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Abstract Regarding the estimation of yield of underground explosions, this study systematically
investigates the influence of burial depth, source components (ISO, CLVD, DC, and their
combinations), and site conditions on the relationship between the source seismic moment My
(source) and the Lg-wave seismic moment My(Lg). Based on theoretical synthetic seismogram
simulations and Lg-wave spectral inversion methods, we quantitatively calibrated the Mo(source)/
My(Lg) ratio for different test sites. The results reveal significant site dependence: the ratio generally
exceeds 0.2 for the North Korean site but falls below 0.2 for the Nevada site. Secondary sources
(e.g., CLVD and DC) reduce Lg-wave excitation efficiency in the North Korean site by up to 50%,

while increased burial depth weakens P-S conversion effects, further decreasing the ratio. By
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integrating a seismic source model, we established a yield estimation method based on M, (Lg) and

validated it using data from North Korea's sixth nuclear test.

Keywords: source seismic moment; Lg wave; source model; yield estimation; synthetic

seismogram
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Fig.8 Inversion results of partial stations. The black dotted line represents the observed Lg
wave spectra, the gray line represents the iteration curve, and the red line represents the optimal

result.
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