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Abstract: Enhancing the transparency of deep geological structures at the ore-field scale is critical for subsurface
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mineral exploration and prospectivity modeling. Three-dimensional (3D) lithological modeling serves as a critical
technology for this objective. However, existing ore-field—scale modeling workflows rely on explicit modeling
approaches with relatively low efficiency, which struggle to meet the demands of multi-stage mineral exploration
and real-time mining. Consequently, high-precision and high-efficiency implicit 3D lithological modeling methods
are therefore urgently needed. To address this issue, this study constructs the 3D Convolutional Neural Network
(3D CNN) and integrates the Convolutional Block Attention Module (CBAM) and the Self-Attention Module
(SAM) to construct a Hybrid Attentional Mechanism deep learning model (HAM). Based on this algorithm, deep
representations within multi-source geological and geophysical data are mined to determine the boundaries of
geological bodies required for modeling, thereby achieving a 3D lithological implicit modeling method capable of
capturing both local details and long-range dependencies. To validate the effectiveness of the proposed hybrid
attentional mechanism model, the Jiaojia gold field in the Jiaodong Peninsula was selected as the study area, and
comparative and ablation experiments were conducted. Relative to baseline models—Random Forest (RF) and a
vanilla 3D-CNN, HAM markedly improves the macro-averaged accuracy, precision, recall, macro-averaged F1
score and confusion matrix of ore-field—scale implicit 3D lithological modeling, with direct implications for
subsurface mineral exploration and mining operations.

Keywords: 3D lithological implicit modeling; Three-dimensional Convolutional Neural Network; Convolutional

Block Attention Module; Self-Attention Module; Jiaojia gold field
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Fig. 1 (A) Tectonic setting of the study area, modified form Zhu et al., 2015; (B) Simplified Geological map
of the Jiaodong Peninsula, modified form Zhang, 2022; (C) Simplified geological map of the study area
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Fig. 2 Borehole distribution map of the study area for 3D lithologic modeling
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Fig.3 (A) Bouguer gravity anomaly and (B) Reduced-to-the-Pole magnetic anomaly in the Jiaojia gold ore field,
modified form Zhang et al., 2023
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Fig. 4 Box plots of major rock physical properties in the Jiaojia gold ore field (A) Density; (B) Magnetic
susceptibility; (C) Resistivity, modified form Zhang et al., 2023.
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Fig.5 Three-Dimensional models of the study area; (A) 3D Density model; (B) 3D Magnetic susceptibility model,
and (C) 3D Resistivity model
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Fig.7 Plot of model learning curves depicting loss and accuracy metrics
* 1 AT R R X L
Table 1 Performance comparison of the RF,3D CNN,3D CNN-CBAM,3D CNN-SAM and HAM models.

A FOPHERRE  ORER Hlalx TR FL
RF 0.9690 0.9189 0.9207 0.9195
3D CNN 0.9758 0.8741 0.9444 0.9055
3D CNN-CBAM 0.9834 0.9013 0.9725 0.9332
3D CNN-SAM 0.9842 0.8962 0.9698 0.9286
HAM 0.9883 0.9285 0.9741 0.9495

FiRBEAI G, RF RESBESHCEL MR R E, LS BE. MBI Y
AT B INEEAR B 90 1504 15 A 120 76 PR R ROR AN SE P A AT I R, Z Mg
R EMR, AKX 3D CNN-CBAM 1 HAM #:% t CBAM FHe ()38 38 v 72 S ) [
Yebb 2y 8, AXAIERE JIHLHEIBEFZ R ] A 3X3 X3 (Ridnik et al., 2021) . 3D CNN-SAM
A HAM #E88 SAM L B VE R NI SR EC 8, RESk4EfE T 32, SBER4ERE 256 (Woo
etal., 2018; Chenetal., 2022; Zhang et al., 2025) . A<{RIAE 2% IR G4 D0 AL 28 M
AdamW, WJUH%315H 131074, BEFRRRECH 1x107°, RN N 256, TEREVIG
H )RR BEA b, AURAF T — D R B LR R SR X 5 ) BRI AT B A TR, M (i AR
WSk AR ERE . IbAh, ARG I G FET BT TR, AR ST Rt A2 5|
AT FAFHUE], i FAEHLH R R RN ZREE I 500, IS UEEEIRIES: 10 MR FEIE
FE/NFEIME 1107 B, 374 b RA1 25,

4.2 1EBINTEE

AU T RIVTAN F8 br L 4G 22 3 HERA 2R RS R % 7 [B1 3% %2 71 Fl-score FIVRIERIFE .
X H SRS SRR IR 45 AN 1 Fom . IR S IR RUTENNALE I PIgEmf . M.
HRFEM ) F1 28U T REBR (2 1) . #HET 3DCNN, 3D CNN-CBAM 7£ill
R L E P ZE . R B RZM T F1 0 83EH 0.76% 2.72%. 2.81%
2.77%, 3D CNN-SAM fEMIAEE ERIZ-FIUERZR . Fifse. A RIZEMZ T F1 2 8dE At
0.84%- 2.21%- 2.54%F12.31% (£ 1) . ¥ CBAM 1 SAM [1) HAM BAENALE /1)
FOPMERER . RS HRIZEME ) F1 802 1.25%. 5.44%. 2.97%. H14.40% (K
D o YRt (B 7) R, HAM BERUSICE R, HUSIUS B2 5 3R ok o i
B, R R A S SR SRR ALRE S . IRIEFERE (B 8) dE—DENE, HAM 7E
R A R R T RF 5355 3D CNN #i7Y,
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Fig.8 Confusion matrix, where 0, 1, and 2 represent the Neoarchean Jiaodong Group, Linglong Granite, and

Guojialing Granodiorite, respectively.
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Fig.9 Three-Dimensional lithological prediction model diagrams (A) RF; (B) 3D CNN; (C) 3D CNN-CBAM;
(D) 3D CNN-SAM; (E) HAM
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