿山实时生产的需求，因此亟需研发高精度、高效率的三维岩性隐式建模方法。针对上述问题，本

研究以三维卷积神经网络（3D Convolutional Neural Network, 3D CNN）为基础，融合卷积注意力机制

（Convolutional Block Attention Module, CBAM）与自注意力机制（Self-Attention Module, SAM）构建混合

注意力机制深度学习算法（Hybrid Attentional Mechanism Deep Learning Model, HAM），并基于该算法挖掘

多源地质—地球物理数据中的深层次特征，确定建模所需地质体边界，实现既能捕捉局部上下文、又能表

征全局上下文的三维岩性隐式建模方法。为验证 HAM 算法有效性，本研究选择胶东半岛焦家金矿田作为

研究区，开展对比实验与消融实验。结果表明，相较于随机森林（Random forest, RF）和 3D CNN 等基线

算法，本次研究提出的 HAM 算法在三维岩性建模的宏平均准确率、精确率、召回率、宏平均 F1-score 和

混淆矩阵上表现出显著优势，对推动深部找矿和矿山生产具有重要意义。 

关键词：三维岩性隐式建模；三维卷积神经网络；卷积注意力机制；自注意力机制；焦家金矿田 
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mineral exploration and prospectivity modeling. Three-dimensional (3D) lithological modeling serves as a critical 

technology for this objective. However, existing ore-field–scale modeling workflows rely on explicit modeling 

approaches with relatively low efficiency, which struggle to meet the demands of multi-stage mineral exploration 

and real-time mining. Consequently, high-precision and high-efficiency implicit 3D lithological modeling methods 

are therefore urgently needed. To address this issue, this study constructs the 3D Convolutional Neural Network 

(3D CNN) and integrates the Convolutional Block Attention Module (CBAM) and the Self-Attention Module 

(SAM) to construct a Hybrid Attentional Mechanism deep learning model (HAM). Based on this algorithm, deep 

representations within multi-source geological and geophysical data are mined to determine the boundaries of 

geological bodies required for modeling, thereby achieving a 3D lithological implicit modeling method capable of 

capturing both local details and long-range dependencies. To validate the effectiveness of the proposed hybrid 

attentional mechanism model, the Jiaojia gold field in the Jiaodong Peninsula was selected as the study area, and 

comparative and ablation experiments were conducted. Relative to baseline models—Random Forest (RF) and a 

vanilla 3D-CNN, HAM markedly improves the macro-averaged accuracy, precision, recall, macro-averaged F1 

score and confusion matrix of ore-field–scale implicit 3D lithological modeling, with direct implications for 

subsurface mineral exploration and mining operations.  

Keywords: 3D lithological implicit modeling; Three-dimensional Convolutional Neural Network; Convolutional 

Block Attention Module; Self-Attention Module; Jiaojia gold field 

 

