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摘  要：针对西南山区重大铁路工程施工期生态环境扰动监测空间精度低的问题，本研究提出“深度网络耦合

遥感光谱特征”框架进行生态环境质量动态评价。利用 2019-2024 年 Sentinel-2 的 10 m 分辨率时序影像，构建

由影像光谱波段、光谱指数和纹理特征组成的输入特征集，采用 U-Net 语义分割模型，对比全卷积网络（FCN）

与 LinkNet，实现多年雅安至林芝段重大铁路工程施工期生态环境质量动态评价。结果表明：U-Net 测试集精

度达 91.65 %，显著优于 FCN（82.95 %）和 LinkNet（90.23 %），该网络模型结合光谱波段和植被指数特征更

鲁棒可靠。其次，发现 2019-2024 年优等区面积锐减 28.5 %，精准识别出 2021-2022 年铁路主体施工期为生态

退化关键阶段，生态质量指数下降 0.18。再者，结合变化分析揭示了“一般→较差”与“良→一般”为主的生

态退化路径，并量化了扰动时空异质性，发现以弃渣场，交通便道为主体的持续退化热点区域。总体区域上

生态质量呈“东西高、中间低”格局，优等区主要分布在雅安—康定段与林芝段，差等区集中在昌都—波密段。

研究证明，深度学习网络耦合遥感光谱特征方法为铁路工程施工期生态环境质量评价新范式，可实现复杂山

区交通廊道生态质量的高精度、快速监测，为重大铁路工程生态风险精准防控与恢复策略制定提供科学依据。 
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Abstract: To address the challenges of low spatial accuracy and poor spatio-temporal continuity in monitoring 

ecological disturbances during the construction of major railway projects in mountainous regions of Southwest China, 

this study proposes a dynamic evaluation framework that integrates deep networks with remote sensing spectral features. 

Using Sentinel-2 10 m resolution time-series imagery from 2019 to 2024, we developed input feature datasets 

comprising bands of remote sensing images, spectral indices and textural features. A U-Net-based semantic 

segmentation model was developed for assessing ecological quality, with comparative analyses conducted against FCN 

and LinkNet. This approach enabled dynamic evaluation of ecological quality during the construction of the Ya'an–

Nyingchi railway section over multiple years. The results show that the U-Net model achieved a test accuracy of 

91.65 %, significantly outperforming FCN (82.95 %) and LinkNet (90.23 %), demonstrating its robustness when 

coupled with spectral features. From 2019 to 2024, the area of high-quality zones decreased sharply by 28.5 %, with 

the main construction period of 2021-2022 identified as the most critical phase of ecological degradation, during which 

the ecological quality index dropped by 0.18. Change trajectory analysis further revealed dominant degradation 

pathways, such as "moderate → poor" and "good → moderate," and quantified the spatio-temporal heterogeneity of 

disturbances. Persistent degradation hotspots were primarily associated with waste dump sites and construction access 

roads.  Otherwise, the region exhibited a spatial pattern of “high quality in the east and west, low in the center”—

high-quality areas were mainly distributed in the Ya'an–Kangding and Nyingchi sections, while low-quality areas 

were concentrated in the Qamdo–Bomi section. This study demonstrates that integrating deep learning with remote 

sensing spectral features provides a novel paradigm for ecological quality assessment during railway construction. It 

enables high-precision, rapid monitoring of ecological quality in complex mountainous corridors, offering a scientific 

basis for precise ecological risk management and restoration strategies in major railway projects. 

 

KEY WORDS: Major railway projects, Ecological environment assessment, Deep learning networks, Spectral 

characteristics

0 引言 

生态环境是人类生存、经济发展和社会

进步的基础（申艳军等, 2024）。近年来我国

在铁路工程方面大量投入建设，对生态环境

产生较大扰动，尤其对于我国西部区域地形

复杂、气候多样，孕育了丰富的生物多样性，

生态环境极为脆弱和敏感(Guo and Yuan, 2

022; Song et al., 2024)，生态系统自我调节

能力较弱，生态环境的敏感性和变异性突出，

面对重大工程扰动（图 1），部分地区出现了

植被退化、土壤侵蚀加剧以及生物多样性减

少等现象，对区域生态系统的稳定性和生态

系统服务功能的发挥构成了威胁（宣炳旭等,

 2025）。因此，科学评估铁路工程建设对交

通廊道区域生态环境质量动态，成为保障区

域生态安全和实现可持续发展的关键（El-Hu

sseini et al., 2023; Arshad et al., 2024）。 

早期的生态环境质量评价方法主要依赖

现场调查和定性描述（Kumar et al., 2024; 

Kaloyianni et al., 2019）。尽管后续发展出基

于环境质量指数和生态环境质量指数等的多

指标量化评价体系（Wen et al., 2024），这类

方法仍受限于数据时空分辨率较低，难以实

现大范围、连续空间的交通廊道生态环境质

量动态监测，尤其在西南山区铁路、公路等线

性工程所形成的复杂生态系统中表现更为明

显。随着数据挖掘、机器学习和深度学习技术

的快速发展，以及多源遥感数据的普及，融合

遥感与智能算法的方法逐渐成为交通廊道生

态环境监测的重要方向（王斌和范东林, 201

9; 张兵, 2018）。例如，Matyukira et al. (20

24)应用随机森林、支持向量机和神经网络等

算法有效监测铁路和公路沿线植被动态，实



 

