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Abstract: The fault property of the Hahan structural belt, located in the southwestern Junggar basin, is still controversial. This paper
constructs the structural model of the Hashan structural belt by interpreting the latest seismic profile, and analyzes the fault displacements.
The evolution process is investigated using balanced cross-section restoring. The results suggest that the Hashan structural belt is a complex
fault system undergoing multiple stage of deformation. The Darabut fault system forms a typical flower structure controlled by the
basement-involved strike-slip fault, and the Wuerhe-Xiazijie fault system develops a thrust deformation as the compressional stress
propagates toward the Junggar basin. The Hashan structural belt has experienced three deformation stages since the Permian. The Darabut
fault system predominantly formed in the Late Permian. The Wuerhe-Xiazijie fault system formed during the deformation from the Triassic
to the Jurassic, and the Hashan structural belt kept lifting from the Cretaceous to the Cenozoic.
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Fig.1 Tectonic (a) and geological (b) map of the Hashan-Shentuoluogai area, northwestern margin of the Junggar Basin. (a) Orogenic
belts around the Junggar Basin and main fault system, modified according to Ding et al. 2020 and Zhu et al. 2023. (b) Geological map of

the Hashan structural belt and distribution of main fault system, modified according to Xue et al. 2017.
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Fig.2 Stratigraphic column of the Hashan structural belt

2. MIERHE

FRATT LIRS LAy 3w T 5 Y 3t R 1 T P eyt o BORMAR AT 51 T 3 IR A R W R AR R AN 5 JOR- 74
TRAB R (K AR T 2 2 B v, b KU P B ) — B 5 )2 5 KR 2 RPN SRR (RFE, W fd i



Mt T HILRRIARE (B 3) o BAh, PN DIRE R AT R AR E 3 D SR IS AT R AE R T
WA I 2 SR MR E AER (K R &R (D ZBF (T) . “BRERKAH Pw) . B
THH (PO « RIRAL (Pif) AL (Pij) MIALE, FHEIIT R S /KOR-E T A W R A R iR . (KA
BRI 1 BBGHAE BOT RALAR I IR AR W AR R IR, . 2B 2 & S A KINHE SR, EidEHr
S, WA SRR WAL R AR e T LA aE e A LD A AL I AR TS A, MR SR AL, T L BT 0 R 3 AR
T EARYE DR I B AP 45 A AT IR A AW R R AE AT AR, ANTATSEE S LA B 7 (1 0 7R o A A
(K3

a N . Time(s)

=

6 PLY WS SRULE LS ik A AL o I A R > N. Time(s)
ol i

B3 mMUEEETE () HEMRRERE (b) BEREKRE

Fig.3 Seismic (a) and interpreted (b) cross-sections in the Central zone of the Hashan structural belt

W LU R T T DA A3 I R AT R T R R AN 5 JROR- B A T AR R o R R AT R IR 2R R B AR SR e
BT, M RFSA T I BMA R, ZXEBANAR- SR RAERITE, AZRMZHEENEEES
TERFAEWZAR R o GIRR-EFHIN R RAH LA R AR T R A R, M AR TR 55 o 38 Jod b % 3 T e
ATCLRAI =B 2, 0 BIAL T EEATT AR . ISR e A B A 4 N 36
2.1 ERMFFHTERAE R

BT HORR R AT, KRR RA R LR EA 6 KIARUAR, 402 F9. F8. F7. F5 #ll F4 i#
&R, FO Wik R AR RKRCEZHERRZ b, BT B, Pk 2 LR, (HAT
N K& 1B AMA B R R R F o2 B R WA AR TR IE (T3, 2014; BRASE, 2016 BEIESE,
2017) . F8 Il F7 Wik RPHCAIIR RS, FS WiZk fEHChtE RSN R 4. FERESET L &%
HhJZ TR R AT B R, B 1 (B 3D R EOR 8 R RN ZE A6 3 K. BT HUE BRI AG L