1 引言 

三维岩性建模旨在融合多源地学数据基础上，结合空间插值方法，实现深部地质体岩性

类型与空间展布的定量识别与可视化。高质量的三维岩性模型对降低勘探风险、优化工程布

设和实现深部找矿突破具有重要意义（邓浩等,2020；王昊等,2023；Zhang et al., 2024；陈

建平等,2024；成秋明,2025；毛先成等,2025；张明明等,2025）。目前矿田尺度三维岩性建

模方法主要分为显式建模与隐式建模两类（陈麒玉等,2025）。其中显式建模通过手工圈连

多源地学数据中的地质体边界实现三维建模（Min et al.,2019；Guo et al., 2021）。该方法支

持在建模过程任意环节进行人工干预，因此适应性强，方便融入地质专家对研究区已有的地

质认知，但建模效率低，更新成本高，难以满足多阶段矿产勘查和矿山实时生产的需求（Guo 

et al., 2016；陈进等,2020；Zhang et al., 2024；陈麒玉等,2025；叶舒婉等,2025）。隐式建

模则通过构建多源地学数据中地质体边界之间的隐函数关系实现三维建模，该方法自动化程

度高，支持模型的快速动态更新（娄渝明,2025；王统荣等,2025），但如果地质体边界数据

稀疏或存在误差，则容易导致建模结果不准确（Jia et al., 2020；刘志斌等,2024；陈麒玉

等,2025；肖凡等,2025）。在矿田尺度三维岩性建模中，作为关键输入的地质体边界，按其

数据源与可靠性可分为两类。第一类边界来源于露头、实测剖面、探矿工程及采矿工程等直

接观测手段。此类数据可靠度高，能够精确刻画已知地质体的岩石类型和空间形态，但这类

数据通常集中于矿床内部及周边区域，覆盖范围和深度有限，难以满足矿田尺度三维岩性建

模需求。第二类边界则通过多源地质—地球物理解译获得。这类数据覆盖范围广，深度大，

并能够填补第一类边界缺失的空白区，但其解译过程复杂，且往往带有较强的主观性和不确

定性（Guo et al., 2022；袁峰等,2024）。因此如何智能化圈定多源地质—地球物理数据中的

地质体边界对提高矿田尺度三维岩性隐式建模效率和精度具有重要意义（陈建平等,2024；

叶舒婉等,2025）。针对上问题，Guo 等（2019）、Jia 等（2020）和 Zhang 等（2023）相

继将支持向量机（Support Vector Machine,SVM）、随机森林（Random Forest,RF）、极限

提升树（Extreme Gradient Boosting,XGBoost）、堆叠模型（Stacking model）和贝叶斯 XGBoost

等浅层机器学习算法应用于三维岩性隐式建模领域，并取得较好效果。然而，上述浅层机器



学习算法在挖掘多源地质—地球物理数据方面存在深层次特征提取不足和缺乏空间上下文

信息的局限性（左仁广等,2021；邓浩等,2021；师路易等,2025）。为此，Zhang 等（2024）

将 3D CNN 引入三维岩性隐式建模领域。值得指出的是，地质体除具有复杂三维几何形态

特征外，还在一定尺度上呈现空间连续性，但这种连续性并非一成不变，例如早期花岗岩内

部可能存在后期脉岩侵入，从而出现局部不连续现象（赵惊涛等,2016；蔡志慧等,2020）。

这种“整体连续—局部突变”的复杂空间上下文关系与多源地球物理数据对不同岩性的敏感

性差异，导致传统 3D CNN 应用于三维岩性隐式建模领域面临如下挑战：1. 传统 3D CNN

难以挖掘地质体复杂空间上下文关系；2. 传统 3D CNN 在多源地球物理深层次特征融合中

对不同特征通道与空间位置近似等权，难以突出对岩性分类更具判别指示意义的物性和准确

刻画地质体复杂的空间变化。 

针对上述问题，本次研究以 3D CNN 为基础，通过融合 CBAM 与 SAM 构建 HAM 深度

学习算法。上述算法可以实现基于多源地质—地球物理数据的深部地质体边界智能化圈定，

并与现有主流三维地质建模商业软件（如 Leapfrog、SKUA-GoCAD、Geomodeller、3D Mine

等）相结合，实现高效精准的三维岩性建模。我们选择胶东半岛焦家金矿田开展算法测试。

结果表明，本次研究所提出的 HAM 算法可以有效提升三维岩性建模精度，对推动深部矿产

资源勘查和服务矿山实时生产具有重要意义。 

 

2 研究区地质背景与数据集 

 