时评估工程建设与气候变化对生态系统的影

响。Xiao et al. (2022)基于无人机多光谱影

像和堆叠集成学习算法对漳河水质进行监测，

结果表明该模型在交通影响区水质参数提取

中精度显著优于单一机器学习模型。Moham

madimanesh et al.（2019）提出一种面向极化

SAR 影像湿地分类的全卷积网络（FCN）架

构，有效缓解了交通廊道周边 SAR 影像分类

中的噪声与特征表达不足的难题。Aanins （2

020）利用 U-Net 卷积神经网络实现高分辨率

遥感影像中森林、水体等地类的高精度分割，

为交通基础设施建设中的土地利用与生态响

应分析提供有力工具。这些研究显示了机器

学习与深度学习在工程建设时期交通廊道遥

感监测与生态评价中的广阔潜力，也为本文

针对山区铁路工程开展高精度生态环境质量

动态评价提供了重要借鉴。 

然而，针对铁路交通廊道面临高密度隧

道工程这类生态环境变化剧烈、空间异质性

强的线性区域，现有评价方法仍面临挑战：传

统指标体系难以捕捉其快速动态变化；而多

数机器学习和深度学习应用侧重于静态分类

或特定参数反演，对廊道尺度连续时空动态

监测的支持不足（Karisa et al., 2020）。尤其在

高异质性的我国西部山区，实现精准的生态

环境质量动态评价更具难度。此外，重大工程

扰动在交通沿线呈现出“点-线-面”多元空间

影响特征，既包括小范围的弃渣区、线性分布

的施工便道，也包括大面积的施工区域，进一

步加剧了空间尺度异质性带来的评价困难。

现有方法多基于区域面状尺度进行整体评价，

缺乏能够统一覆盖“点-线-面”多类扰动形式

的综合评价体系，导致对细微施工影响的识

别与评估能力不足（Zhang et al., 2020）。 

 

图 1  研究区地理位置及其高程状况 

Fig.1  Geographical location and elevation of the study area 

为突破上述局限，本文提出融合高时空

分辨率 Sentinel-2 时序影像与深度学习语义

分割模型的解决方案，通过构建面向评价任

务的光谱特征数据集与 U-Net 等深度学习网

络模型，并引入像元级光谱尺度评价方法，结

合多期扰动检测机制，旨在实现对我国西部

山区重大铁路交通廊道生态环境质量的高时

空分辨率精准快速动态监测。克服传统方法

在时空分辨率与动态评价能力上的不足，有

效识别微小施工影响区域，支持从像元到廊

道尺度的全面生态环境影响评估。 

1 研究区与数据 

1.1 研究区概况 

雅安至林芝段铁路（94°02′35″E -103°

25′41″E）正线长度 1008.45 km，本文以正

线 30 km 缓冲带为界作为研究区（图 1）。该

铁路线从四川省雅安市起，途经甘孜藏族自



 

治州，进入西藏自治区昌都市，最终抵达林芝

市。沿线地形复杂多样，跨越四川盆地、川西

高山峡谷区、川西高原盆地区、藏东南横断山

地区和藏南河谷区等五个地貌单元。线路海

拔变化显著，最低点约 500 米，最高点超过

5000 米，海拔高差超过 4000 米。铁路沿线水

系发达，跨越大渡河、雅砻江、金沙江、澜沧

江等六大河流。 

1.2 卫星遥感数据 

Sentinel-2 是欧洲空间局在哥白尼计划

框架下开发的地球观测任务，旨在提供高分

辨率的光学成像数据, 涵盖可见光、近红外

和短波红外波段，空间分辨率分别为 10 米、

20 米和 60 米（Khosravi et al., 2022; Genç et 

al., 2025）。在本文中，通过  Google Earth 

Engine（GEE）云平台获取 Sentinel-2 Level-

2A 地表反射率（S2 SR）数据，筛选 2019-

2024 年各年份 5 月至 10 月云量小于 15 %的

影像，并采用质量控制波段对影像进行去云

处理。随后通过计算归一化差异植被指数，采

用 NDVI 质量镶嵌来合成每年 Sentinel-2 影

像，用于后续植被、纹理指数的计算。 

2 研究方法 

本文采用 Sentinel-2 卫星遥感数据，对比

U-Net，FCN 和 LinkNet 语义分割模型在不同

输入特征状态下生态环境质量评价中表现中

的性能，来构建基于深度学习耦合卫星影像

光谱特征的生态环境评价模型，总体技术路

线见图 2。 

 

图 2  技术路线图 

Fig.2  Technology framework 

2.1 特征分析 

本文从 Sentinel-2 影像的光谱特征的基

础上衍生出三方面的特征，即单波段光谱特

征、光谱指数特征及纹理特征。通过对特征筛

选优化生态环境质量评价模型的性能。在特

征选择过程中，结合了光谱特征的可分性分

析、指数特征的生态环境指示作用和纹理特

征的空间信息，确保最终选取的特征能够充

分表征生态环境质量的差异性。 



 

