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Abstract: Over a 100-year period, methane has a global warming potential 30 times
that of carbon dioxide on a per-molecule basis. As a potent greenhouse gas, methane
stored in the ocean accounts for 95% of the global total reserves, and the processes of
methane sources and sinks directly influence global climate change. In this paper, the
spatial distribution pattern and transport and diffusion mechanism of global marine
methane leakage are systematically investigated through literature research and data
analysis, and the environmental effects are quantitatively assessed by combining the
measured data of typical case areas such as the South China Sea and the Gulf of Mexico.
The global methane seepage shows significant spatial differences, with the most active
seepage in the Pacific Rim, followed by the Arctic and Atlantic coasts, and the lowest
in the Antarctic Rim. This distribution pattern is primarily controlled by tectonic activity,
conditions within the hydrate stability zone, and the supply of sedimentary organic
matter. The actual seepage activity in high-latitude regions such as the Arctic may be
underestimated, representing a major source of oceanic methane in the atmosphere.
Approximately 70%-90% of seafloor methane seepage is oxidized and consumed by
microorganisms, but 1.5%-4% enters the atmosphere directly, contributing 6-12 Tg per
year. Seafloor methane seepage has significant impacts on the global environment
through ocean acidification, ecological restructuring, and greenhouse gas emissions.

Dynamic monitoring and research and development of methane negative emission



technologies should be strengthened to serve the dual carbon goals and global climate

governance.
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HBEAE A — P R0 2 UM, R A BRAURAR A il G QA o AR R 5 [
BUM RIS 112 R 2 (IPCC) 25 LIRS UOT Al s, FbE i Ak iR
% (GWP) 1 20 £ REEN L8 A A0BR 1 83 fif, 7E 100 FERFEENZIA 30 i
(Adopted, 2014; Masson-Delmotte et al., 2021). F e 53RN 0.61 W/m?, ZIH
TR =02, RAIRT R BRI R R B AR, fE A ER
TR I E A RS 7777 T e % 224 F (Etminan et al., 2016) TRk, KA H ) FBE4F
FEBCRIA S 1983 ETF0A FR G0 I LUK 1 B i /KT, 04 BRI =5 2808 ) DTk e i
i$ =4y Z —(Feng et al., 2022). i Jt = EHBOR A FFR M. &b NS (nfk
AR A= RIS 2D AEVIBRGE, DARCHUBVB IR . I PN K IR 4
(Saunois et al., 2019). FAETE R R IE ML 9 47, FEIEE 5RET RERR
JS2\ IR AR AR DL K 5 SR 7 (9 R A5 IR A2 4 15 R (Thanwerdas et al., 2019),
FORABR R BE R BOS 2 S it ] 1 B,

PR IR R R 1 FR e i e, R BRI AE F AN 28 A A T PR B A 7 AR
PR B2 R A BB 30%, MR F P TTER A 1.5%-4%
(Cicerone etal., 1988; Juddetal.,2002; Reeburgh, 2007).74 % £ St & i 7 B E 1
Bkl —, LT RS M KRGS, & S A S PR AR LA AR T LRDK
B UK H 3 E RIS Y, Herp 32 B R o) 9t A E0R e (Luff et al., 2003; Brown
etal.,, 2005).7E/A R X, BLRIRSUK G Bt hae &R s A IAE 22 8 T ilgveT
RIS RG22 —, HAM L F] 107-10° />/em?(Michaelis et al., 2002;
Treude et al., 2007). 7EiX Le3p B A1, H G R A (Anaerobic Oxidation of Methane,
fRIFR AOM) FIRRFER EhiE i (Sulfate-Reducing, fAiFK SR) &2 1 E K Ae B4 B
AR, HEEERESEMN S E (ANaerobic MEthanotroph, f#FX ANME) FlfRE: £k



AR (Sulfate-Reducing Bacteria, fij#% SRB) HL[F] 4 (Niemann et al., 2006;
Schreiber et al., 2010). K tk, AOM I F&& i LB GEIE, it EaEnTHiE
M) 300 Tg e HE R UTAR YDA IR R A 2 BT R e I 80% £ 34 H i 4 8
W, AUE RO T i = SRR IHER, X E T B R AR )
(Reeburgh, 2007).

s

B 1 ARRF GG EAEE B TEE 2000-2009 EAE TN (Tg CH,y) AR E &R Y

=¥ (Tg CHy) CH, fiE REELFIR “AR” @&, HE 1750 FLURA R B ARG HEE

SRS, LEOFTFR A AR G SR, HAROH SRR B IR R 2 3L R
J@&, 5|H(Ciais etal., 2014; Reay et al., 2018).

R 58 IR 2 AR S KA X 1) KA BLIE RS 2 — MR & A P k40
SRR R UTRR TR I H e, R HIRE RIRRKEY -, BRI KRS
BED G TR R B 294 0.01-0.05 Gt C y!, BRI S5 1%-



5%(Cicerone et al., 1988; Dickens, 2003).7E#EEIURYIH, 7= b o il i 2 F
RTELAE RS, ERAHE. CREMET, W& BN A A8k,
SUEFR AR R E, FIFESEE AR AR R s AR IR IRR, W
i R R W A B J5 AR B e (R ME S, 20225 F B ARSE, 2024).4 51 R G0 H
e B RN BR IR EE R84 10 AOM 172, i ANME 5 SRB 725 R £h- 1%
% 457 (SulfateMethane Transition Zone, fij#% SMTZ)H #}[7] 58 i (Boetius et al.,
2000; Kanittel et al., 2009; Chen et al., 2023a). K57 F HEfEVTA 4 AOM 1
FI IREA A, BN KR 5 PR SR, R s e ) DK ORI O
J5 & (Valentine et al., 2001; Kanittel et al., 2009). /& & 17X LL T FEN LA, 4> 7K 44
5 H I R B TR I R, SRS LR R TR A SRS IR RN 7K A R Ak Ak & 1 T 200 T 2R
ZE(Damm et al., 2010; K5 525 2020; Wang et al., 2021; Li et al., 2024).

