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Abstract: We have entered the era of big data and artificial intelligence. Big data or big data analytics is a new
thinking for solving geoscience problems, emphasizing the multidimensional associations among variables and
allowing data to speak for themselves, thereby leading to new insights and more informative answers. Artificial
intelligence is a new data mining approach with a strong non-linear modeling ability, which can deeply mine data
and discover hidden patterns. The big data and artificial intelligence-driven mineral prospectivity mapping has
become the high ground of global mining technology competition, reshaping the paradigm for mineral exploration.
This study proposes the basic concepts and main components of big data and artificial intelligence-driven mineral
prospectivity mapping, analyzes the scientific connotations, the state-of-the-art, and key scientific and
technological issues in intelligent cognition, intelligent learning, and intelligent decision-making. These three key
parts are essential components of intelligent mineral prospectivity mapping, and link between the Earth system
and mineral system, mineral system and exploration system, and exploration system and evaluation system,
respectively. In the future, big data and artificial intelligence-driven mineral prospectivity mapping should focus
on the construction of prospecting big data, new geological constrained algorithms for mineral prospectivity
mapping, high-performance computing in image processing, and the cultivation of innovative interdisciplinary
talent.

Keywords: Big data; Artificial intelligence; Mineral prospectivity mapping; Intelligent cognition; Intelligent
learning; Intelligent decision-making
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Fig.1. A workflow of mineral prospectivity mapping (The mineral deposit model is modified from Meng and
Mao (2025))
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Fig.2. Mineral prospectivity mapping (The mineral system and exploration system were modified from Meng
and Mao (2025) and Cheng (2025), respectively)
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Fig.3. Big data and artificial intelligence-driven mineral prospectivity mapping
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Fig.4. A workflow of intelligent cognition
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