2.1.1 单波段光谱特征 

单波段光谱特征在利用多光谱遥感影像

进行生态环境质量评价中具有重要作用，不

同地物在特定波段的光谱响应存在巨大差异

为生态环境质量等级的划分提供了科学依据。

本研究基于 Sentinel-2 影像数据，初步筛选了

B2（蓝光，490 nm）、B3（绿光，560 nm）、

B4（红光，665 nm）、B5（红边 1，705 nm）、

B6（红边 2，740 nm）、B7（红边 3，783 nm）、

B8（近红外，842 nm）、B8A（窄近红外，865 

nm）、B11（短波红外 1，1610 nm）、B12（短

波红外 2，2190 nm）共 10 个波段。通过绘制

不同生态环境质量等级的光谱反射率曲线特

征如图 3 所示，结合波段可分性及空间分辨

率优势，最终确定 B2、B3、B4 及 B8 四个核

心特征波段。 

 

图 3  不同生态环境质量等级波谱反射率曲线 

Fig.3  Spectral reflectance curves for different 

environmental quality levels 

从光谱特征来看，蓝光波段（B2）对生

态环境质量等级为差的响应敏感。生态环境

质量等级为差的区域 B2 反射率显著高于其

他等级，平均反射率在 0.20 以上。绿光波段

（B3）在生态环境质量等级为优的区域呈现

明显反射峰，而在生态环境质量等级为差的

区域反射率曲线趋于平缓。这是因为该波段

与植被叶绿素含量密切相关，健康植被因叶

绿素对绿光的高反射特性，等级为优的区域

相较于等级为差的区域植被长势好、植被覆

盖度高。生态环境质量等级为优的区域红光

波段（B4）反射率最低（约 0.02），而在差等

级区域反射率却在 0.20 以上。这是因为该波

段是植被的主要吸收波段，植被覆盖度越高

吸收越高反射则越低。近红外波段（B8）对

植被细胞结构及生物量高度敏感，健康植被

因细胞壁多次反射作用在 B8 处反射率显著

增强波段可分性突出。 

因为要对研究区的生态环境质量进行高

空间分辨率的评价，因此在研究光谱可分性

的基础上还需要考虑光谱的空间分辨率。

Sentinel-2 影像的 B2、B3、B4 及 B8 波段均

具备 10 米空间分辨率，相较于其他波段（如

B11、B12 的 20 米分辨率）能够更精细地刻

画小型植被斑块、水体边界及人为干扰痕迹。

虽然短波红外波段（B11、B12）的反射率在

各生态环境质量等级间差异较大，但该波段

分辨率较低（20 米）导致在生态环境质量评

价中的贡献有限。 

2.1.2 光谱指数特征 

光谱指数通过特定波段组合反映植被、

水体、裸土等地物特征来提高对生态环境质

量的识别能力。本文选择了 8 种常见的光谱

指数，包括植被指数、湿度指数和建筑指数等

来探讨光谱指数特征对评价结果的影响。具

体光谱指数特征见表 1。 

2.1.3 纹理特征 

纹理特征主要用于描述影像的空间结构

信息，能够增强对不同生态环境质量等级的

识别能力。通过单波段光谱特征分析选择了

B2、B3、B4、B8 四个核心光谱波段。因此，

在核心波段上计算灰度共生矩阵（GLCM），

并提取其纹理特征，包括角二阶矩（ASM）、

相关性（Correlation）、对比度（Contrast）、同

质性（Homogeneity）和方差（Variance）。通

过对比局部影像与各纹理特征图如图 4 所示，

对上述纹理特征分析。从不同波段角度看，

B2、B3、B4 的纹理特征较为明显。另外从纹

理特征看，对比度、同质性和方差对地物的纹

理区分更明显，尤其是 B2、B3、B4 的此三

类特征对于道路的区分愈加明显。因此，将

B2、B3、B4 波段的对比度、同质性和方差三

类特征作为后续输入的纹理特征来辅助生态

环境质量的分割。 

 



 

表 1  基于 Sentinel-2 的光谱特征变量 

Table1  Variable characteristics of spectra based on Sentinel-2 

变量

类型 
变量名称 描述 公式 参考文献 

光谱

信息 

B2、B3、B4、B5、B6、B7、

B8、B8A、B11、B12 

Sentinel-2 影像波段

信息 
\ \ 

植被

指数 

NDVI(归一化植被指数) 
反映植被覆盖度和健

康状况 

B8-B4

B8+B4
 

Rouse et al., 

1973 

RENDVI(红边归一化植被指数) 反映植被覆盖度 
B6-B5

B6+B5
 

Gitelson et al., 

1994 

EVI(增强型植被指数) 
适用于植被密集地区

的植被监测 

2.5×(B8-B4)

B8+6×B4-7.5×B2+1
 

Rouse et al., 

1973 

MSAVI(改进型土壤调节植被指

数) 

减少土壤背景影响，

提高植被识别精度 

[2×B8+1-√(2×B8+1)2-8×(B8-B4)]

