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基于SWAT-ML-SHAP模型的土地利用变化对流域 

水文过程的影响——以分水江流域为例 
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摘要：土地利用变化深刻影响流域水文过程，尤其是径流、蒸散发和入渗，厘清其作用机制对水资源管理与灾害防控具有重

要意义。以分水江流域为研究区，基于率定与验证的 SWAT（Soil and Water Assessment Tool）模型模拟水文过程，并结合随

机森林（RF）、极端梯度提升（XGBoost）、轻量梯度提升机（LightGBM）等 15 种机器学习模型提升预测能力。进一步利

用 SHAP（SHapley Additive exPlanations）方法解析气象、水文与土地利用因子的对贡献。降水对径流具有显著正向驱动作

用，气温主导蒸散发变化。建设用地比例对径流和蒸散发均产生负面效应，林地通过截留、蒸腾和土壤蓄水削弱径流，农田

比例则表现出对入渗和径流系数的复杂非线性影响。SWAT 与机器学习的结合不仅提高了预测精度，也增强了水文响应的可

解释性。该方法为流域水资源管理与土地利用规划提供了有力工具，并在泥石流等山地灾害的预警和风险评估中展现出重要

应用价值，对实现资源可持续利用与灾害防控具有广泛意义。 
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Abstract: Land use change exerts a profound influence on watershed hydrological processes, especially runoff, evapotranspiration, 

and infiltration. Clarifying these mechanisms is essential for sustainable water management and hazard mitigation.We selected the 

Fen Shui River Basin as the case study. The SWAT model （Soil and Water Assessment Tool） was calibrated and validated to 

simulate hydrological processes with high reliability. To enhance predictive performance, fifteen machine learning models including 

Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) were employed. 

SHapley Additive exPlanations (SHAP) analysis was then applied to interpret the relative contributions of meteorological, 

hydrological, and land use factors.Precipitation strongly drove runoff, while temperature dominated evapotranspiration. Built-up land 

proportion exerted negative impacts on both runoff and evapotranspiration, whereas forest land reduced runoff through interception, 

transpiration, and soil water storage. Cropland proportion produced complex and nonlinear effects on infiltration and runoff 

coefficients.Integrating SWAT with machine learning not only improved prediction accuracy but also strengthened the interpretability 

of hydrological responses. This framework provides a powerful tool for watershed management and land use planning. Moreover, it 

offers practical guidance for early warning and risk assessment of mountain hazards such as debris flows, highlighting its broader 

significance in disaster prevention and resource sustainability. 
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  引言 

土地利用变化是人类活动对自然环境产生影响的突出体现，随着人类活动的持续，土地

利用格局持续发生变化(罗德荣等，2025)，直接影响水文过程的演变，其变化通过改变下垫

面的物理属性直接影响雨水的入渗、径流和蒸发等环节(刘春蓁等，2014；Kundu et al., 2017)。

在城市化过程中，建设用地的扩张往往伴随着不透水面的增加，使雨水更难下渗，导致入渗

量显著下降，径流系数升高，从而增加洪涝风 险(雷灵和唐弘久，2025)，林地则通过植被覆

盖与根系活动增强了土壤蓄水和入渗能力，有助于延缓径流汇集并提升蒸散发，从而在一定

程度上缓解地表径流的集中与洪水威胁(渠勇建等，2019)。因此，厘清土地利用变化对水文

过程的影响规律，对于区域水资源管理和灾害防控具有重要意义。 

传统研究方法主要依赖经验统计模型和物理机理型水文模型分析径流过程(王慧琳等，

2024)。前者在数据充足的情况下能够较好拟合流量变化，但对非线性关系与复杂交互的刻画

能力有限；后者可体现物理机制，但需要大量参数标定，计算成本高，对数据完整性要求严

苛(赵良杰等，2024)。目前，机器学习逐渐成为水文建模的重要补充(杜尚海等，2022；关铁

生等，2023)。基于树模型的集成学习方法（如随机森林 RF、极端梯度提升 XGBoost、轻量

梯度提升 LightGBM 等）在处理高维、非线性特征和变量交互方面表现出色，显著提升了径

流预测精度(Wang et al., 2025)。但传统机器学习模型往往被视为“黑箱”，难以揭示输入特

征与预测结果之间的因果联系与机理解释，这在一定程度上制约了其在水文归因分析中的推

广应用(Guo et al., 2024)可解释人工智能（XAI）技术的引入为机器学习模型的透明化提供了

可能(Das and Rad, 2020)，SHAP（SHapley Additive exPlanations）方法基于博弈论的 Shapley

值，可以量化每个特征对预测结果的边际贡献，将 SHAP 应用于水文建模不仅可以在保持模

型高精度的同时提高结果解释性，还能够系统识别不同因子对水文过程的相对作用(Ding et al., 

2025)。然而，在大尺度、多流域、多因素耦合背景下，单一方法往往难以同时兼顾计算效率、

预测精度和机理解释性(Jimeno-Sáez et al., 2022;刘杰等，2024)。国内外学者逐渐探索出“机

理模型+数据驱动+可解释性分析”(Guo et al., 2024; Ding et al., 2025)的融合路径，但在水文领

域，这种路径方法还没有明确的框架。  

因此，本文提出了一种 SWAT-ML-SHAP 耦合模型，将 SWAT（Soil and Water Assessment 
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Tool）物理水文模型与机器学习方法相结合，并采用 SHAP 方法进行模型解释的方法。该方