2.1 地质背景 

焦家金矿田位于华北克拉通胶东半岛西北部（图 1（A）, （B）），焦家断裂带中段，

拥有焦家、新城、寺庄超大型金矿床和上庄、河东、河西、马塘等大中小型金矿床，探明储

量超 1500 余吨，是我国最重要的金矿田之一（图 1（C））（Zhang et al., 2024）。研究区

主构造是北东走向、北西倾向的焦家断裂，同时存在望儿山、河西和侯家等焦家断裂派生的

次级断裂（图 1（C））。上述主次级断裂共同控制成矿热液的运移与就位（朱日祥等,2015；

周明岭等,2024）。区内出露地层和岩石主要为第四系覆盖层、早白垩世郭家岭花岗闪长岩

（锆石 LA-ICP-MS U-Pb 年龄 166—146Ma）（姚晓峰等,2020；李世勇等,2022）、晚侏罗

世玲珑花岗岩（锆石 LA-ICP-MS U-Pb 年龄 135—123Ma）（Zhang et al., 2022；于晓卫等,2023）

和太古代胶东群（锆石 LA-ICP-MS U-Pb 年龄 2860—2820Ma）（祝培刚等,2022）。其中太

古代胶东群主要为由角闪岩和片麻岩等组成，并在焦家断裂上盘的红布—磁口—姚家一带出

露（图 1（C））。研究区早白垩世郭家岭花岗闪长岩与金成矿（133—120Ma）在时间上联

系最为紧密，并且常以岩株方式侵入胶东群和玲珑花岗岩（Deng et al., 2020；Jian et al., 2023）。

空间上，金矿虽然与早白垩世郭家岭花岗闪长岩紧邻（杨进辉等,2021）。但其包含的金矿

数量和资源量不及晚侏罗世玲珑花岗岩。此外，研究区第四系覆盖范围较大，因此亟需开展

三维岩性建模工作，支撑深部找矿（图 1（C））。 

 



 

图 1 （A）研究区大地构造位置（改自朱日祥等,2015）；（B)胶东半岛地质简图（改自张

智强,2022）；（C）研究区地质简图 

Fig. 1（A） Tectonic setting of the study area, modified form Zhu et al., 2015; （B） Simplified Geological map 

of the Jiaodong Peninsula, modified form Zhang, 2022;（C）Simplified geological map of the study area 

 

2.2 数据集 

本次研究使用的多源地质地球物理数据主要包括：（1）地质数据：①矿田尺度 1: 50000



的地质图，117 个钻孔，其中约 72%（84 个）钻孔集中分布于焦家断裂带及其次级构造带 2 

km 范围内，主要覆盖了焦家（38 个）、新城（29 个）、寺庄（17 个）等超大型金矿床。

其余钻孔分布于河东、马塘等中小型矿床，上述矿床外围区域钻孔相对稀疏；（2）覆盖全

区的地球物理数据：①矿田尺度 1: 25000 重力数据（图 3（A））；②矿田尺度 1: 50000 磁

法数据（图 3（B））；③矿田尺度 1: 25000 大地电磁（Magnetotelluric Sounding，MT）数

据（图 3）；④1076 块岩石物性测量数据（其中 431 块样本采集自 41 个钻孔）（图 4）。

上述数据中的地质数据由山东黄金集团有限公司提供，地球物理数据由中国地质调查局天津

地质调查中心提供，钻孔岩石物性测量在中国地质大学（北京）完成。 

 

 

图 2 研究区用于三维岩性建模的钻孔分布图 

Fig. 2 Borehole distribution map of the study area for 3D lithologic modeling 

 

为量化研究区广泛存在的蚀变作用可能对岩石物性造成的影响，本次物性测量分别对蚀

变岩和原岩进行了系统采样。研究区主要岩石的物性箱型图如图 4 所示，结合研究区以往区

域金矿普查的岩石物性统计数据，本次研究对研究区主要岩石物性总结如下： 



 

图 3 焦家金矿田剩余（A）重力异常；（B）化极磁异常(改自 Zhang et al., 2023) 

Fig.3 (A) Bouguer gravity anomaly and (B) Reduced-to-the-Pole magnetic anomaly in the Jiaojia gold ore field, 

modified form Zhang et al., 2023 

 