2
 Qi et al., 1994 

NDWI(归一化水体指数) 
反映水体分布和湿度

状况 

B3-B8

B3+B8
 Gao, 1996 

NDMI(归一化湿度指数) 
反映植被含水量，监

测干旱状况 

B8-B11

B8+B11
 Jin et al., 2005 

NDSI(归一化积雪指数) 
主要用于积雪覆盖监

测 

B3-B7

B3+B7
 

Salomonson et 

al., 2004 

NDBI(归一化建筑指数) 识别城市建筑区域 
B7-B5

B7+B5
 Zha et al., 2003 

纹理

指数 

ASM(角二阶矩) 
度量纹理均匀度，值

高表面平滑 
\ 

Haralick et 

al., 1973 

Correlation(相关性) 
度量灰度线性相关，

值高结构连续 
\ 

Contrast(对比度) 
度量灰度反差，值高

纹理粗糙 
\ 

Homogeneity(同质性) 
度量灰度同质性，值

高纹理均一 
\ 

Variance(方差) 
度量灰度离散度，值

高纹理复杂 
\ 



 

 

图 4  五类纹理特征示例 

Fig.4  Representative examples of the five texture feature categories 

2.2 生态环境评价方法 

2.2.1 U-Net 模型 

 U-Net 最初由 Ronneberger et al. (201

5)提出，用于生物医学图像分割，其 U 形对

称结构使其在少量样本条件下也能实现高精

度分割，因此被广泛应用于遥感影像中植被

和水体等精细提取任务。该模型采用编码器-

解码器架构：编码器通过卷积与池化提取深

层特征，解码器通过上采样重建细节，并结合

跳跃连接融合同尺度特征以缓解空间信息丢

失。U-Net 能够融合多尺度局部细节与全局上

下文，在复杂场景和细微结构分割中表现优

越，通常以像素级交叉熵损失进行训练，具有

良好的泛化能力。 

 

图 5  U-Net 网络架构 

Fig.5  Schematic diagram of the U-Net architecture 

2.2.2 全卷积网络 FCN 模型 

 FCN 是一种基于全卷积网络（Fully 

Convolutional Network，FCN）的语义分割模

型，是一种典型的语义分割模型，它通过将传

统 CNN 中的全连接层替换为卷积层，实现了

对任意尺寸输入的端到端像素级预测(Long 

et al., 2017)。模型以 VGG16 为基础，通过多

层卷积和池化提取高层语义特征，并利用反

卷积恢复空间分辨率，同时通过跳跃连接融

合浅层细节与深层语义，从而提升分割精度。



 

训练过程中采用交叉熵损失进行像素级监督，

多尺度特征融合保证了模型在复杂场景下的

鲁棒性。FCN 广泛应用于道路、建筑、植被

等分割任务。 

 

图 6  FCN 网络架构 

Fig.6  Schematic diagram of the FCN architecture 

2.2.3 LinkNet 模型 

 LinkNet 是一种轻量级语义分割模型

(Chaurasia et al., 2017)，采用编码器-解码器

结构，以 ResNet 提取特征，并通过逐层上采

样恢复空间分辨率；其核心创新是引入编码

器与解码器的直接跳跃连接，用逐元素相加

的方式传递特征，从而在降低计算量的同时

有效减少信息丢失，实现了在保持较高分割

精度的情况下具备实时处理能力，适用于自

动驾驶、遥感和医学影像等场景。 

 

图 7  LinkNet 网络架构 

Fig.7  Schematic diagram of the LinkNet architecture 

2.3 样本标签制作 

基于 Sentinel-2 卫星遥感影像（10m），

样本尺寸统一为 256×256 像素（对应实地尺

度 2560×2560 m），共生成 500 个样本。标注

过程严格保证空间分布均衡性与类别典型性，

以规避训练偏差。采用 ESA 10 m 全球土地

利用数据(https://esa-worldcover.org/en/worldc

over/)，依据土地类型映射至生态环境质量等

级，并通过 NDVI、NDWI 等关键指数阈值分

割实现等级精细化划分(Namazi et al., 2023;

 Magidi et al., 2021)。在满足阈值条件的区

域内进行随机均衡采样，生成 600 个补充样

本。对自动扩充样本实施人工抽样质检，验证

其与原始影像的一致性，避免因阈值偏差导

致的误标注；同时检验类别分布均衡性，防止

模型过拟合。最终构建包含 1,100 个样本的

数据集，包含训练集 880 个样本，验证集和

测试集各 110 个样本。 

2.4 调查及验证数据获取 

野外调研于 2022 年 7 月 1 日至 7 月 30

日以及 2023 年 7 月 13 日至 27 日开展，聚焦

于已有部分弃渣场区域，以获取其周边生态

环境的基础数据，同时掌握弃渣场对周边生

态环境具体影响的实地信息。主要调查实地

点生态环境质量等级，而对于部分抵近困难

区域采用大疆无人机(DJI PHANTOM 4 RTK)

