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Abstract: The southwestern mountainous region of China is characterized by complex geological conditions, and heavy
and concentrated rainfall, leading to frequent debris flow disasters. Although a systematic protection framework has been

developed since the last century, it now faces severe challenges due to increasing extreme weather events and intensive
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human engineering activities. This study aims to clarify the synergistic damage mechanisms of the “engineering-ecology”
system under debris flow impacts. Through field investigations and sample testing of multiple debris flow gullies and
their vegetation environments, we systematically analyzed and summarized the failure mechanisms of various protection
structures and elucidated the pathways of vegetation degradation. Our field surveys and case study analyses reveal three
primary failure modes for check dams and drainage channels: structural fracture from the impact of massive debris flows,
surface abrasion and aggregate exposure from prolonged scouring by sediments, and overall instability due to foundation
scour by water flow. The effects on vegetation are categorized into direct and indirect impacts. Direct impacts include stem
breakage, uprooting and bark abrasion from the debris flow impact, and root asphyxiation and photosynthesis disruption
from burial. Indirect impacts arise from the destruction of soil structure by deposits and nutrient loss from erosion, which
inhibit seed germination and lead to vegetation degradation. Furthermore, the rigid structural measures may exacerbate
local ecological degradation, whereas vegetation restoration can effectively enhance the long-term stability of engineering
structures.Based on the above mechanisms, this study proposes specific principles for “ecology-engineering” design and
presents an intelligent prevention and control framework integrating multi-source monitoring data and numerical
simulation. The findings are expected to provide a theoretical basis and a systematic technical approach for resilient
protection and ecological management of debris flows in the southwestern mountains, ultimately improving regional
comprehensive disaster prevention capabilities and safeguarding human life, property, and ecological security.
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Fig. 1 Spatial Distribution Map of Debris Flow Gullies Based on Field Survey
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Tablel.Geological Conditions of Typical Debris Flow Hazard Sites
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Fig. 2 Impact Damage Characteristics of Engineering Structures
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Fig. 3 Shear-Abrasion Damage of Engineering Structures
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Fig. 4 Scour-Induced Hollowing Damage of Engineering Structures
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Fig. 5 Physical Impact Damage to Vegetation
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Fig. 6 Submergence-Induced Damage to Vegetation
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Fig. 7 Destruction of Soil Structure in the Debris Flow Accumulation Area
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Table.2 Soil Nutrient Content in Debris-Flow Affected and Non-Affected Areas

) BD TOC TN TK AP AK AN
IR pH , TP (g/kg)
(g/cm’) (g/kg) (g/kg) (g/kg) (mgkg)  (mgkg)  (mgkg)
o A X 8.66 1.72 6.42 0.39 0.23 17.75 2.73 5.86 38.27
AR "
AFZM X 7.32 1.73 9.42 1.28 0.74 12.32 8.23 15.75 111.99
o AN X 8.51 1.68 5.15 0.43 0.28 17.46 3.82 5.15 29.91
YW
FAUTIES 8.44 1.68 10.05 1.03 0.80 17.08 8.99 12.03 85.18
K FAUTIES 8.04 1.74 5.56 0.48 0.25 19.74 2.81 6.12 41.77
A
R X 7.91 1.78 10.54 1.34 1.00 13.48 8.35 12.35 89.55
B R X 8.23 1.67 4.41 0.38 0.25 14.72 3.34 6.70 46.63
Mg .,
AR [X 7.96 1.75 7.93 1.09 0.88 16.23 9.00 11.84 109.34
JAC; R R X 8.70 1.66 7.54 0.43 0.30 15.65 2.95 7.45 44.28
3| HREZM X 8.46 1.65 12.27 1.32 0.69 13.85 10.29 11.87 105.58
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RINTRAE PR R L], AMAE T B AR R R, SR T R IR AL R E PG RAE T IBNGE 1. Bl
FIRELR P R T N 74 TAR G A TE B RO IE S i3, TR R i 1 —#h “AE25-T0A8 7 WhRIvE . B anfe £ 444 A
A AR AENEE R X SR )AL, B E BA KSR RN 2 LR, HARRMLE R L Z R al- L2 5k
MIPLBYSRZ, Mo TR IHTMRIAE /) (Boldrin et al, 2017; Munirwan et al, 2025) . Bh4h, MEEHE. M3
TR S B R, TSR THE A RGUE K 5 PUah h PRodk B Fe ik K e

4 75
ATFFE S A T B B2 B BTN/ B, H RO P B G 1] L DA 4 o 4 7 T SRR A R

JEE T VR L X R R R S B AIRHIE, RGN RS TR AR TREG MR, i BRI a1 e
AR A JE AR RS, EEARILUR 458

(1) ERUANHE S Br TREG M BR R I =i o Al o K5 & [ e A S o 4043 51 )
ZERIWTA, 2 AT I R A R AR SE U B3 S 1R SR R DA B R R, DL R S KR AN Y8 v X 2 H ik it
L0 A b AR v T SO A5 R A

(2D VAT R A PR R 520 43 Dy LB R TR B2 9 255 o T F 4 e A U vkt 32 ) v o i s 25 M 1] T 2L
AP B B, DU A A R S T 51 RS O AR SR T RE 38 S0 S VR P vh o T (E0H2AE FH 20 il A s
RS T IREE AR UL L e A AR vhilie SRS 38570 gk, SEminRh 7 28 AR, S0 (e R T,

(3) LRSS SHAENERA YRR EAER, B TR M ARSI KK “HEKTi” £
RN, AR R TR BER “ AW " 45 TREIE Rt
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(4) AT WP A7 i B 45 TRESS M S A PR BT RO BB AL, m] AR 2R b it i ] DA S AR 2B A B 57
MOBHRAEES RS, W TR S ESRHER IR Eorth . SR GHIE, WERIZIFFNE SRR, FN,
JERIIAE A O Ja B I T N R RE AL SE R R A R SR (0t 1 RIS AOARUEREAS, 383 IR 2 i 1 () Mo 00 5 S
s, RhEBUEBAU-HLES 5 >0 S TR0 3 8 R KR 5 PR VAl
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