FEABRBIER N FES MBS SR, RIEF S EAR & FHE s,
STHEVEAE A RGP AR ARSI (Joung et al., 2022; Nisbet, 2022). 749 F 4t 12 IR 1
I] G R KR R A X Y K AL BE & RS RGN i A B i
H T e A I F BRI SR AR, T BE RSB RS A F e 0 KA B
FEDTIRAR BN, AR ARG R AN 00 5 7 52 Fy oty e - it AR B e
FRPETM)R B, HBEEATBOR T e I HECR, MU FR e BRI AT 51 A BR R
FUSAEARAL AR 7S R G0 8 KARIE(Li et al., 2022a; Kim et al., 2025). 754 BRASBE AN
NEEFIBIE SR, R R EIG 2 B (1) A= 2 REREEOR
RAUKEWIREE R ER, AT RERRAR KRR F fe BTl (Shakhova et al., 2010); (2)
DRI TR R T REREIA AR UK G e v, BAR B AT 4 BEgVE 7 il IR A0K
SV A KSR AT LS ANiE (Joung et al., 2022); (3) HFVERRAL A BRAE AT fE
B 55 0 0 B Ak 5 P (Geelesh et al., 2016). BLARIBJF 5 52 1K) PETM 25 K AR H 4
BRI R S YIS NAAEREER, AXEREMAER T P h-SERGEENIE
2 P LA 5 5 XS (Ruppel et al., 2017).

ARICEIS R G SCRRARE R Z IR AR SR &, 0T T A BRI TR BB IR 25 A 43
AT G5 A SR RS SR A RG], L TR B IR SR G 2 BRSO
2, VR T AR T RIS B BON R AN PR BT 8008 A FE 40 e T Mg R e
BN R AT S IZ R B B IRAE, PRAG PRSEAI AR S 308 R BEAR i



FEAE S BE ORI AT R e I 0 S pHO Rt S S HE.

1 £FRIGH B IR 2 7] 43 A R E
1.1 &R 53 RHE

ARRUEVE P B Is LR s R ik, 2325 AR (Mogollén et al,
2011). S M4 4k (Serov et al., 2023 ; Sultan et al., 2020) 13 57 1% 5/ (Hiruta et al., 2023)
S5 Z P M. Gelesh 55 ANTESEH & B IR MG B ol W22, 1A
L5658 v PR R 0 R 2 [A) A77E EL 4% & (Gelesh et al., 2016).Sultan %5 A 7EALAR7G
FOR B B R AT (107K 7P S50 AN TR FL B IR UE SI2, 1347 Y 25 5 ) R e S HE T
(¥ 558 5 11 3 (Sultan et al., 2020).Ferré 55 AYEILVKEERIRE R I, KRR SK
S B LR R 2 A B LD T B BRI (Ferré et al., 2020). N[0 73 A K
PR RT3 1 X R SR (R AR AR i ol R T J = RGER S TR T IRER B feia # 1Y)
PEFEIE, A Bk R BB IR Bim R 13— AL K P8 i o TR 28 DY 20 0K )1 v
ENF R 2 KB BT K B IR AR LA DCRE 5 2 AR 7
AE R I S /K R B 22 R R 1, 122 XS ) R e B T s B B G BR, 2 4Bk
KA e i B ERYR X 2 —(Shakhova et al., 20105  Shakhova etal., 2015; Serov et
al., 2023). FHECZ T, TR B A X R /K A L ARGTAR I Z AR A LB 45
BIRTE S

AR R S IR 3R A ks R, DFR N ARG T IR R AR
FUKE WX B BEISIR  SCHR A SO PR RS 4R TR (ODP/IODP) “54#, SREXABR
R ORI SR AE e is IR A AL BN et al,, 2025), 2] 7 &R H 23
AR (B2 iR SR, SO RRSKEVRAE XL 4Rk
WA 10%, Forfr 70% DA b 43 A 75 44 3 120 57 X RIRIE I % A BRRAR UK &
PIEAE 73 A1 B 5 W e 2 T o0 A B i B — 380 R IR AR SUK &P o R T2 AR
FA 368 1 1 A R DRI A, 1K — 20 AT AR 0 9 T SRR A IR B I FE 2R X
o DX At 1 E AR AR
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Kl 2 ARk e m o m i, 50 3 (Ni et al, 2025).

ws () ovpazonpzs) Esri, GEBCO, Garmin, NGS

A EEE SR, BRSNS B R T K AL G AL Gy, R
FIEAEALRTEVE S P gL AR X DL BRI R S I H v 2% B A e,
BRSO AT SR RS SRR E EEPLEE IEH% (R?=0.86, RMSE = 1.38)
(Ni et al., 2025). XL R AT BERE R 1 FEILEN )0 RIR K G MRS E 1 K F B B
FIRE. — J5 T, FERARGUE R (B 2D 5hR R RIRE Ak, wT
e R FAR SR E W o AN R B R Ji (Mienert et al., 2005). 55— 5 T, SRR~ 4E
(1) JZ B YT 3 0 & 73380 vT e 2% B BE Y 18 72 2% 12 (Plaza-Faverola et al., 2017).
BEAh, A ] R IS TURR A 20 AT A% R v RE A AT ML (16 45 FARLAE 407 R o v
P, T IE— 255 e ) A RS B L (Grraves et al., 2015). 8810, VRS H ks
73 AT AR DSV TT BB 25T WL A 22, 3 BE PR B AR AR A R R 2 25 5T B
DN BRI XIS TR, AH DAL (R B0 UE AT 75 AR B 22 ek 2 KIS e 1) R 0 I 2
#E(Ruppel et al., 2017).1641, btk X H e B e i % B e A N 5 AEE, X
A fE5 A ERAREE T B0 7K AR AR B FEK &P R R %, JErTRed—
T RS AR AR AL 1 1E [ B ML (Serov et al., 2017;  Shakirov et al., 2020).

1.2 X373 8] 53 AR AR

BT AR AR, AN F R0 R IR 7R 2 A0 5 B L RO FE AR AR T 3
ST RPEE X IR E R, X EEZM ST 5 RER AR R
ARG RS (B 3) DA ZR AR R bk A, 1% X 380K & e s
WREZHEIR LR RRTOKEFE T BRAA 55 S5 IX BN R 2% e B2 AH 56



(Stotler et al., 2010). B 20 E BRI K IR I & 42 S HE U F B3P
7T M= A A G a5 S ol = N <117 8 PR A A St Tt N W S s
B, JEUKPEI IR BN 3-5 22K I HH e S TE BT Hd R b B AR R 45 B B (]
% 5y I K AR AL Z R NS X VI R AL E BN Z R, (AR X
Yo S Ry A TR D B R A8 A R A B s I RS B IR B Y X — (James et al.,
2016; Shakhova et al., 2017; Shakhova et al., 2010).
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Pt 3 R OK )1 S5 5 5 DA O e R BB Storegga WY R A ML AR
L R B AL e RO G U, TR T A AU R R NE R 4
(Biinz et al., 2003; Karstens et al., 2023).ZBUH) H ¢ 3 1 HS BLTE 754 22 e s i 3
FN IR == G i 2, FC PR e P12 AT 1 B2 4% T o it DUk i M i 4h 7y 5 T
7112 5 (Talling et al., 2014). b4k, X552 (1) RV Gl 224 44 Ak s (0T
A3 M40 B 7 HY B B 1 FR ¢ & #E (Hilligsee et al., 2018), HE— PiEsE 1 dbRKID 2 i
A7 75 X 2 (1 F BE s BRARFALE .