获取生态环境质量信息，两种方式共获取样

本点 63 个(图 8a、图 8 b)。由于研究区海拔

高、地形复杂等特殊地理条件，野外调研和无

人机遥测收集的样本非常有限。为确保样本

集的代表性与合理性，在构建过程中样本点

通过 ArcGIS 在研究区内随机生成，以保证空

间分布的均匀性，并针对核心施工区域进行

了加密布设；其次，样本类别设计涵盖了施工

区与非施工区的所有典型地物；最后，设定了

合理的施工区与非施工区样本比例，以服务

于评估人类活动影响的核心目标。样本解译

过程与实地无人机遥测获取生态环境质量等

级一致(图 8d)，其判定严格遵循统一的分类

标准，从而确保了样本解释的准确性与一致

性。最终通过目视解译获取样本 978 个(图

8c)。 

  



 

 

图 8  生态环境质量等级样本分布与实地立地景观

(a)实地调研照片;(b)调研点;(c)Google Earth 目视

解译样本点;(d)Google Earth 高清影像 

Fig.8  Distribution of environmental quality grade 

samples and the corresponding field landscapes. (a) 

Field survey photographs; (b) Locations of the survey 

sites; (c) Sample points interpreted by visual analysis of 

Google Earth imagery; (d) High-resolution Google 

Earth image 

2.5 精度验证方法 

为了能够全面评估模型性能，采用三个

核 心 评 价指 标 即 测试 集 准 确率 （ Test 

Accuracy）、平均交并比（Mean IoU）和宏 F1

分数（Macro F1 Score）。各指标及计算方法如

下。 

Accuracy=
Σk=1

K Correctk

Ntest

×100% (1) 

MeanIoU=
1

K
∑  

K

k=1

TPk

TPk+FPk+FNk

×100% (2) 

MacroF1=
1

K
∑  

K

k=1

(2⋅
Pk⋅Rk

Pk+Rk

)×100% (3) 

Precisionk=
TPk

TPk+FPk

(4) 

Recallk=
TPk

TPk+FNk

(5) 

其中，Correct𝑘表示第𝑘类正确预测的像

素数，𝑁test为测试集总像素数，𝐾为类别总数，

𝑇𝑃𝑘、𝐹𝑃𝑘、𝐹𝑁𝑘分别为第𝑘类的真阳性、假阳

性和假阴性像素数量。 

3 结果与讨论 

3.1 特征选择与模型建立 

基于 Sentinel-2 MSI 影像，本文构建了

一套耦合光谱—指数—纹理多维特征的环境

质量遥感判别体系(Santana et al., 2025; 

Akhtar et al., 2020; Yang et al., 2023)。三者协

同，实现了光谱可辨性、生态指示意义与空间

异质信息的有机融合，为后续语义分割模型

奠定了高判别力特征基准。为研究不同维度

的特性对生态环境质量分析的效果，本文将

光谱信息、植被指数、纹理指数三类特征组合

成五种不同的形式（表 2）。 

表 2  特征参量组合 

Table2  Feature parameter combination 

序号 特征参量组合 

a 光谱信息 1（B2、B3、B4、B5、B6、B7、

B8、B8A、B11、B12 波段） 

b 光谱信息 2（B2、B3、B4、B8 波段） 

c 植被指数 

d 光谱信息 2（B2、B3、B4、B8 波段）+植

被指数 

e 光谱信息 2（B2、B3、B4、B8 波段）+植

被指数+纹理特征 

将五种不同的特征组合方式分别输入到

FCN、U-Net 和 Link-Net 模型，采用构建的

数据集进行训练，数据集种训练集、验证集、

测试集的划分比例为 8：1：1。模型参数设置

如表 3 所示。在模型训练中，样本输入大小

为 256×256 像素，此像素大小可以聚焦局部

纹理与光谱特征提升小尺度地物的识别精度，

同时 2560×2560 m 覆盖典型地物完整结构避

免异质混杂。 

表 3  模型参数 

Table3  Model parameters 

参数名称 参数取值 描述 

样本批量大

小 
16 

每次训练输入

模型的样本数

量 

迭代次数 100 总训练轮数 

随机数种子 42 
用于保证实验

可重复性 

学习率 0.001 初始学习率 



 