（1）新 太 古 代 胶 东 群 主 要 由 英 云 闪 长 岩 、 奥 长 花 岗 岩 和 花 岗 闪 长 岩

（Trondhjemite-Tonalite-Granodiorite，TTG）和斜长角闪岩构成，TTG 岩石物性与斜长角闪

岩相近（图 4）（杨进辉等,2021）。因此，本研究将二者归为一个建模单元，即新太古代

胶东群（图 4（A））。该套地层密度（2.69~3.12g/cm3）明显高于晚侏罗世玲珑花岗岩

（2.42~2.71g/cm3）与早白垩世郭家岭花岗闪长岩密度（2.42~2.72g/cm3）（图 4（A））。 

（2）新太古代胶东群（0.0002~0.008SI）和早白垩统郭家岭花岗闪长岩（0.0001~0.005SI）

的磁化率高于玲珑花岗岩（0.00002~0.0009SI），两者之间存在约 0.001~0.01SI 的磁化率差

（图 4（B））。新太古代胶东群的电阻率（300~350Ω·m）略低于晚侏罗世玲珑花岗岩（2600 

~8800Ω·m）与早白垩世郭家岭花岗闪长岩（2600~7700Ω·m）（图 4（C））。 



 

图 4 焦家金矿田主要岩石物性箱型图（A）密度；（B）磁化率；（C）电阻率 （改自 Zhang 

et al., 2023） 

Fig. 4 Box plots of major rock physical properties in the Jiaojia gold ore field (A) Density; (B) Magnetic 

susceptibility; (C) Resistivity, modified form Zhang et al., 2023. 

 

（3）物性测量结果表明，蚀变虽然降低了原岩磁化率（降低约 0.001~0.01SI）和电阻

率（降低约 600 ~2000Ω·m）（图 4（B）,（C））。但蚀变新太古代胶东群（0.0001~0.008SI）

和早白垩世郭家岭花岗闪长岩的磁化率（0.0001~0.006SI）仍高于蚀变晚侏罗世玲珑花岗岩

磁化率（0.00001~0.0009SI）（邹艳红等,2023；宋志勇等,2024）。 

（4）蚀变岩与原岩之间以及不同岩性的蚀变岩之间的物性值存在较大范围的重叠（图

4）。鉴于当前比例尺重磁电数据难以在矿田尺度三维岩性建模中区分蚀变岩与原岩之间的

密度、磁化率和电阻率差异，因此本次研究暂不将各类蚀变岩作为独立建模单元。综上所述，

本次三维岩性建模对象为新太古代胶东群、晚侏罗世玲珑花岗岩和早白垩世郭家岭花岗闪长

岩。 



 
图 5 研究区（A）三维密度模型；（B）三维磁化率模型和（C）三维电阻率模型 

Fig.5 Three-Dimensional models of the study area; (A) 3D Density model; (B) 3D Magnetic susceptibility model; 

and (C) 3D Resistivity model 

 

本研究采用非线性共轭梯度法（NLCG）对 MT 数据进行二维反演，并进一步利用离散

光滑插值算法（Discrete smooth interpolation, DSI）将反演结果插值为三维电阻率模型。针对

重磁数据，本次研究选择 UBC-GIF 软件实施三维反演。反演网格核心区设置为

50m×50m×25m，边界区域则采用逐步扩大的网格（最大外延至100m×100m×50m），以有效

抑制边界效应。由于对重磁数据误差信息掌握有限，因此本次重磁反演采用广义交叉验证

（GCV）模式，并引入深度加权函数，以避免反演过程中密度与磁化率异常体过度集中于

浅表(Zhu et al., 2025)。最终获得的重磁三维反演结果如图 5（A）和（B）所示。三维反演

获得的密度、磁化率和电阻率模型，将作为岩性识别的输入特征（图 5），标签则通过对钻

孔沿钻探深度延伸方向每隔25m采样获得，上述采样间隔与地球物理反演网格尺寸相一致，

上述地球物理特征和岩性标签将共同用于矿田尺度三维岩性隐式建模。 

 



3 研究方法与原理 

 

本研究构建了一种 HAM 算法，用于矿田尺度三维岩性隐式建模。以下从数据预处理、

算法架构和损失函数及训练过程几个方面介绍研究方法与原理。 

 