法不仅能保留 SWAT 模型固有的物理机制，还实现了模型解释的自动化，可同时对多个水文

过程进行分析。通过系统揭示土地利用变化对径流量、蒸散发量和深层渗流量的驱动机制及

交互效应，本研究不仅为流域水资源管理和土地利用规划提供了科学依据，也为泥石流灾害

的早期预警与防治提供了技术支撑。在泥石流防治中，土地利用变化与水动力因子具有至关

重要的作用，研究可为预测不同土地利用情景下的水文响应提供动态决策支持，具有重要的

实践意义。 

1 材料与方法 

1.1  研究区域概况  

分水江流域位于浙江省西部（29°40′N–30°20′N，119°00′E–119°40′E），是

钱塘江下游最大的一级支流流域(吴紫阳，2016)，发源于浙江省与安徽省交界处的山云岭（图

1）。流域边界清晰：东与苕溪、渌渚江流域接壤，西与新安江流域相邻，北接水阳江流域。

流域呈树枝状，上游左支为昌化溪，右支为天目溪，两河在临安市境内汇合后称为分水江，

干流全长 164.2 km，流域面积 3444 km²。流域地势西北高、东南低，属浙西山丘区，河段坡

降约 0.61‰，平均河宽约 250 m，河深 0.5–4.0 m。 

流域属亚热带季风气候，四季分明，年均气温 17.7℃。多年平均降水量 1638.2 mm，降

水时空分布不均，梅雨期（5–7 月）降水量占全年总量的 40.3%，其中 6 月最多，约占 17.1%。

流域西北部为黄山–天目山脉延伸地带，夏季风受高山地形抬升影响，易形成特大暴雨，是

浙江省主要暴雨区之一，且夏秋季常受台风影响，2000 年以来平均每年约 3.1 次。水文特性

方面，分水水文站多年平均流量 79.0 m³/s，对应多年平均径流深 946 mm。 

作为东部沿海山区的典型代表，分水江流域在地形、气候、土地利用和人类活动等多方

面特征的综合作用下，成为研究土地利用变化对水文过程影响的理想案例。流域地质风化强

烈，暴雨条件下易发生滑坡、泥石流等地质灾害，对下垫面变化响应敏感；降水时空分布的

高度不均匀性与台风等极端气候事件的频繁影响，使得流域具有明显的洪涝灾害风险；土地

利用格局呈现森林主导、耕地破碎化分布、建设用地沿河道和交通干线快速扩张的特征，典

型反映了东部山区城镇化进程中保护与发展并重的演变规律；径流对降水和下垫面变化的敏

感响应，为量化土地利用变化的水文效应提供了良好条件。上述多要素耦合特征使本研究成

果对东部沿海相似气候、地形和人类活动背景的山地丘陵流域具有重要参考价值。 
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图 1 研究区域概况 

1.2  研究方法 

1.2.1 SWAT-ML-SHAP 模型框架 

本研究的整体技术路线如图 2 所示。首先，基于研究区的基础数据，包括气象要素、水

文资料、数字高程模型（Digital Elevation Model, DEM）、土壤类型及土地利用信息，构建了

SWAT 模型并完成参数率定与验证，以保证模型在研究区的适用性与可靠性。在模型构建前，

对气象和水文等基础数据进行了必要的预处理和缺测值插补，以确保输入数据的完整性与连

续性。在此基础上，利用经率定后的 SWAT 模型生成各子流域的径流、渗流及蒸散发等关键

水文要素的模拟结果。随后，研究选取涵盖气象条件、空间特征与土地利用格局的多维特征

变量作为输入因子，分别引入 15 种机器学习模型进行训练与验证。在模型构建过程中，将各

子流域 80% 的样本数据作为训练集，其余 20% 用于验证集，以确保模型能够充分学习不

同子区的水文特征并提升泛化能力。在性能评价方面，采用决定系数（R2）、纳什效率系数

（NSE）、克林–古普塔效率系数（KGE）、均方根误差（RMSE）以及百分偏差（PBIAS）

等五项统计指标对模型进行综合评估，并在此基础上筛选出表现最优的模型。最终，结合 

SHAP 方法的解释性分析与多情景模拟实验，系统识别影响径流过程、入渗过程和蒸发过程

的主导因子并分析其相对贡献。 
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图 2 SWAT-ML-SHAP 模型基本框架 

1.2.2 SWAT 模型 

SWAT 模型是一种基于物理过程的分布式流域水文模型，能够在考虑气象、土壤、地形、

植被及土地利用等多源数据的基础上，连续模拟流域水文循环及物质迁移过程(Zhang et al., 

2024)。该模型通过 DEM、土地利用数据与土壤数据，将流域划分为若干子流域，并进一步

细分为水文响应单元（Hydrologic Response Unit, HRU），每个 HRU 内的水文过程被认为是

均质的。SWAT 在水文循环计算中引入了土壤-植物-大气-水分模型以估算蒸散发、入渗及产

流过程(Williams et al., 1989)，并结合侵蚀-生产力影响计算器（Erosion-Productivity Impact 

Calculator, EPIC）计算侵蚀与泥沙输移过程，能够较好地适用于不同气候区与下垫面条件的

流域模拟。 

本研究以分水江流域为研究区，利用 DEM、土地利用、土壤及气象等多源数据构建 SWAT

模型（表 1）。各气象数据来源于中国气象数据网，流量数据来自分水江水文站，资料时段

为 2006–2020 年。为保证数据完整性与连续性，对气象与水文数据进行了预处理：对短期

缺测采用线性插值法补齐，长时段缺测则参考邻近气象或水文站观测数据进行插补，对明显

异常值进行人工核查与剔除。模型构建方面，首先，依据 30 m 分辨率 DEM 与河网数据进行

子流域划分（图 3），并设定分水江水文站作为出水口位置。随后，将中国科学院地理科学

与资源研究所提供的多期土地利用数据统一重分类为耕地、林地、草地、水体、建设用地和
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未利用地 6 类，以保证不同时段数据的一致性。在土壤数据处理方面，基于中国土壤数据库，

利用 SPAW 模型计算土壤水文参数，结合 EPIC 模型估算侵蚀因子，并通过坡度分级和 HRU

阈值设定完成 HRU 划分。模型构建完成后，采用 SUFI-2 算法进行参数敏感性分析和自动率

定，以提高模型的模拟精度和可靠性。率定验证后模拟得到各子流域上径流量、入渗量和蒸

散发量。 

 

 

图 3 子流域划分 

表 1 SWAT 模型数据来源 

数据类型 数据来源 分辨率 作用 

数字高程 DEM 地理空间数据云 

（http://www.gscloud.cn/） 

30m 生成河网、划分流域 

土壤数据 HWSD 全球土壤数据库

（Harmonized World Soil 

Database v 1.2） 

1000m 构建土壤数据库 

土地利用数据 中国多时期土地利用遥感监

测数据集（http://www.resdc.cn） 

30m 制作 HRU 

气象数据 中国气象数据网 

（http://data.cma.cn/） 

日尺度 构建属性数据库 

水文数据 分水江水文站 月尺度 率定验证 

1.2.3 特征变量与机器学习算法选择 

本研究的 SWAT-ML 耦合遵循“物理约束引导数据学习”的设计原则。SWAT 模型基于

http://www.gscloud.cn/
http://www.resdc.cn/
http://data.cma.cn/
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水量平衡和能量平衡方程输出的水文分量作为机器学习的目标变量，输入特征则选取 SWAT