W, F F8 AR —Sm IR B P 2, H RIE TR AR RHES:, WK B IRGWE. 4 F8 Wi T
WL KWIRHARE N FT WiZMA R, DL F7 WREAS, H EEBEM FMRZ-REAHEZES, FEHMZRE
W7 R MUAR AT, FTRARGIH 2 AR, RRMZFSE, DRI F7 W EA R B A AR,
KE F7-1. F7-2. F7-3 Fl F7-4 23R . F7 B2 FRmT LR 2 25 I PEEU NI Z F5-1 F FS-
2, XTSI 1A R U S BRI A R I 2 o« FE R T 5 — B RO B B HBUNIES MR, R
AWM, FFHBUHE— e is, B F4 WA R, F4 IR Sn @ty 8 RO ESE, RIE M
R W R Bl ek b, SRR RR R B RGBT R R, IR R H D, I H s
TR R . 48R, BT AR GORIR M, AT 2 IR M T e AR AT
22 BRAR-EFHEARER

BRR-E T HEBZE R BA 2 ZE R ARHE. 8 RMER FENMEEEE, I AMEERERER
FUEZES . T _BoMENRHRIAE F3 BRG] BN R Iriial. F3 W eSS L7y m 3 20
HEARTWH T 7 R BERTE, (EIF 1 mEdlim LUV AT AR, VR ARAE 0 2 AT, ZHR T
— A SERE N WP - W AL R AR TR LRI R TR, USRI TR AR Dy B EE,
E] D) 5 FEA TR LM 2 TR AR Wi . TEWTI A B, R AR B smAY, e &0 Z M R (F3-1 1 F3-2)
RN T RS ZIA T, B T — &R R (F3-4) , RUR 5 2R T — M E A s, -
WIPE 03 RMZ X I, TERL T P I, RT3 TR RS 200 S T R A . b S Gk 2 T
T—ANH1 F6 WiZ4E MW 2L 5k, 5 FRWRR G BiaER:, MRIEN F7 Wi ME . RMIMER
WM R BT R, W] RE R I R EFE B NIRRT Bk, 45 A MR RS RORRIE, 3 SO F3 I
JERIRES

3. mlFET R TR R M

W LU R I AT A B A T R 52 B A & 2 AR B R, TR A AR T R 2 R S 0 (R AT
F T 7 ORGSR SRR RE R R, ke LR s W AR R I W R R M A AE S . AR ST AT A TR
R, BB RMEA R U 5I83) 5 w0, MRIERE AN BT 20 B M 8 = 4 b7 P AN O T SRR T v
L) 3t 1 DT R R
3.1 RIS SRR B AR B RS A X EE

TR S 7 R T ORE AAENIT AN ST T A LA B i R SRR T, N DK S PP 9 R T R e
1A R ) LA 22 AT AR (Davis et al., 1983; Chapman and DeCelles, 2015; He et al., 2023; Feng et al., 2024) .
I et B A T 1) S TR AR A S LS 1) A Bl 77 T A T A T R R R TR TS TR A R, B R
NG A5 2320 1o V0 g 7 B I PO AL AR, R AR T B A B (RRFAIE o AR SCO%E U B 2 b 25 176 g L L
AP AR AR R (B 4, ZMEWFERE 2 SWERESN, HE=S4% 05— Wmalrs
JEMHWIAR T, TE R ZE HERR b Wy, SRS RITR P, TR AR AR PR A B B R LU IS Bl S AR YR AR
. VR AT FUE R AR T T (E IS TR S AL G F ROV BE W E R . ATk g AR S, dmF
T L IR SRR T, 38 1L 5 R0 R 2 b 2 AT 2 T R R L L 7 TR R SRR G T, a2 R T D)
(B 4a) o PEZE e S5 i Tt R A vt O £ L Ly p 280 B AR, T I AR A R BT 2R A R DR B e 4



FR IREAE . 7RI RATRF I 2R R b, BETFIX 0 F7 A1 F8 B4 25 2 S S o, b JZ2 3R A ) s L 1
BB RHRHE (B 4b) o ERWIERAA RIARTE 2 25 R PR KPR SIS, 3G AT X e i BRI
Dy a) 5 PN A8 B RFAE . B G E T T R B KPS, B0 18] 98 A s SRk PR 3 B AR AR TR X IR, T8 Bl
B, HTRARE R g, ERAREAAR DR XM EH T AL (B 40) o MY RR-E TR
PR 2R NI H 2 2 AP A LA TR ARRAE , T R RAEVRASE NG AR, TR RN R & 2 2R b s v 1) 7 J2 e
PR (F3) o RESMIERETR S, KA WELERS (F6) , WiZWEE/N, ATEIEH /N TR
PEHE T HPERE S EE, AR SN IR IR AR T RR R & T E TR W R &, T 5 7R R -5 1 A I 2R 2 D 2 45 e [
316 -7 A % 1T 2 1 ) 5 e 2R v o