图 6 HAM 算法架构图 

Fig.6 Workflow of the HAM algorithm 

3.1 数据预处理 

本次研究通过滑动距离为 1 的三维滑动窗口提取13×13×13的三维体元。每个体元包含

密度、磁化率和电阻率三种物性特征。识别上述三维体元中心体素的岩性类别是本次研究的

核心任务。训练集和测试集体元中心体素岩性类别根据钻孔和地质露头确定，训练集与测试

集比例为 8:2。钻孔和地质露头未覆盖区域则作为本次研究的预测区。为防止深度学习算法

过拟合，本次研究通过三维随机裁剪方法对训练数据进行数据增强(Zhong et al., 2020；



Mumuni,A. and Mumuni,F., 2022)。三维随机裁剪方法可以以一定概率随机将三维体元除中心

体素外的部分区域的特征清除，模拟实际地球物理数据中可能存在的局部信息缺失，从而防

止深度学习模型过度依赖局部区域或某类特征，增强深度学习模型的特征提取能力和鲁棒性

（Mumuni,A. and Mumuni,F., 2022）。 

3.2 HAM 算法架构 

3D CNN 虽能可以有效提取局部深层次特征，但其固有的局部感受野和深层次特征融合

中对不同物性通道与空间位置近似等权的缺点导致其难以满足复杂三维岩性建模需求（Yu 

and Ma., 2021；Liu et al., 2023）。因此本次研究以 3D CNN 为基础，依次嵌入 CBAM（Woo 

et al., 2018）和 SAM（Wang et al., 2018），从而充分发挥多源地球物理数据在不同类型岩

性三维建模中的互补性，并增强三维岩性建模过程中局部与全局空间上下文关系的挖掘能力。

HAM 算法架构如图 6 所示。 

3.2.1 浅部特征提取网络 

浅部特征提取部分由五层通道数逐步提升的三维卷积层和最大池化层组成（图 6）。每

层三维卷积层后均引入批归一化与 Leaky ReLU 激活函数。其中批归一化通过规范化特征分

布缓解训练过程中的内部协变量偏移，加快收敛速度（Ioffe and Szegedy., 2015）。Leaky ReLU

则通过允许小幅负值输入，避免神经元“死亡”，Leaky ReLU 的关键超参数为𝜎，根据 Huan

等（2021）的研究，本次研究将其设置为 0.01。尺寸 2×2×2、步长为 2 的最大池化层位于在

第 2、第 4 及第 5 三维卷积层之后，用于保留关键特征的同时控制计算复杂度（Zitouni et al., 

2024）。 

3.2.2 卷积注意力机制 

在三维岩性建模中，不同物性特征和不同空间位置对不同类型岩石的识别贡献存在显著

差异(徐璐平等,2022)。为防止深层次特征融合过程中对不同物性特征与空间位置近似等权

（Hu et al., 2018），本研究在浅部特征提取网络之后嵌入 CBAM（Woo et al., 2018）。CBAM

由通道注意力与空间注意力两个子模块顺序串联组成（Woo et al., 2018）（公式（1））： 

 

𝐅′′ = 𝑀𝑠(𝑀𝑐(𝐅) ⊗ 𝐅) ⊗ 𝐅′ (1) 

 

公式（1）中 F∈ℝC×D×H×W（C 代表通道数，D, H, W 代表空间维度）代表经过浅部特征

提取网络输出特征，⊗为逐元素乘法，Mc(∙)为通道注意力机制，M𝑠(∙)为空间注意力机制，

𝐅′ = 𝑀𝑐(𝐅) ⊗ 𝐅为经过通道注意力机制提取的中间特征，𝐅′′表示经过 CBAM 提取的特征。

通道注意力机制（Mc(F)）可以针对不同岩性分类任务，动态调整不同物性深层次特征的权

重（公式（2））： 

 

Mc(F)=σ (MLP(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐅))+MLP(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐅))) (2) 

 

公式（2）中𝜎为Sigmoid函数, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(∙)和𝑀𝑎𝑥𝑃𝑜𝑜𝑙(∙)分别表示全局平均池化操作和

最大池化操作。空间注意力机制（Ms(𝐅′)）则通过加强局部关键区域的权重增强模型对局部

地质体空间上下文信息的识别（公式（3））： 

 

Ms(𝐅′)=σ (conv   3×3×3([AvgPool(𝐅′);  MaxPool (𝐅′)])) (3) 

 