物理过程的主要驱动因子，确保机器学习在物理合理的约束空间内进行学习，而非纯粹的统

计拟合。在 SWAT 模型模拟的基础上，本研究选取多种气象、空间与土地利用特征变量作为

机器学习模型的输入因子(郭敏丽等，2025)，以提升对流域水文过程的模拟精度与泛化能力。

输入特征共分为三类：（1）基础水文特征：包括月累计降水量、月融雪量及月平均气温，用

于表征大气过程对流域产流、蒸散发和融雪补给的驱动作用；（2）空间特征：包括子流域面

积（AREA, km²）及其面积占比，反映流域尺度及空间异质性对水文过程的调控作用；（3）

土地利用特征：包括耕地、林地、草地、水域、建设用地和未利用地面积比例，分别反映不

同下垫面对产流模式、入渗过程、蒸发损失及水土保持能力的影响。在特征变量选取过程中，

本研究遵循物理一致性与信息独立性原则，避免选择与预测目标（径流量、蒸散发量、渗流

量）存在直接物理重合性或强函数依赖关系的因子，以减少目标信息在训练阶段的渗漏风险，

确保模型输出的物理合理性与泛化性能。例如，未选用 SWAT 输出的土壤含水量、地下水位

等中间过程变量作为输入，而仅使用气象驱动和下垫面特征，以保证模型学习的是真实的物

理因果驱动关系，而非模型内部变量间的统计相关。 

在机器学习方法选取方面，本研究共构建了 15 种具有代表性的算法(Wang et al., 2024)，

并根据其理论基础与实现机制分为四类：（1）线性回归类：包括线性回归（LR）、岭回归

（RR）和套索回归（Lasso），通过线性关系建模并利用正则化抑制多重共线性；（2）支持

向量与邻域类：包括支持向量回归（SVR）和 K 最近邻回归（KNN），前者通过最大化间隔

学习非线性映射，后者基于邻域特征进行局部拟合；（3）树模型与集成学习类：包括决策树

（DT）、随机森林（RF）、极端随机树（ET）、梯度提升回归（Gradient Boosting）、极端

梯度提升（XGBoost）、轻量梯度提升机（LightGBM）、类别特征提升（CatBoost）、自适

应提升回归（AdaBoostR）和套袋回归（BaggingR），该类方法能够捕捉特征间复杂的非线

性与交互效应，并通过集成策略提高预测精度与稳定性；（4）神经网络类：包括多层感知机

（MLP），利用多层非线性映射学习输入与输出之间的高维复杂关系。上述特征与方法的结

合，为后续的性能评估与特征贡献度分析提供了系统化和多样化的建模基础。 

1.2.4 SHAP 解释模型 

为揭示不同输入特征对机器学习模型输出的影响机制，本研究引入 SHAP 方法(Lundberg 

and Lee, 2017)对模型进行可解释性分析。SHAP 方法基于博弈论中的 Shapley 值思想，将模型

预测结果拆解为各特征的边际贡献，并在全局与局部尺度上量化特征的重要性及作用方向。

其核心公式如下： 
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其中： 

i —— 特征 i 的 SHAP 值（对单次预测的边际贡献） 

 N —— 全部输入特征的集合 

S N i —— 不包含 i 的任意特征子集 

 f S —— 仅使用特征子集 S 时模型的输出 

S  —— 子集元素个数； N —— 全部特征个数 

  ! 1 ! / !S N S N  —— Shapley 权重（对子集公平加权） 

 

1.2.5 模型评估指标 

为全面评估不同机器学习模型在径流量、蒸散发量与渗流量模拟中的性能，本研究选取

R²、NSE、KGE、RMSE 以及 PBIAS 共 5 个统计指标进行模型精度与稳定性分析(李文超，2017)。

各指标计算公式如公式(1.2)-(1.6)所示： 

2
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i i
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 
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  

 
 

   
 



 

                       (1.2) 
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Q Q







 






                                     (1.3) 

2 2 21 ( 1) ( 1) ( 1)KGE r                                     (1.4) 

2
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1

1
( )

n
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i

RMSE Q Q
n 

                                     (1.5) 
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i

Q Q
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Q







 



                                  (1.6) 

其中： 
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, ( 1,2, , )obs iQ i n  :第 i 个观测值 

, ( 1,2, , )sim iQ i n  :第 i 个模拟值 

,obs simQ Q :观测值、模拟值的均值 

,obs sim  :观测值、模拟值的标准差 

n:样本数量 

2 结果与分析 

2.1 SWAT 模型率定结果 

在完成 SWAT 模型的参数敏感性分析后，基于分水江水文站 2006–2020 年的月径流数

据进行参数优化，利用 SUFI-2 方法对主要水文参数进行率定。主要率定参数及其初始取值

范围与最终结果列于表 2。敏感性分析结果显示，CN2、ALPHA_BF、SOL_K、ESCO 和 EPCO 

等参数对模型输出最为敏感，反映了流域径流过程主要受土壤渗透性和基流调节的控制。 

设置 2006–2007 年为预热期，2008–2013 年为率定期，2014–2020 年为验证期，对流

域月尺度径流过程进行了率定与检验。结果表明，模型在率定期与验证期均表现出较好的拟

合能力（图 4）。率定期决定系数 R2 为 0.82，纳什效率系数（NSE）为 0.75，说明模型能

够合理再现降水–径流关系及径流时序变化特征。验证期 R2 为 0.79，NSE 为 0.73，保持

了较好的模拟精度。一般认为，当 R2 ≥ 0.7、NSE ≥ 0.7 时，模型具有较好的可用性，因

此 SWAT 模型在分水江流域表现出较强的稳定性与适用性。 

表 2 分水江流域 SWAT 模型参数表 

参数名 修改方式 含义 初始取值范围 取值 

CN2.mgt r__ 曲线数（产流） −0.15 ~ +0.15 0.075 

ALPHA_BF.gw v__ 基流衰减系数 0.05 ~ 0.5 0.087 

GW_DELAY.gw v__ 地下水延迟 30 ~ 180 137.509 

GWQMN.gw v__ 基流启动阈值 0 ~ 500 126.342 

GW_REVAP.gw v__ 地下水反蒸发系数 0.02 ~ 0.2 0.078 

RCHRG_DP.gw v__ 深层渗漏比例 0.1 ~ 0.5 0.396 

SURLAG.bsn v__ 地表径流滞后 1 ~ 8 5.222 

ESCO.hru v__ 土壤蒸散补给系数 0.5 ~ 0.95 0.765 

EPCO.hru v__ 植被耗水系数 0.7 ~ 1.0 0.873 

SOL_AWC().sol r__ 有效持水量调整 −0.2 ~ +0.4 −0.131 
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SOL_K().sol r__ 饱和导水率调整 −0.5 ~ +0.5 0.119 