PRSP b X2 4 R PR 08 18 U B 9 B I [X k2 — . 38 7 9 b o 3 1%
DX S TE B IR SRR 2011 4EF0 2014 E 1 R GUIR A R B, % X IEEAFAE
“URZK P2 TRl SR 51 R R R RS, B2 A B RARSUK G B R 5%
FRTE B PR B3R 5 (Kessler etal., 2011; Skarke etal., 2014). 31X L6780 K BREM S
VIR R R % 4 R ESRUR (Hu et al, 2012) 76 [FANMN AMEE, E/V S5R0EE SR
2[RI RER ) H 22 A TE BRI R 5298 T A (Levin et al., 2016).76 78 KFrE, HAMEEIL
KA . TIRRAK R R SOKE R BLT BB b2 IR UE 4
(Vereshchagina et al., 2013; Aoyama et al., 2021), Z&BHFR AV PERY I8 5 511
AL IR e e 1 AR

P A2 T VR FR BB IR T FU RO X3, 7 Bl T A S . IR G R
TR 0 BT A 30 R 7 PR AU 78 2 e S S b o B X 4k ) 35 2R i 2334
BRVL 1 1 P 25 B Bl = IR 48t )32 49 AT 22 mOF R PPIRIAL , HOfg R ST AR
P8 A T T A S o, R S VR R AA LI R R IR KB A3 R R
AT B v R ORI R, 20185 SR IALSE, 20185 F A ASE, 2008).RIT
P25 AR IR R AR SR BN E (D EMWAE, 2015; RAEEKSE, 2009; #5L
2U4%,2016; FANEE, 2010), B2 K EHCOK R A B RERK A& (Zhu et al.,
2025), PH BG4 AR g D vA SR R 3 L B D Y 1) R e iR U SR AR T T 4%, 20175
RAEHEE, 2020). 6 V5 TH R IR T eSO R, DURRIIALISUK b R BEIR A 1-
10 mM, JEJZMKIKE N 5-50 nM, &8 5 XIHE) 10-100 £ 1% X IR £R14 )5
R B Z N, CHa FRRFEINI R (8°3C) {HH-60%0%-75%0, 2% WILFESRZI L)
A 77 B g 2 (Chuang et al., 2010; Chuang et al., 2013; Hu et al., 2017). B4
=, B X PR SRR T A R iR e 1 2 REERHE, R AR T P



PERAIE T2 DX e A SR A1 1 GBI

2 W) P e R IR R AL

VR R e IRV TR AT T 2B L Tl KA AR S R TS 2, 2 B R o P e
B PR AZ O ) 830 R G Y e 3 A A 00 o ERR 8 B ST S o R Y (Lol et al., 2006
Stolper et al., 2015). =¥ i K F B (EARIR « IREIA L N BB AEY) o A ML = A2,
FEMLEE IR, LRI A R AR R, IR TR E
VAR A s BRI DU s i v P 2% 1R N B A LT RIR AR L, 2 A7 AE TR
b b (] 4). 3 2 i PR 44 52 T AR B A58 A0 1 0T R PR 27 B 2 ) TR R B Y T
AT F P S ARAE S, 30T 5SS A P 7= FR o R SR 25 AR U A2 ik
P R TR 3o U 0 P - % A R IR ARSI, IR v e v A B 3
FRDR PR T B, 3 IR PR 58 I A R A A R R R e 7 A DR, SRR 2t s 35 3
KRB 1 G S5 AN [F) R i - OB 55 AR R e Bl R L) 52 B0 ) S22 22 5 (Whiticar, 1999
Milkov et al., 2018). k¢ It ] 32 RS2 31 2 EALGI IR, AR RA
SOKEW o R HURAIE TR . SRS I, TEARKUKIEIA, e X
ALRR VK 25 IR R T T S EBORAR SR AR ERg, BIR T X s )
YR58 (1% 4a) (Portnov et al., 2013).

e >
HE - HEARAER (PETM) "S&ah% "5 "EReE"

© > m@ERE
%3

‘ L}
CH3COOH - CHyC00™ + H* .
CH4C00™ + H,0 — CH,0H + HCO3

CH;OH + Hy - CHy + Hy0

CH,COOH — CHy +CO,
€O, + 4H, — CHy +2H,0
4CHLOH — 3CHy + CO, + 2H,0

& 4 BRRERBSHSES4RER.: RUKERSSEBX (anitik) BRksRE
12, BEeHLRRHNEFT; b: EYMRERROFRIER; o ARERRHFERIEIE; #&
(Sluijs et al., 2007; Dickens, 2003)f&24a%i.



AW R IR R e A VR E R DT R CHA P 2 2R Y (Maltby et al., 2016
Wallenius et al., 2021). At TR & & i Wik iE, LAY e s
A=A AR B e 3 5 32 S 1 (Shakhova et al., 2010). 44 B[R B B A 25 1 )
PLERAFAE, HBRFNLER (38C) (HIBE R, —MIE-60%0 % -110%0.2 7], iX & [
NEAEFERBS AR R 12C, BECERI R BC MR A R RUE
(Blair, 1998; Zhang et al., 2002; Wang et al., 2024) M4 FEF SR IFAE 461, A=
P IR R 5 T 3 A D A TR AR R A R A I 288 i A 2R A A R R A PR R
A Hb S r R T A LT (0 AR B A BT AR ) AR B T IS AR (Rice et al., 1981
Tori et al., 1999). 0 AE HL A= 4 Rl K] FH I PO Bl IO A58 -V 38 e J2 o 8 B 3T LR
AR RATER . FAEREDY (G836, k. WS mpism),
FE RS A ] J 2R AE E B i 2 Hh & A ) B A 50 )5 A B (Lai et all., 2021).