公式（3）中conv  3×3×3和(∙ ; ∙)分别代表3×3×3三维卷积和通道拼接。 



3.2.3 自注意力机制 

3D CNN 和 CBAM 因其局部感受野的限制，难以有效刻画三维岩性建模过程中的全局

空间上下文关系（Huang et al., 2019；Zhao et al., 2024）。针对这一问题，本研究在 CBAM

后嵌入 SAM（图 6）。SAM 通过计算13×13×13三维体元深层特征中任意两个体素𝑖和𝑗之间

的全局相关性𝑨𝑖,𝑗，增强全局上下文建模能力（Woo et al., 2018；Lv et al., 2025）。设

𝐅′′∈ℝ𝑁×𝐷×𝐻×𝑊为经过 CBAM 后提取的特征（𝑁为通道数），SAM 先通过三个1×1×1三维卷

积𝑐𝑜𝑛𝑣𝜃
1×1×1, 𝑐𝑜𝑛𝑣𝜑

1×1×1, 𝑐𝑜𝑛𝑣𝑔
1×1×1 进行线性嵌入，得到13×13×13三维体元中每个体素的

查询向量（𝑸）、键向量（𝑲）与值向量（𝑽）（公式（4））： 

 

{

𝑸 = 𝑐𝑜𝑛𝑣𝜃
1×1×1(𝐅′′)

𝑲 = 𝑐𝑜𝑛𝑣𝜑
1×1×1(𝐅′′)

𝑽 = 𝑐𝑜𝑛𝑣𝑔
1×1×1(𝐅′′)

(4) 

 

然后计算13×13×13三维体元中𝑖体素和𝑗体素的𝑸、𝑲相似度𝑺𝑖,𝑗 （公式（5））： 

 

               𝑆𝑖,𝑗 = 𝑸𝑖
𝑻𝑲𝑗 (5) 

 

并以此为基础，计算 13×13×13三维体元中各个体素的注意力权重𝑨𝑖,𝑗（公式（6））： 

 

         𝑨𝑖,𝑗 =
exp(𝑺𝑖,𝑗)

∑ exp(𝑺𝑖,𝑗) ,𝑁
𝑘=1 𝑖

, 𝑖, 𝑗 ∈ {1,2, …  13 × 13 × 13}, 𝑁 = 13 × 13 × 13 (6) 

 

得到𝑨𝑖,𝑗后，SAM 计算每个体素经过全局注意力权重加权后的特征𝒁（公式（7）），为

进一步保留原始特征信息并，SAM 还引入残差机制，因此最终经过 SAM 提取的特征𝐹′′′如

公式（7）所示： 

 

{
𝐙 = ∑ 𝑨𝑖,𝑗

𝑁

𝑗=1
𝑽𝑗

𝐅′′′ = 𝑊𝑧𝒁 + 𝐅′′

(7) 

 

公式（7）中𝑊𝑧是一个可学习的权重矩阵。 

3.2.4 焦点损失函数 

本次研究训练集中标签为胶东群的三维体元数据远少于标签为玲珑花岗岩的三维体元

数据，其不平衡比约 1：40，存在明显的类别不平衡问题（Buda et al., 2018）。交叉熵损失

会导致模型偏向多数类（玲珑花岗岩），导致对少数类（胶东群）的分类性能下降。因此本

次研究引入了焦点损失函数（Lin et al., 2017；Zhang et al., 2023）： 

 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾log(𝑝𝑡) (8) 

 

公式（8）中，𝑝𝑡为模型对真实类别的预测概率，𝛼𝑡为平衡因子，每个类别 𝛼𝑡值设定为

其样本数量倒数的归一化值，确定为[17.5393, 0.4297, 1.6244]，分别对应胶东群、玲珑花岗

岩、郭家岭花岗闪长岩，这一过程赋予样本量少得岩性类别更高的权重（Lin et al., 2017；

Zhang et al., 2023）。聚焦参数 γ 用于调节困难样本的关注强度，是焦点损失函数的关键超

参数，本次研究通过网格搜索确定焦点损失函数的最佳 γ 为 2.0。 



 