学习率调度

器 

若连续 3 次迭代精

度不增加，则学习

率缩小为一半 

动态调整学习

率的策略 

早停机制 

若连续 6 次迭代精

度不增加，则结束

训练 

防止过拟合的

机制 

3.2 三种方法模型评估结果精度验证 

模型架构的选择对性能表现具有决定性

影响，其主导性远超输入特征的微调优化，通

过三种模型获取的生态环境质量结果见图 9

及表 4。图 9 展示了三种模型在精度最高的

输入特征组合下所得到的 2021 年生态环境

质量等级空间分布结果。三个模型评价结果

在空间分布上具有极高的一致性，生态环境

质量都大体呈现出东西两端高、中间低的分

布格局，同时呈现出宏观分散、局部集中的空

间分布格局，表现出明显的空间异质性。生态

环境质量等级为优的区域集中分布于雅安、

雅江、波密至林芝段，而生态环境质量等级为

差的区域则集中分布于八宿至波密段。U-Net

在全部评估指标上展现出对FCN的系统性优

势——其在特征组合 d 下达到的准确率

（91.65%）与平均交并比（84.72%）显著超

越 FCN 于任何输入配置下的最优结果（准确

率峰值：82.95%；mIoU 峰值：70.84%）。机

理分析表明：U-Net 通过编码器-解码器架构

中嵌入的跳跃连接，实现了跨尺度语义特征

的协同融合与空间细节的高保真重建；反观

FCN，因缺失显式的多级特征整合机制，在输

入扰动下仅诱发 0.61%的准确率波动，揭示

其对特征扰动的低响应特性。尽管 U-Net 与

LinkNet 均采用跳跃连接，但是 U-Net

（~31.0M 参数）凭借更强的表征能力，提供

了更高的精度与稳定性；而 LinkNet（~7.8M

参数）则偏向效率但稳定性欠佳。值得注意的

是，LinkNet 在特征组合 c 下呈现非预期性能

跃升（准确率：90.23%），印证了其轻量级架

构对特定数据分布较为敏感的特性。LinkNet

虽在特定特征输入下取得了较高的精度，但

其预测结果存在明显的空间水平纹理，影响

了空间连续性。 

U-Net 模型揭示了输入特征维度与精度

间的非单调依赖关系：12 维特征组合（B2、

B3、B4、B8 与光谱指数叠加）在特征组合 d

下达到峰值性能（Accuracy: 91.65%），而扩展

至 13 维时因特征冗余导致精度显著下降

（89.73%）。另外，8 维纯光谱指数输入（特

征组合 c）的性能衰减证实 B2 波段对生态纹

理表征的不可替代性。尽管 FCN 与 LinkNet

在特征组合 c 下同步出现性能折损，LinkNet

却在该配置下呈现异常提升（Accuracy: 

90.23%），表明其解码路径对抽象指数语义具

有架构特异性响应。特征组合 d 的性能优势

源于原生波段与光谱指数的协同效应——光

谱指数通过增强判别性光谱特征而非取代原

始响应，使模型在复杂生态环境质量评估中

实现最优性能。 



 

 

图 9  FCN、U-Net、LinkNet 模型生态环境质量评价结果 

Fig.9  Eco-environmental quality assessment results of FCN、U-Net and LinkNet models 

 

  

3.3 生态环境质量在 FCN、U-Net、LinkNet 模

型下的差异性分析 

U-Net、FCN 与 LinkNet 在各自最优特征

输入下所绘生态质量格局呈东西高、中间低

的宏观分异，图 10 所示，雅安—雅江—波密

—林芝带连片“优”级，八宿—波密带则聚为

“差”级，局部破碎化显著。图 10 的等级占比

揭示，三个模型均以“较差”级为主、“差”级占

比最少，但 FCN 倾向压缩“优”与“一般”而向

“良”级集中，U-Net 与 LinkNet 则在“优”与“一

般”两端扩张，其中 LinkNet 的“优”级略低于

U-Net 而“良”级略高，暗示其判别边界略保守。

图11的可视化对比进一步揭示模型架构之间

的差异：FCN 因受限的感受野与上采样过程

中的信息损失，导致交通廊道与裸地被错误

归类为同质区域；LinkNet 虽引入跳跃连接，

但其解码路径的梯度传播缺陷加剧了窄长线

状地物的空间不连续性；相比之下，U-Net 通

过多尺度特征融合与精确的跳跃连接机制，

在维持复杂边界结构完整性方面展现显著优

势（仅存零星线状断裂）。该空间一致性优势

与表 2 量化指标相互印证，证实 U-Net 在破

碎化生态景观解析中具有最优的几何保真能

力。 

 
图 10 FCN、U-Net、LinkNet 模型评价等级面积占

比 

Fig.10 Area proportions for quality classes derived 

from FCN,U-Net and LinkNet models 

表 4  不同特征组合形式评价结果精度 

Table 4  Evaluation results of metrics for different 

feature input schemes 

模型名

称 

特征

组合 

Accur

acy

（%

） 

Mean 

IoU

（%） 

Macro F1 

Score

（%） 



 

U-Net 

a 91.26 84.09 91.23 

b 90.53 82.87 90.45 

c 90.46 82.75 90.40 

d 91.65 84.72 91.58 

e 89.73 81.40 89.59 

FCN 

a 82.95 70.84 82.76 

b 82.85 70.66 82.63 

c 82.34 69.87 82.07 

d 82.89 70.67 82.64 

e 82.42 70.00 82.16 

LinkNe

t 

a 80.37 66.72 79.93 

b 83.50 71.10 83.03 

c 90.23 82.22 90.11 

d 89.92 81.72 89.80 

e 81.78 68.94 81.50 

 

图 11  FCN、U-Net、LinkNet 模型评价结果局部对比 

Fig.11  Local comparison of evaluation results between FCN、U-Net and LinkNet models 