A ER] R 1) A i = B R A T R v i e PR R 5E H G AL S R s ]
KA, HUZEE TR A 120°C -150°C P L, #AE R AR E RN, iE
AN T e S HoA R ISR (I de FTa) SAEMI IR AR, Uk
B §BC AEARN B E, H¥E A b, NS E R 5> (Milkov etal., 2005).7E4R
Py . AT SRR IR XA, RS b (TR 7 2 AR S R T R R
HA e TV B30 36 V& 31 R e [)_E SR AT AR AT ROEIE b4t 7RIS 2 (TR % F
T, BRI T A fEREAUOK & CHa(Adler et al., 2011; James et al., 2016).

Y SEC AR ) 14 FR o 5 30 o R S ) A 3 8 38 A e TR X 1) ¥ SRS I I 2%
RAE I TR G TE B TR ER F e R A 1 17 _EIZ 2 Y8 IE (Ciotoli et al., 2020).7E
BCHRAR IR 7 5KF S 2 S MR R X 3, MR AR TR AN AR AR,
R E W EFIRR RS X LR R AV 5 E RV ZE S RIGIR, AR0EET
B R G AR YE R, AR T IR H G RO AR R e s R
TR RSV IR RS el 21 BRI K SRR T
DL B S I M JEE B TH(Sloan Jr et al., 2007). [l Z5 KR SK EWA 5 I
FEEZIEHIHA, ARG LT R R 3 Pl RE R AR RN E K G
VUi AR I B ARIEE , (R RIR K G WITE IS T i 72 i o 2 TR s T A AR 0 i
T 43 f# (Sultan et al., 2004).

MAEERBEAGER 1 BEF , rhR P R R e A0 mh i 0 L A/ A AR D s R R e
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o
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<0. gguccwcr et S O02 th = \_, R
) o T wmkan e
VBRYE > 0.1G6t C yr «—HAh it
il
> 0. 212%}%?2yr" > Do Gt“c lyr"
POCHEHL
e s nican g axa . Siate
ARBRBCEIRE _—
AR e
STMHREEBKKXSR RS RKBE REE.AOM-SMT RRIEREREL-F it B X BB R

SENFEE LRI MENRETEE, EEEFLRRAIR (/vi) RghiEE, &
(Boetius et al., 2013)1&24.

1= VA
HZHA

A AR A o U I R e IS 1140 5 ) 3 S B T B R g A LA AL
LA SR 2R b —T7 T, A BRAR IR S B0 /KIR B ETE, TR R e K & 0 AR -
A, ARMERIR SR G5 A R e SARFIZK (Yu et al., 2021
2015). 57— 7T, SARARRE 51 S P i BT, ¥ TR EOKE S, g kA
T B K &9 K54 %€ (Bohnhoff et al., 2024; Brown et al., 2005).R11, E& 04
R, EKIE BT 1°C X RIRSUK G WAGE M AR oK T i 7
B JEUR A SR 1 f3 R 5 248 (Sultan et al., 2020). AbHZ3B X OWLITESS, IR
JETH B S BURR UK & WRa € E#, TR B0 48 i (Westbrook et al.,
2009) .

Kretschmer et al.,



3 FEfEAKET MY HUdE

3.1 FRFETIRE F RIERBALF]

FEHRTTR T, TG IR 2 S AL A B IX Ta) e JE S T s % 3 2d il =Ry
LI (B 6): A FHHL RBRAIEXRENE. /> T8 BUE BRI
FERIEARIZ R T, TS TR B R B0 B R BT 1) ¥R A S 18 A% AR IE i 4
FLIORRY R, B e 2 BAK A )79 HOS R B, A2 AR 2R 04 45 A1) SV Rl S0 R iR
KM, TURRE S EUREL N 10° m¥Ys 2 107 m¥s FEX P 8+ F I R 4
L, FGE AR ORER 17 H e S 18 % 28 1 I 5 T ) 7 AT 2400 48, BRI
HHR(Bakunov et al., 2023). 24 Fe 28 O B - BUB MEE R, Bt st
SMTZ LA N PRIEA Z I E B, Wi 322 Dy S8 PR 1 S is A A X

SALEIRA ALBUKAEE gl Ave

SRR BE R LS
NO, & Jit
Mn(IV)iE i %
T 4R Fe(II1);£ 5t lﬁ
SO, "B Ji A
RS ;
B c
S cn, At B
S H,S| SMTZ
SMI
B ik
CH,
5 bt FR BT i
A

B 6 EFNRPPRTIHHEZNFIRERE, #EMadison etal, 2013; FEAHF, 2018)fEKL.

H B IRAZ FGEIE A% 10 B LML OB F ek P A e AR P A PR
SRR AR s I ORI B A0S S I, FRYGE T 4R DA B I % SR AE
(Cahill etal., 2018). X AEVE /) K URBIEMBAE ST 3LRIIKE) T, W5 A
L A FLBRIN 45 ] 118 8% SIS F B AR AN A0 2 B2 45 T TR I FL R 25
8, BBV S SR E AERRDURY) bR 2 B o, mBEEs
BB T NmEmA: MAEMRR L Ed, (GEFEME R E R <EiEs), FEF LR
FIREBEREY, TWRIEBIRTIE.

et 42 ] (P h L s P A e bR FR G2 (1910 % 3 %5 (Wood et al., 2016). 431 =
FR e A bl S o DR g BB I AL S PP e I T 2R 36 T R R PR
P A T AR AL 22 T o, WS IR TE TR B R X &R, 5 AARELR



[ 4403 ¥ 30 25 VI AH 9% (Daigle et al., 2010).7E Fa #6353 A S5 G 2R 7, A A
RIWKESHAEER, BB TKREEK, FiFEEZIRY M Rk, &
RUTRAE R ) 3 LR ELES 42 (Gorchov Negron et al., 2020; Ye et al., 2019).7E &3k
FASEA AR IR XA, BRI AR R S SRR Sis e i, E A
BT U) T N R BB IR IR R A B AR, R R PIRIRUK B (Jia et al., 2023). 4418 4 il
(1 ER S i mT e R e 70 R I T P B0 2 34 ) IR i /2 B8 Bk Y IS S T
TR iR SR L R, G TURR Y T B E R v A m) IR S, [ 5242
T YT 1t 22 S A A T8 73 A7 - AIBE PR AR TR IR 1) =R 5 #us
1] 1 V5 325 1 AR REUARE 2 A0 2 Ay 3 oty U oy R e bR T 8 95 33
3.2 SMTZ 5RREBHIRX R