CH_N2.rte v__ 主河道曼宁糙率 0.015 ~ 0.20 0.088 

CH_K2.rte v__ 主河道渗漏导水率 5 ~ 80 44.566 

 

 

图 4 SWAT-CUP 率定结果 

2.2 算法性能评估与最优模型选择 

基于 1.2.3 节构建的特征集合和算法体系，采用严格的时间顺序划分策略将 2006-2020 年

数据按 80:20 比例划分为训练集（2006-2017 年）和测试集（2018-2020 年）。基于训练集数

据进行模型训练和参数优化，在测试集上评估模型的泛化性能和预测精度。采用 1.2.5 节的 5

项统计指标进行定量评估，每种算法重复运行 50 次以消除随机性影响，通过对比测试集上的

平均性能表现确定各水文分量的最优预测算法。 

图 5 展示了各算法的综合性能表现及其在不同水文过程中的适应性差异。观测值与预测

值的散点分析（图 5a）揭示了三类水文过程建模复杂性的显著差异：径流量预测散点高度集

中于 1:1 参考线（R2=0.997），表明降水-径流过程主要呈线性可加特征，符合 SWAT 模型中

SCS 曲线数法的产流机制假设；蒸散发量预测维持良好的线性相关性（R2=0.946），但在高

值区域存在轻微的系统性低估，可能与极端高温条件下土壤水分胁迫对蒸散发的非线性约束

有关；深层渗流量预测的相关性相对较弱（R2=0.857），散点离散度明显增大，充分证实了

土壤水文过程受多层水分运移、地下水位动态和深层渗漏阈值等复杂非线性机制控制。算法

类别性能对比（图 5b）显示，高级集成方法（Gradient Boosting、XGBoost、LightGBM、CatBoost）

表现最优，平均 RMSE 为 5.07±2.08 mm（n=4），其基于梯度提升的序贯优化机制能够有效

捕捉水文过程的复杂非线性特征和变量交互效应。前 8 优算法的标准化误差指标热力图（图

5c）深入量化了性能差异：GBDT、RF、XGBoost 在径流量预测中的 RMSE 均低于 5 mm，

显著优于线性模型；深层渗流量的误差分化最为显著，LightGBM 的 RMSE 为 2.761 mm，而

ElasticNet 高达 6.200 mm，差距达 124%，凸显了非线性建模在土壤水文过程中的必要性。各
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水文过程的 RMSE 分布箱线图（图 5d）进一步确认了建模难度的差异：径流量预测误差最小

且分布高度集中（中位数≈5.23 mm），蒸散发量预测误差适中（中位数≈10.25 mm），深层

渗流量预测误差最大（中位数≈11.62 mm）且箱体垂直跨度最大，证实了该过程的强非线性

和高建模难度。计算效率权衡分析（图 5e）显示，LightGBM 位于“高性能-低时间”的帕累

托前沿核心位置（性能得分≈0.88，训练时间<1 秒），适合业务化实时预报场景；GBDT 虽

然训练时间稍长（≈3 秒），但精度最优（性能得分≈0.92），适合离线精细模拟和科学研究。

综合性能排序（图 5f）基于多指标加权策略（RMSE 占 40%、R2 占 30%、KGE 占 30%）显

示，XGBoost 以 0.429 的加权得分位居首位，体现了其在不同水文过程上的均衡优势；GBDT

紧随其后（0.425），虽在径流和蒸散发单项中表现最优，但在深层渗流中略逊于 LightGBM，

反映了单项极致性能与多过程适应性之间的权衡。 

表 3-5 详细列出了 15 种算法在三类水文过程预测中的性能指标，为算法选择提供了定量

依据。径流量预测中（表 3），前 6 名算法的 R2 均超过 0.99，NSE 均超过 0.97，KGE 均超过

0.95，表明径流过程主要呈线性可加特征，多数集成方法均能达到优秀水平；梯度提升算法

表现最优（R2=0.997，RMSE=4.329 mm），而 Support Vector Machine 和 ElasticNet 的 RMSE

分别是最优算法的 6.1 倍和 6.8 倍。蒸散发量预测（表 5）同样以集成学习算法为主导，Gradient 

Boosting 位居首位（R2=0.946，RMSE=4.498 mm），但算法间差异更加明显；多元线性回归

R2 仅为 0.643，与径流量预测中的 0.968 相比下降了 34%，凸显了蒸散发过程的非线性特征。

深层渗流量预测（表 4）中算法间差异最为显著，LightGBM 表现最优（R2=0.857，RMSE=2.761 

mm），但即使是最优算法的 R2 也仅为 0.857，远低于径流量的 0.997 和蒸散发量的 0.946；

多元线性回归 R2 仅为 0.395，与径流量预测相比暴跌 59%，充分证明了深层渗流过程的强非

线性特征。基于上述全面的性能评估，确定了三类水文过程的最优算法配置：径流量采用

GBDT 模型（R2=0.997，RMSE=4.329 mm），蒸散发量采用 GBDT 模型（R2=0.946，RMSE=4.498 

mm），深层渗流量采用 LightGBM 模型（R2=0.857，RMSE=2.761 mm）。 

最优模型的预测验证（图 6）从时间序列和散点拟合两个维度确认了算法选择的合理性。

径流量的时间序列预测（图 6a）和散点拟合分析（图 6b）显示，GBDT 模型准确再现了测试

集（2018-2020 年）内的季节性波动特征，拟合直线斜率为 0.992，极其接近理论值 1.0，散点

紧密分布于 1:1 参考线两侧，RMSE=4.329 mm 相当于平均月径流量（约 79 mm）的约 5.5%，

达到了水文预测的优秀标准（NSE>0.9，PBIAS<±10%）。蒸散发量的时间序列预测（图 6c）

成功捕获了季节性波动规律，散点拟合分析（图 6d）显示拟合斜率为 0.912，整体存在轻微

的低估趋势，高值区的系统性低估可能源于极端高温条件下的土壤水分胁迫，但模型整体仍
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达到 R2=0.946、RMSE=4.498 mm 的良好水平（NSE=0.946，PBIAS=-0.64%）。深层渗流量