3.4 交通廊道生态环境动态变化分析 

3.4.1 生态环境质量年际空间分布 

基于三种模型在不同特征组合方式下的

性能比较，本研究最终选择 U-Net 模型结合

特征组合 4 的形式对交通廊道生态环境进行

时序评估。得到的 2019-2024 年生态环境质

量等级空间分布结果如图 12 所示。2019-2024

年间，生态质量沿交通廊道呈“低海拔优、高

海拔劣”的垂直地带性格局。生态劣级区域主

要分布于康定—巴塘—八宿—林芝一线雪线

以上的寒漠地带；优级生态区则集中于雅安

—雅江—白玉—波密一带的常绿阔叶林低山

区域。在过渡区域，以灌草植被为主的较差与

一般等级在康定—雅江、理塘—巴塘、白玉—

八宿等地段呈现明显的季节性和年际波动，

频繁发生等级转换，反映出水热条件与土壤

—植被耦合作用对生态系统稳定性的关键影

响。进一步揭示，这种垂直地带性格局及其波

动特征，相较于已有研究（Zhang et al., 2015；

Li et al., 2019）在横断山区进行的评估，具有

更高的空间细节分辨能力和时序连续性，清

晰地刻画出交通廊道这一线性工程影响下的

生态梯度变化细节。3.4.2 生态环境质量变化

分析 

利用构建的最优模型，对 2019-2024 年

研究区生态环境质量进行时序评估结果，见

图 12，并绘制出各生态等级面积变化曲线（图

13）。分析表明，生态质量展现出明显的阶段

性变化与复杂性。尤为突出的是，优等级面积

从 2019 年的 16,250 km²急剧下降至 2024 年

的 11,627 km²，下降 28.5 %，表明区域生态

质量存在明显的退化趋势。此外，一般和良等

级面积的年际波动剧烈，主要受西南山区气

候波动、交通建设对植被的破坏及区域开发

活动的影响。 

通过区域生态环境质量等级年际转移桑

基图（图 14），深入揭示出 2019-2024 年研究

区生态环境质量等级的动态演替，其中一般

等级向较差，以及良向一般等级的转移占据

主导，映射出区域生态质量的总体下降趋势。

2021 至 2022 年期间，一般和良等级向差等

级的显著转移，这与雅安至林芝段铁路交通

廊道在此期间进入高强度施工阶段在时间上

高度吻合。这一发现深化了 Wang et al.（2025）

指出工程活动导致生态退化的认知，本研究

不仅确认了干扰的存在，更精确地识别出干

扰发生的关键时段和主导的生态等级转换类



 

型，揭示了工程扰动下生态质量退化的具体

路径。除此间断性好转外，其余年份均表现出

生态质量的持续退化，而良和优等级间的转

换则相对稳定。

 
图 12  2019-2024 年生态环境质量评价空间分布图 

Fig.12  Spatial distribution of eco-environmental quality assessment from 2019 to 2024

 

图 13  2019-2024 年不同生态环境质量等级面积变化曲线 图 14  2019-2024 年不同生态环境质量等级转移图 

Fig.13  Temporal curves of area changes across different eco-

environmental quality classes from 2019 to 2024 

Fig.14  Transition maps of different eco-

environmental classes from 2019 to 2024 



 

3.5 交通廊道工程扰动对生态环境影响分析 

为深入研究交通廊道中工程扰动对生

态环境的影响，本研究随机选取铁路交通廊

道沿线规划的 16 个弃渣场作为工程扰动区

域（表 5），对渣场点的生态环境质量等级变

化进行分析。通过 2019-2024 年的生态环境

质量变化曲线（图 15），黄色竖线表示多数

渣场在2022年生态环境质量出现明显下降，

绿色竖线则表示 2023 年其质量进一步退化

至“差”等级。可以发现自 2020 年铁路工

程开工以来，绝大多数渣场所在区域的生态

环境质量迅速退化至差等级，直接证明了工

程扰动将显著降低生态环境质量(Wang et 

al., 2015)。然而，本研究通过高时空分辨率

监测，进一步发现了不同渣场生态响应的异

质性及其与施工进度的关联，对现有知识进

行了补充。 

本研究表明，雅安至林芝交通廊道工程

在推动区域社会经济发展的同时，也对生态

环境造成了多维度的显著扰动。首先，在土

地利用与景观格局层面，廊道建设导致耕地、

林地和草地的直接占用，引发了带状屏障效

应，加剧景观破碎化和生态连通性下降

(Zhou and Song., 2021)。生态系统结构的改

变不仅表现为空间格局的破碎，还通过边缘

效应引发栖息地质量下降，从而对区域生态

安全构成威胁(Yadav et al., 2024)。其次，在

水文与土壤方面，工程基础开挖和场地平整

深刻改变了地表径流与地下水补给过程，施

工扰动造成土壤严重压实和侵蚀加剧，局部

地区出现干旱与积水并存的现象，同时增加

了面源污染与地下水潜在污染风险(Tsegaye 

et al., 2022)。此外，交通廊道扰动还表现为

生态系统服务功能的衰退，例如碳汇能力减

弱、土壤保持与水源涵养功能退化(Yang et 

al., 2023)。 

 

图 15  弃渣场区域生态环境质量等级变化曲线 

Fig.15  Curves in the ecological environment quality 

rating of the waste disposal site area 

表 4  弃渣场基本信息 

Table 4  Spoil dump site overview 

序

号 
名称 行政区划 

弃渣量

（万 m3） 

设计容量

（万 m3） 

占地面积

（hm2） 

汇水面

积(hm2) 