SMTZ 2 TR ) — A R B ERAL 7 1D, AE H B A A2 e id A
Py i A (TR ENEE, 2018).SMTZ A2 i IR #hid J5 Fl AOM I 2 A8 4k AOM
FefREBRE I T, A AR AR IR R SMTZ ()38 FEAEAN [ i
FEREE 2 5 3, TR BRI 1 5 X, SMTZ 3R JE 3 S T Ui
T B WL A A 1 R ot J8 i R R S R SMTZ 3@ AL T I DL R 32K
BHREKIREE, TR R X, HTIRERRESIENR S EEE,
SMTZ IR IR, 10 H AR UL T RO 28 RTEE N A2 T, FEAAAEIR
HHR BB INIE RS R X, 18 B s E IRk E) SMTZ 23 R RIIRE
2, RERR WK UL N E K ZHCK(Chen et al., 2023b).3@ 5t 4 Hr 2 Bk VG E
PRI, RBL SMTZ JRFE G, 385 0N 5 1 e R FR e 15 Y 308 . T A YR 30 F
e S I R X, A b = KB SMTZ Mg IR Z 467, TERGE
J& SMTZ, FFAFRE 5 BE ) AOM A FHFNER IR 2h7H #E(Hu et al., 2023). 3% Pz FH
Ht 0T AE F5 R A B R RSP T R A OB H (Hu et al., 2022). KL, SMTZ
TR FE R FE 7™ 1 B eI IR R B 1 SO ER AL 238 b . SMITZ ik, 7 1 F 3
M SMTZ BEREL R ER, TR B F b AL es G BR A A TR RS,

AOM I F2 1 i B 3ok 26 3 B2 55 B B AR R 3R VR FE A 0%, M e RO R 26 1)
WIS, AOM 1ERTERGRZN, WA e, B R 6 1T FBk bR (13 [ 48, 2024).
Kl SMTZ A2 W beis T st BE (4R bR, 38 2 PRI v F G IR P RE 1R 5%
HEART, SMTZ (1)F BEANAL B IR & AA, TR 222 MRS, 4



TR AL S . HralESE AR 5 P ol E X, SMTZ {43 gL
JERARTH, XA T BRI T Redt, I6TT R S 80 H AR R 2h A TR, 3
T 5 W) 9 S Hb 3 A A2 25 &R 48 (Boetius et al., 2000; Peckmann et al., 2004; Suess,
2014).

BT ARIRA RS IR X KT L, SMTZ %5 s il & 2 [A4F
1F 035 (1 SM 2 9% R (Egger et al., 2018).7EVGERA R IX , 3 Z AOVR S H b (it 45 1
SMTZ 8 F BiEKR 2, TERE B EBIR. MRE SMTZ G EEE L R EE K
Z ETK) FIRERHESIRIEE S, X 5 A o il & i sk e] 20 A
Th R, Y R e A SO S o B A TP A KR /K X AN R VAR R 4, X 28X
B E SMTZ s 5] B 5t 1a)_E 188 1) 54 57 52 (Weber et al., 2019).

SMTZ (i B B2 4% T 1) b FbE i@ & n) R4 8O B R 2Rl & IR f) %
1 (Niewdhner et al., 1998).f# 2 H R AR SK A4 53 i 7= A6 (1) B Besd ik = R iz
B RIZUURD T H FLB/KIAMEEEE, DL IRSHLZ i B 8 SR
7% 71 _EFH(Boetius et al., 2013).1X =Fiiz % 5 A F B S FOR FIS IR I8 SR A7 15 i
HEERASTYHOTT, Bhim LIgBl R, K ETiRyiRR = b
HA 5t R S SR FH Y #E (Valentine, 2011) B IRE IR /0 A SE N0, H Gt 120
B0 PR 2 5K (Etiope, 2012). 4 FE ot DU R 28 48 SR I 45 1 T 2 A0
Wradin) bz i mt, ke BEAE IR B B B PLIRIL (Greinert et al., 2006), iX
AR T I8 T 22 U O P W R G B T SR A N BRI R T RIS RS
PR RE R, BN ZIBIE.4 LATR, SMTZ {E TR
IEHE (R OB e, FLUR BE R B2 E H e F BE e 15 A B B IR E N KA,
BT 5 M0 - R T 110 PR 2 i 2

3.3 JKEEA B EERIEHBY Bl

3.3.1 FereigK A L)

HBELE MK T (VA A A 7 R, TR S e R IR G
(Zhao et al., 2024). >4 F e it IR E N KA, B R ARV SRS, BEE SilgoK
(Bl (A1, A BRI RSP B Rl e, 75— @ iRE R, SUAETEW
A B AR R 5 AE S R A 40 B E Bl G F-iRLBE 0-30°C JE 7 0.1-10 MPa,
#hFE 0-40ppt MIHG/KIAED) X T HBRLEIG K P e, AR R R s



C=kHXP QP

Horb, CHWREE, PRWEETIERE, kHAFRHEL.

Tk JEE Xof RS £ 7K PP )V R P2 4 35 B2 VR (Dickens et al., 1994). Fif 45 i B2 ()
Fim, HEsFrRas s, 27 A TR 78S, oSBT RAER KT
(A fAE 2 PR AT 56 88 %) 386 o 18 2 PRI PR J6 76 ¥ K o 1) V% i B (Tishehenko et all,
2005). K R F B SR TSR, X T 5K FAHEAERM, SR
IR T HIGERIRME T, 345 FR e 20— 5 E N K 20 IR TET B, AT FARAIG T FR G
VAR

B 7 IREEANER BE AN, R 77508 B BELE 7K AR AR A P A B R T PR TR A B
B, BEE WG KEREE RGN, 78K, BB AR ZK r R A B A1 2 AR RS2 3G N (Zhao
etal., 2022). 8B F e S HAR AR SRS B Al R, DTS 43 B R0 F Al 5
SR BORE , BRI O AR BB R B 3G I 3 R B (7D

B
. 7
. N
1 o
CO; [mol] le-6 &

5

-

v
S
0.0 0.5 1.0 1.5 £
‘ Fr=S
0 [mol] le-age92™|  Teoe P
0.0 0.5 1.0 1.5 2.0 25 MOk 4 S =
i 7 : F F i =
k|
om
800m |
CHq [mol] le-2 1\5‘

0
A HAE [mol]

o

N

0

a 6 8 0.002 0004  0.006
Fif 54k [mol] le-2 Y #eeE [m)