的时间序列预测（图 6e）展现了该过程的复杂性，梅雨期（5-7 月）预测精度最高，枯水期

（11-1 月）的预测偏差显著增大，反映了深层渗流对前期土壤含水量的强记忆效应；散点拟

合分析（图 6f）显示拟合斜率为 0.826，整体低估约 17%，低值区（<5 mm）的散点偏离 1:1

线较远，而高值区（>10 mm）的拟合相对较好，这种“低值高相对误差、高值低相对误差”

的模式符合深层渗流过程的物理本质。综合三类水文过程的验证结果，确认所选算法配置为

后续 SHAP 可解释性分析提供了稳健可靠的基础。 

 
图 5 各算法在三类水文过程预测中的综合性能评估。(a) 三类水文过程的观测值与预测值散点对比图；(b) 
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五类算法类别的 RMSE 均值对比图。其中 n 值表示该类别包含的算法数量；(c) 平均性能前 8 优算法的标

准化误差指标热力图。其中颜色深浅表示标准化性能得分，单元格数值为原始平均误差值；(d) 三类水文

过程预测 RMSE 的箱线图分布；(e) 算法预测性能与训练时间的权衡分析（帕累托前沿图）；(f) 基于多指

标加权的综合性能排序

 
图 6 最优算法在三类水文过程预测中的时间序列验证与散点拟合分析。(a) 径流量预测的时间序列对比图

（GBDT 模型）；(b) 径流量的观测-预测散点图及线性拟合统计；(c) 蒸散发量预测的时间序列对比图

（GBDT 模型）；(d) 蒸散发量的观测-预测散点图及线性拟合统计；(e) 深层渗流量预测的时间序列对比

图（LightGBM 模型）；(f) 深层渗流量的观测-预测散点图及线性拟合统计 

 
表 3 径流过程预测结果的算法详细表现 

排名 算法名称 R²  NSE KGE RMSE PBIAS(%) 

1 Gradient Boosting 0.997  0.997  0.993  4.329  -0.070  

2 Random Forest 0.996  0.996  0.994  4.716  -0.020  

3 XGBoost 0.996  0.996  0.991  4.797  -0.080  

4 Extra Trees 0.996  0.996  0.994  4.857  0.030  

5 Decision Tree 0.994  0.994  0.995  5.885  -0.060  

6 LightGBM 0.994  0.994  0.991  6.240  0.110  
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7 CatBoost 0.985  0.985  0.986  9.401  0.200  

8 K-Nearest 

Neighbors 

0.978  0.978  0.982  11.622  -0.190  

9 Multi-Layer 

Perceptron 

0.972  0.972  0.980  13.078  0.620  

10 Multiple Linear 

Regression 

0.968  0.968  0.975  13.886  0.300  

11 Ridge Regression 0.968  0.968  0.975  13.893  0.310  

12 Lasso Regression 0.968  0.968  0.965  14.034  0.360  

13 AdaBoost 0.966  0.966  0.950  14.301  1.540  

14 Support Vector 

Machine 

0.884  0.884  0.827  26.530  -2.630  

15 ElasticNet 

Regression 

0.857  0.857  0.664  29.493  1.020  

表 4 渗流过程预测结果的算法详细表现 

排名 算法名称 R2 NSE KGE RMSE PBIAS(%) 

1 LightGBM 0.857  0.857  0.863  2.761  3.910  

2 Gradient Boosting 0.831  0.831  0.871  3.003  3.080  

3 XGBoost 0.829  0.829  0.867  3.014  3.010  

4 CatBoost 0.771  0.771  0.770  3.492  3.990  

5 Random Forest 0.721  0.721  0.796  3.855  5.380  

6 Decision Tree 0.495  0.495  0.745  5.188  5.360  

7 AdaBoost 0.487  0.487  0.465  5.227  21.980  

8 Extra Trees 0.486  0.486  0.688  5.234  3.730  

9 Multi-Layer 

Perceptron 

0.482  0.482  0.577  5.253  -1.610  

10 Support Vector 

Machine 

0.449  0.449  0.523  5.416  -13.130  

11 Multiple Linear 

Regression 

0.395  0.395  0.482  5.678  3.880  

12 Ridge Regression 0.385  0.385  0.470  5.725  3.960  

13 K-Nearest 

Neighbors 

0.382  0.382  0.557  5.738  -0.230  

14 Lasso Regression 0.317  0.317  0.267  6.033  4.530  

15 ElasticNet 

Regression 

0.278  0.278  0.209  6.200  4.640  

 

表 5 蒸发过程预测结果的算法详细表现 

排名 算法名称 R² NSE KGE RMSE PBIAS(%) 

1 Gradient Boosting 0.946  0.946  0.931  4.498  -0.640  

2 XGBoost 0.945  0.945  0.928  4.538  -0.710  

3 LightGBM 0.936  0.936  0.920  4.879  -0.590  

4 Random Forest 0.890  0.890  0.893  6.382  -1.070  

5 CatBoost 0.885  0.885  0.873  6.533  -0.200  

6 Decision Tree 0.803  0.803  0.891  8.553  -1.240  

7 Extra Trees 0.793  0.793  0.845  8.759  -1.330  

8 Multi-Layer 

Perceptron 

0.717  0.717  0.790  10.245  0.800  

9 Support Vector 

Machine 

0.657  0.657  0.717  11.293  -5.940  

10 K-Nearest 

Neighbors 

0.653  0.653  0.768  11.349  0.220  

11 Multiple Linear 

Regression 

0.643  0.643  0.725  11.508  -0.480  

12 Ridge Regression 0.634  0.634  0.717  11.660  -0.510  

13 Lasso Regression 0.622  0.622  0.665  11.845  -0.480  

14 AdaBoost 0.584  0.584  0.608  12.431  21.190  

15 ElasticNet 

Regression 

0.572  0.572  0.515  12.615  -0.250  
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2.3 基于 SHAP 的水文过程驱动机制解析 

