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Abstract: The disaster chain initiated by near-dam reservoir landslides, characterized by its abrupt onset, cascading
nature, and severe destructive potential, poses a significant threat to hydraulic structures and downstream safety.
This study presents integrated physical model tests simulating landslide-generated impulse waves and subsequent
dam breaching. Key data on wave evolution, dam erosion, and the breach process were systematically recorded,
revealing the failure mechanisms of earth-rock dams subjected to wave impact. Leveraging the experimental data, a
refined three-dimensional numerical model was developed using the Finite Volume Method. This model couples
modules for landslide motion, hydrodynamics, and dam material erosion. The reliability of the numerical model was
validated against the experimental results. A parametric study was then conducted to investigate the influence of key
factors, including landslide volume, fall height, dam geometry, and landslide location, on the breaching process. The
results demonstrate that wave impact significantly accelerates dam erosion, leading to an increased peak discharge
and an advanced breach timeline, highlighting a clear disaster amplification effect. This study provides both a
theoretical foundation and an advanced simulation methodology for the risk identification and assessment of
cascading geological hazards in near-dam reservoir areas.
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Table 1 Design parameters for the scaled model test
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Fig.1 Experimental setup of dam breaching under landslide generated wave
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Fig.2 Propagation of landslide generated wave in the reservoir
area

122 JERIEA T AR A RiZRE
TR R AR A B IR R AN 2 1
— e I AN EE 2N L P rEE, AR
Wt ERRCHT, TR PR EEAS TR, RS TR i
(IR A 2R (EN: i s 5 S RO R0 € 5/ AL Y-
B59: TR A IEIE S, KRR SE R
R, LHEEZEET KIE B 7 2T,
AR A GETE BT R 1, R TR R0 LA
ﬁﬁ%ﬁﬁ#mﬁﬁiéﬁmoM

T N
LIS % \ /
<7 mrmmE

—

=

TR i

B3 TR,

<— P ‘,,

B 3 EIRMERT TR

IRMPEEH T AR B N = A B (] 4):
MIRIEEE T B (D, ViR R M B (1D,
WEE TR T B (D
TEVRIRICEB TR B (1), BRI &

WURT /KA, JRIR R BRI A3, A
TIREEA DL b, XTI AT WA b ik 28 SR A B
2o WURTIR IR —E M attE, EEBKIRIK
TEF, SEMr B2 BmE . Bk Od RrE,
TR R EED, AR RS, T = AR I
T, — BT AR N T AT, R 3
R 7K 18 T A, 5 4R 215 YR v 4 e o B
(1D, KM AFFENEIRT, (HHB) IR E
XERARIMIRIAREE . b, 2IAEF L
AR T . FRPEOER RIZE 0, A ik
W NREIZL, R I e R B A, WEE
PR TR L SRR R ) B A i s, R R
N VA RS v ik, (EX T BATY AR AR BRI TR
FOMREAE, A2 IR 5 Fr K IR 3L A 3 S iR
PP Y X R AR TR IR AR R A AR K
TP, SR MIE TR M B (MDD, 7K3i3)
F18 N I T A2 5 K KBRS (A 2 18 TR, BEE T
CHRZRETY R, it D 2RI 0, KR nidEx =
TSR AT WHVE PR, TR TR R o R AE 58 49 R
B EIABEE, BYOI RSN ES R
I TS 7+ o

B

Fig.3 Process of dam break induced by landslide generated wave
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Fig.4 Breaching mechanism of earth-rock dams under waves

2 JE PR RV AR TR I B E A AU
EACIER RS N & S SRR B ST i el AT
YIEZEA SRR, T ERENTT WIEE,
B A] 2 [8] 5 F B 208K, B SR ) vl A
AR 78 I 7 TR I K% S50 B 1) 2 22 T AL (Sabeti
and Heidarzadeh, 2022; Rauter et al., 2021). A KA
B Y E I UE AL, P REEE R AN
FEARKAE, HE— PRI R FaE AN X 2 K
Bl o
2.1 REFEHEERLL
2.1.1 HfE 5
WF UK I T A BRAA R FLOW-3D Bf-F
ST HUE R, ZERE =4 R Navier-
Stokes (RANS) Ji& 5L (VOF) 45472
TR R 4G FAR S SPIRAS, AR n] DU U

HBE AL H FH R [ ALARIZ 3] (Pourshahbazetal., 2022).

W TG B30 U B IR AL A2 (RNG k-e) 4D 3%
TR TRAL IR K A s K R AR e . R —
I SRS (GMO) KT H N 7K Alffi A i
A R . @ik B A AR s Rk 5
WU P AN TR S AR . B v 3 B & =AM
Be: KB SRR VR ARE SRR, HURl bR
THERAEE WK 5 B,

(1) KBSk

AW TR FH RANS 5 FERRAU, = 4 AN 1] R 45 14
IZBPIRES, FIR IR B AR AR LA Ve
KRR SHURL B B sh A, FEs R
SRR IRN:

— Vr + ;—xpqux + aa—ypwvAy + ;_ZPWWAZ =0(1)
Ju; 1 du; 1 dpP
5t +V—F<ujAjd—xj>=———x+gi+ﬁ- 2)
A pu NKIE L ¢ AL w, v, w 53 30A
x,p,z J7 1A B RITE s Ay, Ay, A2 535008 x, y, 2 Fi1A] b
AR G s w0 AAFREE T R SR P A
SR gy i T BRI SUE IR £ oy 0 T7 ) BRS
PRI o