7 PELE A FRGTR K RH BUSBRIE, 318 (Dolven etal, 2025).a 7k 5 FEATER
HESHUNEEREE; 5-SAEERSEES; b TRRENAASHEENH.
HBELE /KPR B O R ZERAS T ORI R O AR 2L AR

[5] (e 20 OB RN B2 % FROBE ) o Al Rz 3% 25 A RIRR BEI R AL e 19 i



T A FEsm s AT IE, & B HEEKEFY BEAE R —.
MR FE 7 2 — e 1

]=—DE (2)

Hor, R EOBE, SONIREERERE, DR TY HREL RMT A TR

B S R

FEHEVE, TR E B R WIS RGN, a2 S KR
Ji, AT s e e O B, TRy BUA R R

Jt = —KdxdC (3)

Forb, JEORIRIRY BOBEE, K9y BUR 2, HOR/NIH T T B 5 A R
FE, BUELD TP ERED KIS L, dxdC IR,

FESRIFRAN R RIRAE R, ZKAR IR s BE 3G R, Iy B 2t 2 Wl 35 0
IR G Un 7 552 78 EHS 1 B e IR S o, SRR I IR R TR SR BRI T 1 3
FRGEAE A I TR PN 9 B8 1) Rl B 8(Hu et al., 2012).

3.3.2 [EEFHRHEBALE

G 2 Ea it =My SBE NI §BUER . AUE BT R E RS . X L
FETBALA 2 BITRE K 7 ORI P A 3% 5025 22 P IR 3R O 52 ) (Wuebbless
etal., 2002). 760 bR, HREESZIF Ty, BHIJFIR IR 5K /) L [R] 1F F 32
2% (Kulkarni et al., 2005). 38 B SEBRAT AT s 77 28008 55 3 i 35087 2 T8] ) AH
SSRGS AER KIS, VMR ANAE AR RS, RNV (HE<5-10 mm)
7 T2 LA KRG 52 R T K4 H (Greinert et al., 2010; Rehder et al., 1999).
MEZ FRAE (EAA>10 mm) AFKIA S g, B EFS R o s TR 5]
TR BN 2, T45 5 B (Leifer et al., 2003).

Y JECRE I R e 1E T ELIE R A S O ARR (I B 0 AR AE,  Rusakov 25
FESRHFAIT ST R I, IR B R R e £ )38 % T 4 v ik B2 320 1K (Russakow
etal., 2018).James S50 A PEFE LA XM — 048 1, FbE B g RRE K
J&, RIS 52 23 B A 5 KPS (52, (H 5 B PR AT SR 2 I 7 H e SR U
A B R [ s FE R (James et al., 2016).t4h, Shakhova 25 7EJLUKEREZR X &
I, ZET UK AL 2 5 BOK & e ISR, FETE K O] BRI I 1) 2 B UK



FEFF £ (Shakhova et al., 2017).
H e SRR K TR ) B BT R e e i A GER TERFM T, &
WAL Re<1 /NS, BAE R <lmm), fER R ) AR Evn] DIERIR N

_2r?g(ps—pg)
= + (4)

Horpr WS04, g NEIINERE, prRlp, 2 i RSB, wh
IRENINEIPAE i

FESEBRGERR T, HYGE 0 BTl R 2 B KR . SRR R RA R
VR S R 2 (R S A, YKL RE T T v s BRI LR R, T R e g b i
JEE T U ) 2 e S AR B, A R AR A S L A P RS T Y o it e A
o, EVE A AR BTS2 P A, IFYOR T R B
(Solomon et al., 2009a).

HHGE SIRTE E A R e & R A — R AN B, RN ek Al
PSR SR LE IR AR T, AT R R AE BRI G ORI R W LIE R R AN B
SR BERZAKR BRI DR TS 1) U 5 | AAE SR (Leifer et al., 2002b).3X
AT N2 A FR A KA R B 2 A RIS B 5 4 35 43 FR o 4 Vs A EE N I 7K R 5 A
AL, HARMUAMNE R4S BT, RARRE KA.

Schmale %53% T-7£ i 2000 m 7K X G AR 78 (& 8) K IL, Fi ke
AILLE 7R F (1 3 L0 AT 52 BV A 5 R R AR SR A R s 1 1 535 5 AT 9
BE—B AR, SRR H GG (R R AR e R B 2 I N AR IR SR AR AE AL, HIE K
7 H AR EH A B 3h A AR B2 B RE M (Schmale et al., 2010).
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856 50 45 401 35 30 25 1[G 868 so 45 40 35 30 S 1> HOE] " BRRE(hmollL
it TPNEE 7 L PN S

8 /KRR EE & T EHE A, b BR/RZEE 2000 m A 700m KR FITRE,
BARRTREMNE G, &ERERRESKERRENSLIEERE, #B(Schmale etal,
2010) &% c B4 B LR TKPREKSYMNTEL; EESEARNRESKRERME; 4
BEg R R SRR RS BHSTNE

Y JECRE TSI R B AE AR A T R B 2 VAT, B2 BEOK IR AR A AR S B
P B X OKIR<100m), JCHEEEEBIEX, b0 T B FiE
2R Z I KA (McGinnis et al., 2006). M EREAEE KIE>600m) 1, H&E
AT NN NS 2% A8 K GRS etk A, SRR P R E K S, 8
MR, BEE AR RIS, SORMBFIEIK B B . R, Kk
i E 5B IR R R LA DS (Leifer et al., 2006). 3445 F e S 7 ) ¥ fif ik 2R 5 3L
AR/ b R R B KA FR e 9 B % D) AH 5% (Greinert et al., 2010). fE A5 &
(R, RIAEAE SR UG DX I, A 35040 B e /0 B 28 O KK R IR b 2 K Ak
(McGinnis et al., 2006), X 3257 a8 TR Y B KA VDI I g it A2 1 B
4 VE FH (Fu et al., 2021; Sun et al., 2018).