2.3.1 土地利用格局演变特征 

研究期内（2006–2020 年），分水江流域总体土地利用格局基本稳定，但结构上发生了

明显调整，以 2010–2020 年为例特征尤为典型。耕地面积由 395.16 km2 减至 392.56 km2，

减少 2.60 km2；林地由 2926.46 km2 减至 2920.73 km2，减少 5.73 km2；草地和水域则分别

小幅增加 0.42 km2 和 0.16 km2，未利用地几乎不变。相较之下，建设用地由 37.36 km2 增

至 44.71 km2，净增 7.35 km2，扩张趋势最为突出（图 7）。 

从阶段演变看，2010–2015 年建设用地扩张相对温和，部分中下游子流域林地略有增加；

而在 2015–2020 年，建设用地沿干流河谷和平坦地带明显加速扩张，局部子流域耕地与林

地被转换为城镇及交通用地，呈现“耕地和林地小幅减少、建设用地显著增加”的城镇化发

展格局。基于 SWAT 子流域尺度的土地利用统计，进一步绘制了 2010–2020 年建设用地变

化量的空间分布（图 8a）。可以看出，虽然流域整体建设用地仅增加了流域面积的 0.21%，

但在中下游城镇聚集区和交通走廊附近形成了多个建设用地扩张的局地热点子流域（⭐），

而上游山地及部分支流区建设用地基本稳定甚至略有回落，反映出土地利用变化具有“整体

平缓、局地集聚”的空间特征。 

为刻画这种集聚性，本文对各子流域建设用地变化量计算 Z 评分，并据此将其划分为“高

集聚”“中等”“低变化”和“负变化”四类（图 8b）。高集聚子流域主要位于干流中下游

城镇密集区，建设用地扩张幅度显著高于流域平均水平；中等变化子流域多沿河谷缓坡展布；

低变化和负变化子流域则集中在上游山区和开发程度较低的支流区。进一步比较子流域尺度

的空间与水文响应关系（图 8c、8d）表明：建设用地变化量与子流域面积之间存在显著正相

关关系（R=0.636，p<0.001），面积较大的中下游子流域承担了更多城镇建设扩张；以“均

值 +1 标准差”为阈值划分的建设用地扩张热点子流域，其地表径流和产水量变化的中位值

略高于非热点子流域，而蒸散发变化中位值略低，方向上与不透水面增加导致“产流增强、

下渗与蒸散发减弱”的物理机制相一致，但两类子流域在 SURQ、ET 和 WYLD 变化上的

差异经 Mann–Whitney U 检验均未达到 0.05 显著性水平（p>0.05）。这说明在当前土地利

用整体变化幅度较小的背景下，建设用地扩张对多年平均水文过程的影响主要表现为局地、

微弱的调节效应，而流域尺度的一阶控制仍然来自降水和气温等气候因子。这与后续 SHAP 

分析中“气象因子重要性显著高于土地利用因子”的结果相互印证。 
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图 7 分水江流域土地利用变化情况 
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图 8 建设用地空间集聚特征及其对水文过程的影响。(a) 2010–2020 年建设用地面积变化的子流域空间分

布（⭐为建设用地扩张热点子流域）；(b) 基于 Z 评分的建设用地变化空间集聚分区；(c) 子流域面积与

建设用地变化量的关系（红色点为热点子流域，虚线为线性回归拟合）；(d) 建设用地扩张热点与非热点

子流域地表径流（SURQ）、蒸散发（ET）和产水量（WYLD）变化的箱线图比较（ns 表示差异在 0.05 水

平上不显著） 

2.3.2 特征重要性排序与净影响方向分析 

基于第 2.2 节确定的最优算法配置，采用 SHAP 方法对水文过程的驱动机制进行可解释

性分析。径流量采用 GBDT 算法，蒸散发量采用 GBDT 算法，深层渗流量采用 LightGBM 算

法。图 9 展示了三类水文过程的全局特征重要性排序和净影响方向，基于平均绝对 SHAP 值

的重要性排序显示，不同水文过程的主控因子存在显著差异，体现了各自的物理机制特征。 

径流量预测中，降水量为最重要的控制因子，表现为显著的正向净影响，体现了降水作

为径流产生主要驱动力的核心作用。这一结果与 SWAT 模型中采用的 SCS 曲线数法产流机制

高度一致，降水量是触发地表径流的直接水源输入。气温位居重要性第二位，主要通过影响

蒸散发过程对径流产生间接调控，对应 SWAT 模型中温度驱动的蒸散发计算过程。气温升高

增加蒸散发，消耗土壤水分，从而减少可转化为径流的有效降水量。在土地利用特征中，建

设用地比例表现为正向净影响，反映了不透水面增加对径流系数的提升作用。这对应 SWAT

模型中建设用地的高曲线数值，导致相同降水条件下最大潜在滞留量降低，产流量增加。相

比之下，林地比例呈现负向净影响，体现了森林植被通过截留、蒸腾和土壤蓄水对径流量的

抑制效应。在 SWAT 模型中，林地的低曲线数值和高冠层截留参数共同作用，增强了降水的



 

