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Abstract: The Miaowan ophiolitic complex in the Yangtze Craton represents one of the largest
exposed ultramafic-mafic complexes, yet its tectonic evolution remains contentious due to lack of
robust geochronological constraints. Here, we report the first discovery of rodingite (named the
Miaowan rodingite) from the Miaowan ophiolite in Yichang, Hubei Province. We present
comprehensive major and trace element data, together with high-resolution in-situ U-Pb dating for
garnets from this rock using LA-SF-ICP-MS. The Miaowan rodingite occurs as veins within
serpentinized peridotite and is primarily composed of garnet, diopside, and prehnite. In-situ dating
of garnet grains yielded a precise lower intercept age of 897+24 Ma, which is interpreted as the
timing of rodingitization. This discovery offers key petrological evidence for the oceanic crust
origin of the Miaowan complex. The field relationships, mineral assemblage, and geochemistry of
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garnets consistently suggest that the rodingite was formed by metasomatism involving Ca-rich
fluids derived from serpentinization in an oceanic setting. Integrated with previous studies, our
results reveal that the Miaowan ophiolite formed at >900Ma, implying the possible existence of a
limited oceanic basin in the Yangtze cratonic nucleus during early Neoproterozoic.
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## (Ranetal,2024) .
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BRI VR 5 AR N B R B I BB B M A T BB R Ay (EIRFEAE, 1995) o Bk, T
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Fig.1 Distribution of ancient crystalline basement in the Yangtze Craton (modified after Wu et
al.(2024), Li et al.(2021)) (1: Yudongzi; 2: Houhe; 3: Douling; 4: Huangtuling; 5: Kongling; 6:
Zhongxiang; 7: Hekou; 8: Dahongshan; 9: Cuoke)
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Fig.2 Geologic maps of (a) Huangling dome (modified after Peng et al. (2012)); (b) Miaowan Ophiolite
Complex (modified after Deng et al. (2017))
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(REE) Feorsiat, 1o —Le4s it K o FIpE 4 L LA 82 85 + 0 % (LREE) &4 M1 Nb-Zr
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Fig.3 Photograph (a) and microphotographs (b-d) of the Miaowan rodingite (Figs 3b-c: plane polarized
light; Fig. 3d: cross-polarized light)
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T VKA TEE . LR FEE 4 T NIST 612 A1 ARM-3 B3 FsFF, FT Pb. Th
MU FEIREMEERE. BIRAR 74 U-Pb EFERFES N Yang et al. (2025).
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Fig4 Ternary diagram showing major element compositions of garnets from rodingite sample
24YCO1. Ad: Andradite; Alm: Almandine; Gr: Grossular; Py: Pyrope; Sch: Schorlomite; Sps:

Spessartine; Uv: Uvarovite.
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Fig.5 Chondrite-normalized REE patterns for the garnets in the rodingite 24YCO01 (Chondrite

normalization values are from Sun and McDonough (1989))
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B NEETY, WAGHE A SRS EET Y. ARRTEES SRS BRI A
ki, HuHE AR T AREMEANE, 8 H w8 AR A S E SR
(E 3) o HTHREF RS T4 BRI, XL 7 A o6 70 K 2 DA 888 A o 26 3 A 4
(>90%), JETFRUERI S AR A R 5, FamwaUn 1 s OV KA T2 B 57 45 1
TR IR SR A RRAE (Palandri & Reed, 2004) o 454 FHFAMSIR CRBCIRIE R 3L
YR LA A RN A B, TR 3 kAR R = RIS AR A . X TE
JRTS ISR A T I O RRARGE, AN T A% X 4 9 R K e AR AR P )
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etal., 2017) .
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S R 2 1R R DR 0 R A PRI S AR AR SRR DA B T B %) ) 34 A 458 S A% s ]
(Haws et al., 2021; Zhao et al., 2023; Ran et al., 2024) . RE T AL MRSl E W 54 T
R PTTEBUEE A, HP= TR A TR IR 7 R A, A S g 2R FH
IR T A B BCE ik . AR, TS R RS RE WA T A1) REE SERIK, 280%
ICEOERI BT AR HBR (B 5) o [ERERERE, $B0 00 s BN IE Bu 7% .
X —HhERL AR E 5P A PR TR A1) REE FL Bl m BEARRL, AN “ AN
MER A ARt 7 21 B iE s .

