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Abstract: To address the challenges of low spatial accuracy and poor spatio-temporal continuity in monitoring
ecological disturbances during the construction of major railway projects in mountainous regions of Southwest China,
this study proposes a dynamic evaluation framework that integrates deep networks with remote sensing spectral features.
Using Sentinel-2 10 m resolution time-series imagery from 2019 to 2024, we developed input feature datasets
comprising bands of remote sensing images, spectral indices and textural features. A U-Net-based semantic
segmentation model was developed for assessing ecological quality, with comparative analyses conducted against FCN
and LinkNet. This approach enabled dynamic evaluation of ecological quality during the construction of the Ya'an -

Nyingchi railway section over multiple years. The results show that the U-Net model achieved a test accuracy of
91.65 %, significantly outperforming FCN (82.95 %) and LinkNet (90.23 %), demonstrating its robustness when
coupled with spectral features. From 2019 to 2024, the area of high-quality zones decreased sharply by 28.5 %, with
the main construction period of 2021-2022 identified as the most critical phase of ecological degradation, during which
the ecological quality index dropped by 0.18. Change trajectory analysis further revealed dominant degradation
pathways, such as "moderate — poor" and "good — moderate," and quantified the spatio-temporal heterogeneity of
disturbances. Persistent degradation hotspots were primarily associated with waste dump sites and construction access
roads. Otherwise, the region exhibited a spatial pattern of “high quality in the east and west, low in the center” —
high-quality areas were mainly distributed in the Ya'an - Kangding and Nyingchi sections, while low-quality areas
were concentrated in the Qamdo - Bomi section. This study demonstrates that integrating deep learning with remote
sensing spectral features provides a novel paradigm for ecological quality assessment during railway construction. It
enables high-precision, rapid monitoring of ecological quality in complex mountainous corridors, offering a scientific

basis for precise ecological risk management and restoration strategies in major railway projects.

KEY WORDS: Major railway projects, Ecological environment assessment, Deep learning networks, Spectral
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Fig.9 Eco-environmental quality assessment results of FCN. U-Net and LinkNet models
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Fig.11 Local comparison of evaluation results between FCN. U-Net and LinkNet models
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