1 二郎山隧道弃渣场 
雅安市天全县喇叭

河镇新沟村 
140 200 13.13 440 

2 

大渡河桥木杉村弃渣

场 
甘孜州泸定县 22.75 34.8 4.58 60 

3 

康定隧道 3 号横洞工

区 1#渣场 

甘孜州康定市雅拉

乡王母村 
50 65 8.93 25 

4 

康定隧道 3 号横洞工

区 2#渣场 

甘孜州康定市雅拉

乡王母村 
110.2 150 12.33 30 

5 毛家沟集中弃渣场 甘孜州康定市 166.21 300 22.87 13900 

6 

高尔寺山隧道 1 号、2

号斜弃渣场 
甘孜州康定市 131 180 9 417 



 

7 

帕姆岭隧道斜井弃渣

场 
甘孜州雅江县 42.86 68.83 5.38 773 

8 

卡子拉山一号隧道出

口弃渣场 
甘孜州雅江县 60 83.5 8.1 324 

9 

理塘隧道斜井、出口

弃渣场 
甘孜州理塘县 40 59.9 6.53 87 

10 德拖隧道进口弃渣场 甘孜州白玉县 86 116 6 591 

11 

格聂山 3 号横洞弃渣

场 
甘孜州白玉县 70 100 18.67 628 

12 昌都出口 3 号弃渣场 昌都市卡诺区 50 68 5.27 122 

13 康玉出口 2 号弃渣场 昌都市洛隆县 138.7 185 9.33 62 

14 

察达 1#横洞 1 号弃渣

场 
昌都市洛隆县 102.63 140 10.07 15 

15 瓤打弃渣场 林芝市波密县 263.09 345 18.33 68 

16 尼池村弃渣场 林芝市巴宜区 94.42 130 11.5 10 

为了进一步证明结果的可靠性，选择二

郎山隧道弃渣场、高尔寺山隧道 1 号、2 号

斜弃渣场、毛家沟集中弃渣场三个弃渣场进

行局部空间分析。三个弃渣场在不同年份的

Sentinel-2 真彩色图像与生态环境质量评价

图如图 16 所示。通过对比分析，可以直观

地辨识出各弃渣场的开始堆渣时间（分别为

2022 年、2022 年和 2021 年）及其堆渣范围

的动态扩张过程。验证了遥感手段在监测工

程活动时序上的有效性，更重要的是，它揭

示了不同工程节点产生的扰动在时间和空

间上并非同步，其生态影响强度与渣场规模

和启用时间密切相关。 

 
图 16  2019-2024 年弃渣场区域 Sentinel-2 真彩色

与生态环境质量评价变化图.（a）二郎山隧道弃渣

场，（b）高尔寺山隧道 1 号、2 号斜弃渣场，（c）

毛家沟集中弃渣场 

Fig.16  Changes in Sentinel-2 true-color composites 

and eco-environmental quality assessment for waste 

dump sites from 2019 to 2024. (a) Erlangshan Tunnel 

waste dump site; (b) Gaersishan Tunnel No.1 and 

No.2 inclined waste dump sites; (c) Maojiagou 

centralized waste dump site. 



 

4 结论 

本文针对西南山区跨越复杂技术路段

雅安到林芝段铁路交通廊道生态环境质量

动态监测需求，创新性地融合高时空分辨率

Sentinel-2 影像与深度学习语义分割技术，

系统构建了一套适用于地形复杂、生态敏感、

景观破碎区域的生态环境质量评价方法，揭

示了交通工程建设扰动下的生态环境质量

演变规律与机制。主要结论如下： 

(1) 基于 Sentinel-2 影像输入关键光谱

波段（B2, B3, B4, B8）与 8 项光谱指数组合

特征，并采用 U-Net 模型，可取得最优生态

环境质量评价效果，测试集精度高达 91.65%，

显著优于FCN（82.95%）和LinkNet（90.23%），

该网络模型结合光谱波段特征更鲁棒可靠，

可为大范围交通廊道区域生态环境质量的

高空间分辨率动态监测。 

(2) 2019-2024 年时序评价结果表明研

究区生态环境质量呈现“东西高、中间低”的

稳定空间分异格局，在交通廊道尺度上精细

刻画了“低海拔优、高海拔劣”的垂直地带

性分布细节，深化了对横断山区生态梯度规

律的认识。。 

(3) 时序分析表明区域生态环境质量

总体呈退化趋势，优等区面积在 5 年间显著

减少 28.5%，且生态等级转移分析（一般→

较差、良→一般）进一步证实了这一主导退

化过程。精准识别出 2021—2022 年铁路主

体施工期为生态退化的关键时期，质量指数

下降 0.18。在此期间生态质量的急剧恶化与

雅安至林芝段铁路建设活动密切相关，工程

扰动将显著降低生态环境质量。 

(4) 通过对弃渣场等典型工程节点的

分析，发现了工程扰动在时空上具有显著的

异质性，其影响强度与具体工程节点的进度

密切相关。这一规律突破了将工程扰动视为

均质整体的传统认知，为重大线性工程实施 

“分区、分期”的生态精准管控与动态修复 

提供了关键的科学依据。 

综上所述，本文所建立的融合遥感与深

度学习网络的方法体系，显著提升了复杂山

区交通廊道生态环境动态监测的精度与效

率，精准识别了工程扰动引起的生态质量退

化区域与演变趋势，为交通廊道规划、施工

及运营期的生态风险精准识别、动态评估与

防控提供了重要的技术支撑。 
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