(2) BEENER
TN R FE B 2% R R 1), A i
FOHTE IS T BRI VOF %iviz J7 R vh s s oo, b
fERERE B SHR AR LR (RI5E0, 0 T AN AT B4 i
PRI A
v-(m):—%"ﬁ?’" 3)
e S NIRRT FH LT 5 ks
S0 b (RS T R, ovelar AT EAE—ANBAME
PRI 2l A RNEE, IR AEAE T s 5
VoL 5 B A BTN, FTRIR:
v, S,
A 4
Al VAR B ITCIHAR: So, o, n 535 IS
OGS SRR TR, HE . Ak m . o
FEHHIZ B AL S 1) E 51 N B 5 A
BIYIN /3550, RITESAABI VIR /5 2% 18 T 18 3h )
(SN EINVARIYSE S
(3) FERME
IR, AR KRS BT AR
o FEKT T AR R RS AT, P
TEARIFIKE) F156A4F AT DL EARS 4, 23 b
T3 NI UIREIZ Bl TRV I ig S FIHERS T
Foiadl)o U e it TUATORE e Bl it 2 e ALt At
B ECEE, UL R EE AR

d d d
oo = (Hex Dby p g (5)
dx dy

at
Kz NEHERE; © NEKRHERDEG g
H guy 5300209 x, p J7 18] bR SEARRAHERS BT i F 35 D,
E 53 BIAAS[E] R NRLAR T A 2 DL R Ja) b ey i
IR AME o
fEJ T IE g, A U E ARk R HERS
R BB 1) 5 AR % (Mastbergen and Van Den
Berg, 2003 ):
_ 0.5
E = and?(0 —0,)'% g (*— L) do|  (6)

w

A E I EIJHTE A o ANV ey
FHG 0 ABHRR AR R do T EARE S
s 0 NIRRT IRUEH O NIBIENE T A IR 255
pa NIVRVEE s g NE IR s dso IR} HE K
2o

FEUIRIEE T, B R IR R AT s oA
RT3 3 5 12 oL I JEE Y 3fe A

%
D= Ef [(10.362 + 1.049d3)%5 — 10.36]c  (7)

b D NN UIREESR v NTRARRIZZh R




FEs o NRFRIZEBRRIKE .

HEFS 0T P sk 2 06T A R s R R g i
FEHR 22 KL E B, Meyer-Perter #EF2 )i 2 s H A AT 1)
TRIKEFE CHEMESR4E, 2023), BRI E R EHER
R (Meyer-Peter and Miiller, 1948 ):

0 =K@ -0, s (L) @)

X KN TR ARG d IR . T4
[ UL, =R o o B v R - B R R OR
(Sammabh et al., 2020):

aC,
W +V- (uscs) =V- V(SCS) (9)
s Gy NANFEIUBHP) B e vb i 5T 2k L
TR MY BAREG u BB IE.
Froa
|
BN R85, #HE8%. BREH
BHEE: 7,
; |
L EgrRRETIEsRE e GMOIEENERITE
(A1), (2) | ] (2=R(3), (4)
| \
REFETE (A3, 2),6). @)
41:,:1\ﬂﬁ'§-§l&é§;ffL::.,: L}
LSRR R Rk 2
(238(5). (6), (7). (8). (9))
BB RS MR TSENES
1
= < r+Ar>T =
TE
BHITESR
S

& 5 BUERH R R

Fig.5 Flowchart of numerical simulation calculation
2.1.2 HEAERRIE

R AR 150 ke Ve B B A J L AR 45 4 R A4
BHREE, SRR, oAU PEX A
FEREAE R opr B TR AT ) A U B T /KA
IV BRI AH [F] () BEK AL, BRSPS B E
TER T fEE BN SRR SORIRIER T
WRtEE, B ARALAN A A A A IR 45 R
FETHNIKAL VAT 3E Hh AR =AM B B E = A
BElR R, TR E IR RN . BUEBI P
RHRFE Z HORYE Y PR T E o /KA 6 A B
B, W R R B WIVEM BT, TEER
2200kg/m’; ST EHE 5T 1 B P B g0 PE B AR R]

BIERBCHR BRI (R 2D,
% 2 WEERRE SHERD A R
Table 2 Material properties in the physical experiment and

numerical simulations.
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Fig.6 Variation diagram of surge propagation vector in the
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Fig. 8 Discharge process of earth-rock dam breach under
various influencing factors
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Table 3 Settings of numerical test conditions

5 Hs(m)  Vs(m®)  Wa(m) Ds(m) tan(p)
1 0.004
2 0.008
3 14 0.012 0.05 15 0.667
4 0.016
5 0.6
6 1
; 14 0.004 0.05 15 0.667
8 18
9 0
10 0.05
11 14 0.004 0.1 15 0.667
12 0.15
13 0.2
14 1
15 0.667
16 14 0.004 0.05 15 0.5
17 0.4
18 0.33
19 12
20 15
’1 14 0.004 0.05 18 0.667
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Fig.9 Erosion characteristics under wave impact
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