3.4 WSS R B H

R RS TIRERKAR R 2 BI85, RA BB ARG
KAHE ) H e 38 B 400N 2.2-6.3 Tg/yr(Weber et al., 2019). Horr, J /K #2388 (K
TR<50 m) EARY 7R THI AR K240 3%, (HDTHR T AR A e HEUE B 1 20 50%,
ST VR BERE ) 32 B TR X (Weber et al., 2019).7E 8 X 4%, i EEi@LY
BUAE P S0 R0, 17 7 b R R VR BR IRI7A SR R 48, R e DL B A PR v



R uE E b S X Y 2-3 NE J(Regnier et al., 2011). 75 /KERER S TR
X, K& BT R 20 DL i EE AR, B A i R B D
(Solomon et al., 2009b). 5tk 3T B ¥ 7K DX 38U N A 7 9 R e R A HTRUN = 2287
JJT(Chen et al., 2024b). /< B 3X L8 S & s U5 25 ) 78 f U FE A R, H i T30
(IR BOE e, X DX ek T 28 4 BRI Y BE IS S B AN v] B R s

IPCC &IPS (19900 %5, W7 e HEGE R Ul S VE B 0-9
Tgyr' (£ 1) BHE VUOHEIRE (1996) 4k, Fiik IPCC 25 Bk ik IEI N\
KAHFEEIE R (48 5 Tg-yr?), 5 Kvenvolden Z5 511 4 Tg-yr' iAW)
% (Kvenvolden et al., 2005).3X — X AR DTk & Sk T HGtia B id f2 b i 2 &
AL ERAL ST RERL. RIRSOKE P 2 30 AL T IR IR S, 43 R s R
BEfE ] LIZ RN ESEAE SMTZ B REEAAE - R EEFE, #EAKIEE X &Pt
LA B AR R, 5 B & B - TRH A FR E A AR /IS 4 i 7
RN, £ PETM &5 5 ME I SR R AT, RIVUK B 5 T Be B RS
FRGE ) 32 R KU, 51 835 () SUfig 28 (Ruppel et al., 2017; Archer et al., 2009).

£ IPCC Bk & RIR K G A R e i — AN T RERIE, %%
77 R B RIR K G Wi J= b B (0 R e 25 Uk 3R 0 Ho A 5 20 I B R 22 2
{2, IPCC [ & I AR B R IR K G W 53 e 77 B ¥ B e 1) RSCHERR R o BE. B
SRRIR KB WA 53 fik FERETBCR Jot B TCRR DA o v, AL E RTS8V E 4 5 1
X RIR KA WD RUE I H e K BIIR KRS, B Bk K= 8= v R 3 B
BRI RS (R 1D AESFTEFA T, PRI TUKEDFIKA
TR 50 R R IGE ) T TR S A A B 3 IE 2 U A 2 AR B 2 IX B R 4
[y B KT A A B S 0 UM A3 A 11 1 B2 U (Diean et al., 2018 Ruppel et al.,
2017). KB, AN RE R 2 7 E /N A R SK S WAIR LA B AR R AR I
TEARR X e KRG EAF T BRI befit i, H IR e M S b s B UK, A
15 L SN S5 2R G b B fE 6 14 8 I JE 9.2 — (Archer et al., 2009).



R 1 IPCC XGFER IR SR G I3 )5 17 KRB0 & (1 I A 5

\ Y 1 5T PR e HETBOR K
IPCC ¥HAfieE » . .
o ST E (Tgyr FESH R
o CH4)
%X IPCC 5 H e K G5 4 3R AU
W (1990) (Kvenvolden, 1988).
%I IPCC
RPe J RIVTIKEDRIER NN LTE
5 (1995)
H =X IPCC 5 AERFBEAEIR — BT Z50R
ik (2001) (Fung et al., 1991).
S IPCC 5 BRI UARAR A, 2007 FUMRAR
M (2007) 4551 5 (Bernstein et al., 2008).
R R, ShSMMAEDN SR
X IPCC § SRR E WIS 2% IR A BRI 2R
e (2013) (Dickens, 2003; Denman et al.,

2007).

ARG HA5: T i v £ AR AR
KEEs/ NS EH (OMZ) K CHas HE

5K IPCC 4 (3375 BEALE. 24 OMZ _F I3RS
W (2021) i, 3 XA AR B3O EE A A 2

K, AR CHOlRCGRE
W, 2024).

4 HEBY BRRHER

EY P NPV % G2k //EEEN B e NG X7/ i1b: VDY L NPS B N D E s i ] R
i S M s PR AR AT TR eV AR L, R AR R P2 ) FR e R 7K P s 5 TR ELIR &
TS RO AR AT AR T A, TV SR AR DU 42 1) i T R A A<
EItEste (B 9) KB FRMEARN, FERIGGE 1 H e AR P K 0 AR Ak



AE A

S R W 2. RN 22 3. faE L2 4. K 5. MK BERR/ B
2 KA: HWH
& 5 LKA AE

 RUKAIRERX

ﬁﬁe@ﬁ

B 9BRRAREHT MFWERE, #ERuppel, 201DIEKL.

4.1 WEFR

Ve 7K FEE 3 FBE S ) R AR FEE ) D B DR 3R TR T v PR B AE
IK AR AR L, KR BERE T v 1°C, HBe 5 A 2 B (IR 24 3%-4%(Tishchenko et al.,
2005). #5 FE G N [FIRE T BUAMRIE B R R, (EARIR (SR EE AR IR I, FRbe i
figt BEAFDR 5 ey s IR IR o SR FE BRI, e B0 5 MR AR otk tH IR B T
i F e 53 F RIS SR, §BCREOM R, FE R R B AR g Doy R BT
Fil(Xu et al., 2001).7£ F ¥ AL BB 35 55 BB e X 4, B2 2= i (3 58 22 HH be LA
T2 T T EIAT 1 S5 R AR N DX sk, 3 P52 R0 26 5 P il B A A, 5 80 R e 98 e 2 A
Tk R K I 2 N 25 2 5 (Rehder et al., 2001) % TS H L, HEKZE R
JE D3R S B AT A ARSI s e, KR R ORI R R TR U
Ny TR AR R 3G R AR AR, [ IS SR G e PR R i
FEVRIGHES Can KPS R |, s& . m kA SOR R IERER,
PG e BT AR T & P B R BV -1 e 5 71 51 75 (Reeburgh, 2007), P
S IBEL B AE BRI R AT E AT

VIR R TR 2 R e /K S A 2 LS 1) 3 By ) BRI IR AR s R e AT K B
BKCF N, RIS R 5 R TR A AR ER AR, i bR TR B e i AR,



FESR AR IR, MR BE A F bE e B R H0Y K2 A% (Hofmann et al., 2010)./R
TRCRAE IS 7= 2 ) SOEAE Rk g K 9 R e 4 iy BRI il -ss e 1, 18
VTR BRI AT SV I, Y e AR i - AT e B ) e 1

42 WERER

VRS B AN R LA ) P b B B R AR R AT T R T
LB (MOB) A e S8 A — S ik, X — I A2 7K A F e 88 e e ) 2 22
HLil (Kotelnikova, 2002). 54614 5 FLAL AR R BEAG FI T HGE MR AAAE 1
P SR I T LT DX 3 e AR A T R b K P AL S s CIDBR R IR 58 7 &%
BFA) SHERAENT R, s R EEs By i, mBRIEET 255K
AEAMGE R, AR b IE T A AL S (Timmers et al., 2016).