BEAEERZ, BN T E TR 0 b AL S2 48 (Racero-Baena and Drake, 1996; McClay and
Bonora, 2001; Le Guerroué and Cobbold, 2006; Dooley and Schreurs, 2012; Tian et al., 2022) , A IWLEE/RA%E
WK R R RS B B RIE . FRATUCATZA 2 MR, — 2Bl R R RiE a2, AR
KA, WK JUAIESZE i m BRI 5 —J51, SRR A 2 IESRRHE, 2 IR sh i &
IMANGOAR M8 F RS S TR R T R & E i .



5 km

Time (s)
1 0

B4 relLAES R A E S RTREARSOT BT M EBE R LEE . (a) BRAFEBSOPETERIMRRIE, Nik: RHURKE,
Nia: RERL, Nip: WHRHRRE, Noa: FMEME; (b) MLEEFNHRBMBRIE, WERRLE3; (o) CREER
ER SR R BVIEAR I EIEE, #E McClay and Bonora, 2001; (d) far=Z #b R E R FRFEIHE, #E Racero-Baena and Drake,

1996,

Fig.4 Comparison between the Hashan structural belt, foreland fold-and-thrust belts, and strike-slip faults. (a) Cross section of the
Southwest Tarim basin, N1k: Keziluoyi formation, N1a: Anjuan formation, N1p: Pakabulake formation, N2a: Atushi formation; (b) cross
section of the Hashan structural belt, see Fig. 3 for stratigraphy information; (c) cross section of the analog model for Restraining Strike-
Slip Faults, according to McClay and Bonora, 2001; (d) Flower structure of the West Netherlands basin, according to Racero-Baena and

Drake, 1996.
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Fig.6 Forward balance restoration for the imbricated thrust system of the Darabut fault system in the Hashan structural belt. The
restoration is achieved by unfaulting of each fault according to the forward propagation deformation, showing the kinematic model and

displacements.
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deformation of the Wuerhe-Xiazijie fault system.



(il
(]

CERATFFB R4 7)) E3H K

Ly

HORAREENT R =

d

2 ffE 1Y o

[ia] 1% 2 1l
114 74 Y ’ oA 4%

// 1HE e 21

LA

W B T 0 R

\ b SR GE R AT 20K 2D 11X

B B R LA
o E i ol R

R E RN

c BEL-HAEMN CIERA S 2 R K
] 2% 248 1y
W B I 0 |1 7S BRI R
71 e g 2

JUR R Oy IR AR BT R R

e — - 20
P A

18 SIF. B Ehe T i

B9 MUMEHFHELSHNZEERREE. () BIEHEERAMSEHSRIRAXAEE (3F Yictal, 2015 &5 ;
(b) MAIEREMSEAERRKAREE GF Yietal, 2015 42%) ;5 (o) RUMEF_BLI=BLFERUTEE, T

HENEPEARBEHHRESR; (D) BUWEF=SLIKTLTIEENLTER, ZRRESRRENMEE, EHNNE
A EERE, RS RA-EFHETRER; (o) MUBMEFEEL-HERTFERURIEE. ZERTRRAHETIZNE
FNE, BRI RE ALITEREIR, UBHRAAE, BRENTLE.

Fig.9 Simplified tectonic map of the Junggar basin and relevant evolution process of the Hashan structural belt in plain view. (a)
Simplified tectonic map of the Junggar basin at late Permian, according to Yi et al., 2015. (b) Simplified tectonic map of the Junggar
basin at present, according to Yi et al., 2015. (c) Fault system of the Hashan structural belt from late Permian to Triassic. The deformation
main occurs in the Darabut fault system. (d) Fault system of the Hashan structural belt from Triassic to Jurassic. The deformation
propagates toward basin to form Wuerhe-Xiazijie fault system. (e) Fault system of the Hashan structural belt from Cretaceous to

Cenozoic. The sinistral strike-slip occurs along the Darabut fault due to the far effects of the Indian-Eurasian collision. The Hashan

structural belt was uplifted without obvious fault displacement.
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