4 结果与讨论 

4.1 模型训练 

本次研究以三维岩性建模领域广泛应用的 RF 和 3D CNN 算法为基线算法（Baseline 

Algorithm）。其中基线算法的 3D CNN 模型通过 HAM 模型移除 CBAM 和 SAM 模块获得。

此外，为评价模型中关键组件—CBAM 与 SAM 的有效性，本研究开展包括移除 SAM 的 3D 

CNN-CBAM、移除 CBAM 的 3D CNN-SAM 以及完整 HAM 在内的消融实验。 

 

 

图 7模型学习曲线（损失与准确率）图 



Fig.7 Plot of model learning curves depicting loss and accuracy metrics 

表 1 模型训练过程性能对比 

Table 1 Performance comparison of the RF,3D CNN,3D CNN-CBAM,3D CNN-SAM and HAM models. 

模型 宏平均准确率 精确率 召回率 宏平均 F1 分数 

R F 0.9690 0.9189 0.9207 0.9195 

3D CNN 0.9758 0.8741 0.9444 0.9055 

3D CNN-CBAM 0.9834 0.9013 0.9725 0.9332 

3D CNN-SAM 0.9842 0.8962 0.9698 0.9286 

HAM 0.9883 0.9285 0.9741 0.9495 

 

上述模型中，RF 关键超参数通过网格搜索确定，其决策树数量、决策树最大深度、节

点可分的最小样本数分别为 150、15 和 12。在平衡模型效果和计算开销的前提下，经网格

搜索反复测试，本次研究 3D CNN-CBAM 和 HAM 模型中 CBAM 模块的通道注意力机制降

维比率为 8，空间注意力机制卷积核尺寸为 3×3×3（Ridnik et al., 2021）。3D CNN-SAM

和 HAM 模型中 SAM 模块的自注意力机制头数为 8，每头维度为 32，总隐藏维度 256 (Woo 

et al., 2018；Chen et al., 2022；Zhang et al., 2025)。本次深度学习模型训练使用的优化器为

AdamW，初始学习率为 1×10−4，权重衰减系数为 1×10−5，训练批大小为 256。在设定初始

学习率基础上，本次研究进一步采用自适应调整策略对学习率进行动态调整，从而促进模型

收敛至更优性能。此外，为有效防止过拟合并节省计算资源，本次深度学习模型训练过程引

入了早停机制，其中早停机制的最大训练轮次为 500，当验证集损失连续 10 个轮次下降幅

度小于阈值 1×10−3 时，将提前终止模型训练。 

4.2 模型对比 

本次研究的评价指标包括宏平均准确率、精确率、召回率、宏平均 F1-score 和混淆矩阵。

对比实验与消融实验结果如表 1 所示。深度学习模型在测试集上的宏平均准确率、精确率、

召回率和宏平均 F1 分数均优于 RF 模型（表 1）。相较于 3D CNN， 3D CNN-CBAM 在测

试集上的宏平均准确率、精确率、召回率和宏平均 F1 分数提升 0.76%、2.72%、2.81%、和

2.77%，3D CNN-SAM 在测试集上的宏平均准确率、精确率、召回率和宏平均 F1 分数提升

0.84%、2.21%、2.54%和 2.31%（表 1）。添加 CBAM 和 SAM 的 HAM 模型在测试集上的

宏平均准确率、精确率、召回率和宏平均 F1 分数提升 1.25%、5.44%、2.97%、和 4.40%（表

1）。训练过程（图 7）表明，HAM 模型收敛速度最快，且收敛后的训练与验证损失最为稳

定，反映出其高效的学习效率与稳健的泛化能力。混淆矩阵（图 8）进一步印证，HAM 在

岩性类别判别中显著优于 RF 与基础 3D CNN 模型。 



 

图 8 混淆矩阵，其中 0、1、2分别代表新太古代胶东群、玲珑花岗岩、郭家岭花岗闪长岩 

Fig.8 Confusion matrix, where 0, 1, and 2 represent the Neoarchean Jiaodong Group, Linglong Granite, and 

Guojialing Granodiorite, respectively. 