KT RZATARIR, EEAE=MATRE: (1D HEEM ARSI E Ca it
f& (Frostetal.,2013) ; (2) MR BKIEINE Cafiifk (Daietal.,2016) ; (3) fik
P AR I F AR (Ran et al., 2025) o BEERUES AT B TR0 5, Hoa
FHEE S THYMAH S H REE 25 E M5 (Ranetal., 2024) . BEHESH AT A
IS EEME A 9 E . REE & SRR IRHIE S BN, H X 6= R A A 0 BN I UE 4
AT HERR R o ARFPPAR T AR T R T A AR, SRR P AR TS E
WS SRR AR A . HEBRE, M R R R A S A R -
(HP-LT) A 34 . ol AR A b 22 sy, 162 B A= HP-LT LA H G K F,
JETEHE S SN SR S AR . S R RS RE O G AR AHE A+ & A+
R ARHCA e A, HEURFF LA fRRHONRREEE A=Y, X5 AR AL
RAFAE—E (Bach and Klein, 2009) . HAR A DEERA (590%) HF, HRAKH REE
MEDREENIE Bu i (5, LETER TEMIE (200-300°C) 4T, JHAHFRIX
A 5 B ASARTUE [ M i R (Cannaod, 2025) o IX R4 B ] BE S Y5l A T JEE A
WA LEMESCH A R BB TBUR) & 5 A 25 ERR, AR SN ST 7 A58 5 2 VIR 5
T, HEESCAATA B B IR K A B T AR PR

53 AMTFA U-Pb EFRFENX

AH 5T K H LA-HR-SF-ICP-MS X Jii i 5 58 A H A 1A 14T T 73 MiX U-Pb &
N, AT 55 AR, HAH T 897+24Ma [ R AL MAERSY . K A T 1)
U-Pb 4F % B4 AR RN S RS R A AL AR (AR, D 20 F R VPG . U-Pb [RIA =4k R 2 i 7E 1k
AR EE N RFFE . Po FEAR T A OB O R, Hy #2230 U-Pb 14 R 3 FAREE
o EE. PSRN, ESHMAHER (>20°C/Ma) FF ¥kiE (>200um) MIZ&HET,
FEAEAE AT 1) U-Pb 1A 2} AT AT =594 900°C (Yan et al., 2025) X 5F| A48 74 U-Pb 32
SRR I IRTSE EHRRRRL S (>1000°C) U4 HAR Ji AR T AL SE B AHAF (Shuetal., 2024) o 28
T S SR R 2 A P i % A TR A 58 (<500°C) (Bach and Klein, 2009; Li et al., 2007) .
A FAE S IBAEEE A RIS ASET Y, HHRE T IHERIEEA T 350°C, H
KIJEIARELF 2 IR . %R T T80 A U-Pb R RIGESH AEE. Fik, &
TR BRI, A FATER ARG U-Pb 7R RIGALRFEE A, Fr3kA3M 897+24Ma 44 1]
SEHIC S, T R R A A A R A I (]

PEIRAS AR BRI E5H8 5 8 T BT RV A BB T I i S R I AR R, 2 g KR
K. SIS K AEWSCH G A E F R T AR A R ). Rk,
TR AR R B T I OIS B IS5 st . A MBEASEHIRE, ZHE0 T =R
FEREE BT A TR S T AR RS AL Ce.g., Ran et al., 2025) . JEULHENT, JHRISIpEts
WS 2 BT R ARt S 423 ~900 Ma. A 223 L T S e 4t 8 AR TR TR 4 e g



FEERETE LKA A TR I oS R, W PR 2 120 43 2 (AT i gl 67 (AT B 5] 9 ~900Ma (Lu et al.,
2020; Wu et al., 2024) o FHRATERZE MR ER, RIS AT ARR I PSS /E TR iU 5
FAN RIAAE T aehr, X AT RERE N IR A PR, AR A R . 48R, X — IR MR
Aokxtiw st HAb A o K s . ZRE AT EEEEMUIIE. BRI RZ i
JHE Y4 T T 1100-950Ma (Peng et al., 2012; Jiang et al., 2016; Deng et al., 2017) , T4
SO ASARTY 7 85 48 5 10 BN 2 B Je V25 VP A7 E A BT ) TT e R 42 2 900Ma

M FAE, SERFEHIBZ A T MERDEE IR, 7 5o i 2R 1 pk
TEBA & 2 MG R DE S CEROH K&, 2024; /5 I0FASE, 2025) o IE4ESR, R4 T Tafiil
P S A SRRt 2l R I i B e AR SR R, B s T R S AR E N IR
BRI EE R S R A AR E R I AR R, BT hn@E v Ret BT M “demTT W
A B AR A 7 S b et A e, 8% A T e 5 Y )1 A (Xiong et al., 2016: Lu et
al., 2020) o JHEBIELEEERIZE KEFERE A 0%, H~897 Ma I F R AL R, N
L)W AL TSl Pt G X — S G FF AR T B EEMERFEH L. X—PHE
FAEX TR — 37 e hnd@ I A B =, T de 42 1 RS i W 52
BWEN ) F LR — A2 .
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1. ARSCE RAE RS AR ORI RS A K, IXONIE S iV e - R R B T
RTFEA A B R4 T R BEA A U -

2. WG RN PR 53 B Sl T S 5 A AR A NN T SN A e SCR A R R ) &
Ca RS ARTE VA BE/BK =4, FFAER AR A AR H DB =4

3. FIH LA-HR-SF-ICP-MS X A i 1A AT B R X U-Pb SE4E45 H T 897£24Ma [H14E
W, IO T S RIS AR A T IR, FROR RIS e 4 A T >900Ma, B4 1 5 4 8 i A%
X AE 357 76 A WA AT A KPR .
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