AL R F AL (ORP) R NS B /KR EAIE RS I E 2 by, 5P A
TFNIE A B I AH 5% A58 e R AU T L T8 R KR A B A, A
HIT H e B A S REBEAT AR ARG N, HGERENS 5845 5y SR Ak o — A TR
FK, T T e e KA o 2 B AE R B 8 — S 8 Sl 1 (X3, el T
KA S R B A A B I B, SEAE SR A A s, e AR I X I
EACEZ IR NER, BT EWRRZ B T ECKKIBRH(Li etal., 2022b) AE KA IR
FELA R B B R R A, B S 8 KR A1, R e R T E AR e o DR R
FsEtE, S Gy s T e R,

4.3 HYRE

TR ADAE B AU  THAE S a8 R i A Hh S DGR P PR o LA v T R R A
VEBRIEAIRENSR, K H bt Sk — ALK (Caldwell et al., 2008). 5 44 AL
B3 23 U JE FE RS A 2 PRI, R T PR (VA AR P AN SR L Y b A B 2
e f X 2 5%, il BET R inanmE (MMO) HIEILIER, W Wiz
AN RS BB IR, AN A bR (Lawton et al., 2016) 75 1 [X 42K,
KIS KRR ACHINE, WIS B8, R BRI R SRR, Refsh
Rk Ak H B (Liebner et al., 2011).7E R IGHRE KA, BT, REFRA
W AR #haE JE R B AR, R e A, RIS AR A A b R R 2
(Cheng et al., 2022). U EMEABHE AR 272 A ZHEEVIT, X L9 5 et I Bt



HbE, FEARH BRI HORE AT RkaE H BE 7E 7K 4K b 197 803 2 (Alperin et all.,
2010; Ruffetal., 2013).

FEYIRE R R s B B BB e —, REAEY) (nfk, JRFE
YD) WIAT NGB e ia B 4 507 AR Rl He s . 8 D 1)U 3 5 RS K AR 4130, (it FR
FERY B R AR a0 DUE | AR SR ANEE RS, TR RUTARY P23 X, S AR
BN HIAT 2 SR PTARD AR RO FLIE B, 328 T S Il R G 2E UAR A HR R R ORI B2 7%
(Miller et al., 2002).7£— L83 [A]H7 X 45, K EH VUSEAMRRIE S AN S, 1531 X 15
(1 FE e A TCRR 420 1] 7K A P e TS o 2 B S v T oAt [X 35 (Bonagllia et al., 2017).

4.4 HFEEE

O b T 1 35 2 ) PR e MRS A TS RS B A4 1 B B2 TR 3R ARV | A5 46
B X8k, FRGE 5 SR U@ 12 4%, I LU A kS JU AT A BELAS HH 4 1)
P B(Tryon et al., 2002). 5 % (L3 S B e AE /K A b 10384 2RSS 51,
SRTIT, — BB R A IS B, AUl HhRR AR, T RE ST K
BN, NI 51 R R et LR R R R FT A B0 2 ] i AR G2 AN E,
G RIS R B AL T S5 At AH DI S8R WU L TRUSRT L 398 ) PR e A B B 2 o T )
PRIV, 3 0K 2 X A7 7 R e s o, L PR s o LL (R 4B R AL ) 8%
(Iyer et al., 2012; Polonik et al., 2024).

VO ML TP 1) 3 AR ARt 2 6t B 2 138 R 7 A S A 38 P AR PV G IX 3
Hie SR AE B FE A 2 B E D) 0 0ROR, SRR B AR R AR RS 24
WL FE IR B — B R PRI, F e S 0 IR A s R B R AR A 7 TR S o, A5 73
PR S AE 7K T A7 58 B % 2 24038 (Leifer et al., 2002a; Leifer et al., 2002b; Liu et
al., 2022).1 i AR R IE 23 B MK (IRt , 28 T 5 M) PR o P8 4% TE g IR A AR A
RIS, K TE R A PR RANRIR, X B K 2 #5 FF e <0, Al eis
B BR AL ARG BN A% B T IR T AR AR K, MK LT 24 R BRI, HGEAE
XEEFRRAER N, BB aE RO AR, ¥ EueE b 28] T BE P
(Liang etal., 2012). T FAP RIRLIE | FLISFE S5 P X R e 5 B 8 A1 ) o 52 )
AR GURRAD LIRS, e BOR NS s RIRLDUR I LBRE R, AR T Himis
F%(Duan et al., 2023).



5 ¥ B it R IR BB R
5.1 IH WA ARKRS S =R

U SN WL A AR e T P A T B A 00 00 R 50 SR 4 1) e
FB RHEIET 2R (AN AR, RS ST SRR o it X 30 %
PS50 B AL R LBt 3 1 RGeS W, ADCP 48 FH - IS I 1 A8 4k
R TR JAL 14 U T AT AL 1) %oF R 14 9 0T B R B AR A 4 2 35 52 (Chen et al,
2024a). 74 i S8 A T )2 T el A o SR, St 0 B K R VA R SR R AR AL,
77 A FEBETE 7K A o 1) A8 A T 26 R I8 7% 1o 7 58 78 RS 1) PR e kR DX 3, VS i
SRR I B R B, B FR IR B Ty, VAR AR B B RIS, JER T
FR e B A X 7K AR V8 i 48U B2 T (Ayasse et al., 2022 Trakulis-Loitxate et al., 2022).

R 320K AT 8 (AUV) FERE K FHLEEA (ROV) #5305 R L B 3g,
e Xt F Be i DX 3k AT ks B I R A L. AUV B ERUVTRE S, A% IR T
BT K TR RIS AT SO AT, SRE B Be v B o ¥ 7K I A0 3 P 5 ) 2 ) 4
Fi%E (Aguzzi et al., 2019; Radziejewska et al., 2024; Wohleber et al., 2025).7E4
IR R BRI T, AUV 2 UM DXCGEEAT BRI, 2t T 1Al )
Bk FE Al b 7 H e 99 BOMAR R AL 1 EE 2R (Fallati et al., 2023).ROV
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