 

4.3 讨论 

在上述岩性分类基础上，本次研究通过 DSI 算法完成最终三维岩性隐式建模（图 9）。

相较于 RF 算法，基于深度学习算法识别的各类岩体边界不仅更为精确，而且更为连续（表

1，图 9），体现了深度学习在深层次提取与融合复杂空间上下文特征方面的优势。相较于

3D CNN，添加 CBAM 或 SAM 模块可以提升基础 3D CNN 的性能，但仅添加 CBAM 或 SAM

模块模型的宏平均 F1-score 分别比包含 CBAM 和 SAM 的 HAM 低 1.63%和 2.09%（表 1）。

通过融合 CBAM 和 SAM，HAM 在焦家金矿田的岩性识别中，既能聚焦于关键判别部位，

又能构建全局上下文关系，从而提升地质体体三维空间形态和分布的合理性，例如在识别研

究区内出露的关键地质体郭家岭花岗闪长岩在焦家断裂中段的出露时，HAM 模型的预测边

界与地质图露头边界达到了高度吻合（图 1（C），图 9（E）），实现了对该岩体空间形态

的高精度三维刻画。作为对比，其他模型的预测边界在该区域则与实地露头存在明显偏差（图

1（C），图 9），这进一步印证了 HAM 模型在三维岩性隐式建模过程中的优越性。当然，



本次研究的 HAM 算法除与 SKUA-GoCAD 软件的 DSI 算法结合外，还可以与其他各类主

流三维地质建模商业软件（如 Leapfrog、Geomodeller、3D Mine 等）的三维插值模块相结合，

实现高效精准的三维岩性建模。值得指出的是，HAM 模型在处理空间分布连续、规模较大 

 

图 9 三维岩性预测模型图（A）RF；（B）3D CNN；（C）3D CNN-CBAM；（D）3D CNN-SAM；

（E）HAM 

Fig.9 Three-Dimensional lithological prediction model diagrams（A）RF；（B）3D CNN；（C）3D CNN-CBAM；

（D）3D CNN-SAM；（E）HAM 

 

的地质体时具有显著优势，但在处理如断裂带等薄层地质体时则面临固有挑战，其原因在于

1. 薄层地质体在三维空间中厚度与横向延伸尺度相差悬殊，标准卷积核受限于规则网格上

的局部感受野，难以有效适配此类非规则、各向异性显著的薄层结构（黄珏璇, 2022）；2. 薄

层地质体的地球物理响应信号通常较弱，且易与围岩信号混杂，使得深度学习模型从多源地

质—地球物理数据中提取的深层次特征更倾向于大规模地质体，对这类薄层地质体弱异常敏

感性不足（Zhang et al., 2024）。针对上述问题，可以通过多尺度特征融合方法挖掘从局部

薄层地质体到全局大规模地质体的多尺度特征，或者结合图结构方法对节点和边的三维拓扑

关系进行建模，从而不受固定规则卷积核形状限制，自然适配任意形态的薄层地质体（Huang 

et al., 2023）。 

5 结论与展望 

 



本次研究研发了一种矿田尺度三维岩性隐式建模深度学习方法 HAM。在焦家金矿田开

展的三维岩性建模实验表明，相较于传统 RF 算法和 3D CNN 算法，HAM 算法不仅可以挖

掘建模所需的深层次地球物理特征，还可以更为有效地构建由“整体连续—局部突变”引起

的复杂局部—全局空间上下文关系，从而明显提升了三维岩性建模的精度和效率。然而应当

认识到，本次研究所采用的深度学习算法仍主要依赖于数据驱动，尚未充分融合地层产状、

构造格架等先验地质知识。因此，亟须研发融合地质知识与观测数据的“知识—数据”双驱动

深度学习算法。此外，HAM 模型在刻画断裂等薄层地质体时存在局限，因此如何将多尺度

特征融合或图结构建模等方法引入三维岩性建模中，以突破薄层地质体的建模瓶颈，实现全

要素高精度三维隐式建模，亦是后续需要重点探索的方向。另一方面，本研究尚未与图神经

网络（Graph Neural Network, GNN）等先进方法展开系统对比，这也是未来研究中需要加强

的部分。 
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