 18 

滞留和入渗能力。农田比例同样表现为负向净影响，反映了农田土壤的渗透和滞蓄能力，对

应 SWAT 中耕地的中等曲线数值及其季节性植被覆盖对产流的调节作用。子流域面积和面积

占比虽然重要性相对较低，但仍体现了流域空间尺度对径流汇集过程的调控作用。 

蒸散发量预测中，气温为主导的正向驱动因子，直接控制着蒸散发的能量供给和强度。

这与 SWAT 模型中温度作为蒸散发计算的核心参数相吻合，温度升高直接增加蒸散发潜力，

增强植被蒸腾和土壤蒸发速率。降水量的重要性体现了水分供给对蒸散发过程的重要约束作

用，对应 SWAT 中实际蒸散发受土壤含水量限制的物理机制。降水不足时，土壤水分亏缺使

实际蒸散发显著低于潜在蒸散发。在土地利用结构中，建设用地比例表现为负向净影响，反

映了不透水面积增加导致的蒸散发能力降低。在 SWAT 模型中，建设用地的植被覆盖度参数

接近零，缺乏蒸腾作用，且不透水表面快速排水减少了土壤蒸发的水分来源。林地比例呈现

正向净影响，验证了森林植被蒸腾对流域耗水的重要贡献，对应 SWAT 中林地的高叶面积指

数和深根系特征参数，使其具有强大的水分提取和蒸腾能力。农田比例同样表现为正向影响，

体现了作物蒸腾的显著作用。特别是在作物生长季，SWAT 模型中农田的叶面积指数和根系

深度参数动态变化，驱动蒸散发的季节性波动。空间特征的影响相对较小，面积和面积占比

的重要性均低于 1.0。 

深层渗流量预测中，气温为最重要的控制因子，主要通过调控土壤水分状态和植被需水

量影响深层渗流过程。在 SWAT 模型中，气温升高增强蒸散发消耗，降低土壤剖面含水量，

减少向浅层含水层的渗漏补给，进而影响从浅层含水层向深层含水层的渗流通量。降水量位

居第二，表明充足的水分输入是深层渗流发生的重要前提。这对应 SWAT 中深层渗流的前提

条件，即降水首先满足蒸散发需求、填充土壤水分亏缺并补给浅层地下水，只有在浅层含水

层水位超过临界阈值时才会发生向深层的渗漏。建设用地比例呈现负向净影响,体现了城镇化

过程中不透水面扩张对深层入渗的显著抑制作用。在 SWAT 模型中，建设用地的径流增加直

接减少了入渗量，导致浅层地下水补给不足，从而削弱深层渗流的水源基础。林地比例表现

为正向影响，反映了森林土壤结构对深层渗透的促进作用，对应 SWAT 中林地较高的土壤饱

和导水率参数和良好的孔隙结构，有利于降水的垂直入渗和地下水补给。 

上述特征重要性模式揭示了不同水文过程的驱动机制差异。径流量过程主要受降水量的

线性驱动，土地利用类型通过改变径流系数产生调节作用，这与 SWAT 模型中 SCS 曲线数法

产流方程的物理框架一致。蒸散发量过程体现了气温和水分供给的耦合控制，不同植被类型

通过蒸腾强度差异产生分化影响，对应 SWAT 中温度驱动的蒸散发计算与土壤水分限制的双

重约束机制。深层渗流量过程则受到气温、降水和土地利用的复合调控，体现了土壤水文过



 

 19 

程的复杂性，反映了 SWAT 模型中多层土壤水分运移、浅层地下水动态和深层渗漏的级联耦

合过程。这一发现从可解释性角度验证了第 2.2 节中不同水文过程适用不同建模策略的科学

合理性，也证实了机器学习模型成功学习到了 SWAT 建立的物理因果驱动关系，而非简单的

数据拟合。SHAP 分析揭示的特征重要性排序、作用方向及非线性响应模式均与 SWAT 的水

量平衡方程、SCS 产流机制、蒸散发计算框架和土壤水分运移过程高度吻合，从结果层面验

证了 SWAT-ML 耦合框架的物理合理性，有效避免了“黑箱嫁接”问题。 

 
图 9 基于 SHAP 方法的水文过程特征重要性与净影响分析。(a) 径流量特征重要性排序；(b) 径流量特征

净影响方向；(c) 蒸散发量特征重要性排序；(d) 蒸散发量特征净影响方向；(e) 深层渗流量特征重要性排

序；(f) 深层渗流量特征净影响方向。 

2.3.3 非线性边际效应与双因子交互机制 

图 10 进一步揭示了关键特征的边际效应模式和特征间交互作用机制，为理解水文过程的

非线性响应提供了定量化证据。径流量过程表现出高度的线性可预测特征。降水量的边际效
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应分析显示严格的线性正相关关系，验证了降水对径流的直接驱动作用。这种线性特征源于

SWAT 模型中降水超过初损后产流量与降水量的正相关关系，在大样本统计下表现为稳定的

线性响应模式。降水与气温的交互效应热力图揭示了明显的分段响应机制。在低降水条件下，

气温变化对径流贡献的影响有限，因为此时降水量不足以补偿蒸散发损失和土壤滞留，产流

本身受到水分限制，气温的蒸散发调节效应难以显现。当降水量超过 365.6 mm 时，气温升高

通过增强蒸散发对径流产生系统性负向调节，对应 SWAT 模型中充足降水条件下，气温驱动

的蒸散发成为径流量的主要损失项，两者的竞争关系更加显著。局部特征贡献分析确认了降

水量的主导地位，其正向贡献值占绝对优势，而其他特征的贡献相对稳定且变异性较小。 

蒸散发量过程体现了典型的水热耦合控制机制。气温边际效应呈现良好的线性响应，但

在高温区域出现边际递减趋势，暗示水分供给对蒸散发过程的潜在约束。这与 SWAT 模型中

的物理机制吻合，在水分充足时，蒸散发随温度升高而线性增加；但当土壤水分消耗至萎蔫

点附近时，实际蒸散发受到水分胁迫，对温度的响应减弱。气温与降水的交互效应展现了经

典的水分能量限制转换模式。水分限制条件下，气温的正向效应受到显著抑制，对应 SWAT

中降水不足导致土壤含水量低，即使温度升高潜在蒸散发，实际蒸散发仍受水分可用性限制。

充足水分条件下，气温效应得到充分释放，两者呈现协同增强关系。此时土壤水分充足，温

度成为蒸散发的主控因子，SWAT 模型中实际蒸散发接近潜在蒸散发，两者的正向协同效应

明显。局部贡献分析显示出相当的样本间变异性，反映了蒸散发过程受多因子交互调控的复

杂特征。 

深层渗流量过程表现出最为复杂的非线性响应模式。气温边际效应呈现明显的非单调关

系，在中低温区间表现为负向效应，而在高温区间出现正向转变，提示气温通过不同物理机

制对深层渗流产生差异化调控。这种非单调性可能源于 SWAT 模型中温度对多个过程的复合

影响。低温时，温度升高主要通过增加蒸散发减少土壤水分，负向影响深层渗流；高温时，

可能通过改变土壤微生物活性和土壤物理性质间接影响入渗过程，产生复杂的非线性响应。

气温与降水的交互效应显示复杂的竞争协同并存关系。在水分胁迫条件下，气温升高通过加

剧地表蒸发与深层渗流的水分竞争产生负向效应，对应 SWAT 中降水有限时，蒸散发优先消

耗土壤水分，减少向下渗透的水量，浅层地下水得不到充分补给，深层渗流减少。在水分充

足条件下，适度的温度升高可能通过改善土壤物理性质促进深层入渗。此时降水首先满足蒸

散发需求后仍有充足水分补给地下水，SWAT 模型中浅层含水层水位上升，触发向深层渗流

的阈值条件，温度的负面效应被水分充足所补偿。局部贡献分析呈现高度的样本特异性，不

同样本的特征贡献模式存在显著差异，证实了深层渗流过程的强非线性特征，反映了 SWAT
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模型中土壤分层水分运移、地下水位动态和深层渗漏系数等多参数的复杂交互作用。 

