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Abstract: Overthrust belts are of significant importance for hydrocarbon exploration. To elucidate

the characteristics and formation mechanisms of the subsalt overthrust belts in the middle Kelasu
structural belt, Kuga Depression, we conducted detailed seismic profile interpretation combined
with discrete element numerical modeling. The results reveal the development of two major subsalt
overthrust belts, Bozi 25 and Keshen 5 West, in the middle Kelasu structural belt, and demonstrate
that their spatial distribution is closely coupled with the Paleogene salt-lake distribution and pre-
existing salt diapiric structures. The frontal uplift separating the two salt lakes, where abrupt
variations in gypsum-salt layer thickness occur, acts as a stress concentration zone which facilitates
the preferential propagation of large-scale overthrust structures. Moreover, the progressive growth
of salt diapirs provides additional accommodation space for the development of these large-scale
overthrust systems. These findings highlight the footwalls of overthrust structures as key targets for
future hydrocarbon exploration and for identifying or re-evaluating Bashijiqike Formation traps
within the Kelasu structural belt.
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Fig.1 (a) Structural framework of Kuga Depression, (b) Fault system of Kelasu structural belt
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Fig.2 Stratigraphic Column of the Kuga Depression
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Fig.3 (a) Thickness of Kumugeliemu Formation Gypsum-Salt Rocks, (b) Thrust displacement of

the Bozi—Kela Fault and the Keshen Fault versus 3D seismic inline number
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shown in Figure 3)
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Fig.5 Seismic profile CD crossing Keshen-5 well in the Eastern part of the study area (location

shown in Figure 3)
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