基于边际效应和交互分析，识别出关键的生态水文阈值。降水量在 243.7 mm 和 365.6 mm

处存在明显的系统响应转折点，可作为流域水文状态分类的定量指标。这些阈值对应 SWAT

模拟中流域从水分限制向能量限制的转换临界点。气温在 14.3°C 和 21.2°C 附近出现深层

渗流响应的分段特征，反映了温度调控土壤水文过程的复杂性，可能与 SWAT 模型中不同温

度区间的蒸散发强度、土壤冻融状态和植被物候期的耦合效应有关。这些阈值为流域适应性

管理提供了科学依据：在水分限制区域应优先保护现有植被以维持水分平衡；在水分充足区

域可通过生态修复提升蒸散发服务功能；在温度敏感区域需重点监测气候变化对深层水循环

的长期影响。 

 
图 10 基于 SHAP 的特征边际效应与交互作用分析。(a) 径流量中降水量的边际效应分析；(b) 径流量的局

部特征贡献分布；(c) 径流量中降水量与气温的交互效应；(d) 蒸散发量中气温的边际效应分析；(e) 蒸散
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发量的局部特征贡献分布；(f) 蒸散发量中气温与降水量的交互效应；(g) 深层渗流量中气温的边际效应分

析；(h) 深层渗流量的局部特征贡献分布；(i) 深层渗流量中气温与降水量的交互效应。 

3 讨论 

本研究提出的 SWAT-ML-SHAP 耦合框架具有一定的通用性，但其适用范围受研究对象

特征和数据条件的制约。基于分水江流域的应用实践，可对模型的适用范围与局限性作如下

界定。在适用范围方面，本方法适用于具备长序列流量观测数据的中小型流域，流域面积以

102 至 104 km2 量级为宜；适用于湿润至半湿润气候区，即降水是径流主要来源的流域，对

于干旱半干旱区或高寒山区需补充相应的蒸发、冻融及雪冰过程等物理模块；适用于森林、

农田、建设用地等多种景观类型共存且土地利用格局在研究期内发生可观测变化的流域；研

究时空尺度以月尺度和子流域尺度为主，本研究中分水江流域子流域平均面积约 240 km2；

同时要求降水、气温、流量以及 DEM、土壤、土地利用等基础数据相对完整且质量可靠。 

需要强调的是，分水江流域研究期内土地利用结构调整总体属于“渐进式、小幅度”变

化：耕地和林地面积的净变化均小于各自初始面积的 1%，建设用地增加量仅占流域总面积

的 0.21%。在这种背景下，建设用地扩张在中下游若干子流域形成局地集聚热点，对地表径

流、蒸散发和产水过程产生了方向上与物理机制相一致但幅度较小的响应，热点与非热点子

流域间多年平均 SURQ、ET 和 WYLD 变化的差异并未达到统计显著水平（p>0.05）。这

与 SHAP 分析中土地利用因子重要性明显低于降水和气温的结果相吻合，说明在当前城镇化

强度下，气候因子仍是水文过程的一阶控制，土地利用主要发挥局地调节作用。随着未来城

镇化持续推进或在土地利用变化幅度更大的流域应用该框架，土地利用对水文过程的累积影

响可能会更加突出。 

模型的主要局限性体现在五个方面：① 当流域存在大型水库调度、跨流域引调水等强人

工干预时，需在 SWAT 中补充水库调度和水资源管理等模块，否则难以准确刻画人类活动对

径流过程的影响；② 高频洪峰过程预测需要更高时间分辨率的输入数据和计算方案，本研究

基于月尺度数据，更适合评估中长期水量平衡与水文要素的平均响应；③ 模型参数与特征权

重向其他流域迁移时，必须结合当地水文气候和下垫面条件重新率定并进行独立验证，以防

止经验推广带来的系统偏差；④ 受限于分水江流域仅有一个出口水文站，未能开展子流域尺

度的分区率定与验证，空间异质性主要依赖 HRU 机制和机器学习模型对多子流域样本的综

合学习来反映；⑤ 本研究采用时间顺序划分策略评估模型的泛化能力，未采用滚动窗口等时

间序列交叉验证方法，未来可引入多折时间序列交叉验证或在线学习策略，以进一步提升模

型在业务化预报中的稳健性和适应性。 

未来研究可从以下几个方向拓展：一是结合新增水文与水质观测断面开展多点率定与验

证，提高对流域内部空间差异的约束能力；二是融合 MODIS 蒸散发、GRACE 地下水储量

等遥感产品，引入多源数据对蒸散发、地下水和土壤水分过程进行联合约束；三是采用区域

化率定和参数转移方法，提升在无资料或少资料流域中的推广应用能力；四是开展多流域、

多气候区对比验证，系统评估 SWAT-ML-SHAP 框架在不同下垫面与土地利用变化背景下的

适用性与稳健性，为区域水资源管理和土地利用规划提供更具普适性的技术支撑。 

4 结论 

本研究基于 SWAT-ML-SHAP 耦合框架，系统评估了分水江流域土地利用变化对水文过

程的影响，得出以下主要结论： 
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（1）模型有效性与可靠性得到验证。SWAT 模型在率定期与验证期均表现出较好的拟合

效果，证明其能够合理再现流域水文过程。进一步的机器学习对比表明，集成学习方法表现

最佳，其中径流量由，径流量由 GBDT 模型模拟效果最佳（NSE=0.997），蒸散发量由 GBDT

模型表现最佳（NSE=0.946），深层渗流量由 LightGBM 模型表现最优（NSE=0.857）。这验

证了耦合框架的有效性和应用潜力。 

（2）水文过程的主控因子差异显著。径流量主要受降水控制（SHAP 重要性 = 56.361），

气温次之（3.380）；蒸散发量由气温主导（11.304），降水为关键约束因子（4.807）；深层

渗流主要受气温（3.614）与降水（2.530）驱动。不同水文过程的主控因子体现了各自的物理

机制差异。 

（3）土地利用作为调节因子发挥重要作用。尽管土地利用变量在 SHAP 重要性上的数

值低于气象因子，但其作用机制清晰：建设用地扩张显著增加径流量并抑制深层渗流；林地

则通过截留与蒸腾增强蒸散发与渗透；农田比例反映了土壤入渗与滞蓄能力。虽然土地利用

的贡献率相对较低，但其长期累积效应和空间格局调整对流域水文安全与资源调控具有不可

替代的作用。 

本研究为流域水资源管理和土地利用规划提供了科学依据。在快速城市化和不透水面扩

张的背景下，径流量的增强、蒸散发量的减弱和深层渗流的不足可能加剧洪涝风险，并提高

山区泥石流等灾害发生的可能性。SWAT 与可解释机器学习的耦合方法为揭示水文驱动机制、

评估土地利用变化效应以及制定泥石流早期灾害防控和可持续发展战略提供了新的思路与技

术支撑。 
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