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摘  要：大数据和人工智能时代未来已来。大数据是一种解决问题的新思维，强调变量间的多维关联性，

让数据“发声”，从而得到新的洞察和启发性的答案。人工智能是一种新的数据挖掘方法，具有强大的非

线性建模能力，可深度挖掘数据，发现隐蔽规律。大数据人工智能驱动的矿产预测已经成为全球矿业科

技竞争的制高点，正在重塑矿产勘查的研究范式。本文提出了大数据人工智能驱动的矿产预测的基本概

念和主要组成，分析了智能认知、智能学习和智能决策的科学内涵、研究进展和关键科学与技术问题，

指出三者共同构成智能矿产预测的重要组成部分，分别对应实现地球系统与成矿系统、成矿系统与勘查

系统、以及勘查系统与评价系统的关联。未来，大数据人工智能驱动的矿产预测要重视找矿大数据构建、

地质约束矿产预测人工智能新算法、图像处理大算力、创新性复合人才培养等方面。 
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Abstract: We have entered the era of big data and artificial intelligence. Big data or big data analytics is a new 

thinking for solving geoscience problems, emphasizing the multidimensional associations among variables and 

allowing data to speak for themselves, thereby leading to new insights and more informative answers. Artificial 

intelligence is a new data mining approach with a strong non-linear modeling ability, which can deeply mine data 

and discover hidden patterns. The big data and artificial intelligence-driven mineral prospectivity mapping has 

become the high ground of global mining technology competition, reshaping the paradigm for mineral exploration. 

This study proposes the basic concepts and main components of big data and artificial intelligence-driven mineral 

prospectivity mapping, analyzes the scientific connotations, the state-of-the-art, and key scientific and 

technological issues in intelligent cognition, intelligent learning, and intelligent decision-making. These three key 

parts are essential components of intelligent mineral prospectivity mapping, and link between the Earth system 

and mineral system, mineral system and exploration system, and exploration system and evaluation system, 

respectively. In the future, big data and artificial intelligence-driven mineral prospectivity mapping should focus 

on the construction of prospecting big data, new geological constrained algorithms for mineral prospectivity 

mapping, high-performance computing in image processing, and the cultivation of innovative interdisciplinary 

talent. 

Keywords: Big data; Artificial intelligence; Mineral prospectivity mapping; Intelligent cognition; Intelligent 

learning; Intelligent decision-making 

引言 

矿产资源是社会经济发展的物质基础，事关国计民生和国家安全。我国在基础地质、矿床地质、矿

产勘查等领域投入了大量的人力、物力和财力，发现和评价了一批超大型、大型矿床，为我国的国民经

济建设和社会发展做出了重要贡献。目前我国矿产勘查重心正从寻找露头矿和浅部矿转向覆盖区和深部

找矿。根据全国矿产资源潜力评价报告显示，2000 米以浅矿产资源的预测资源量是查明资源量的 2-5 倍，
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说明覆盖区和深部找矿潜力大（肖克炎等，2016）。同时，找矿理论与方法的进步，以及地质、地球化学、

地球物理、遥感等找矿数据积累，为覆盖区和深部找矿突破提供了理论、方法与数据支撑。 

与浅部和露头区相比，覆盖区和深部找矿面临更加突出的复杂性和不确定性挑战。成矿作用是多因

素耦合的非线性过程，叠加覆盖层和深部埋藏等因素影响，使成矿信息的空间响应弱化、指示性降低，

成矿系统要素之间的关联关系更加隐蔽。同时，复杂地质过程的长期演化、多期次成矿事件的叠加以及

矿床后期改造与保存条件变化，进一步导致找矿信息混杂、不完整甚至缺失（成秋明，2012，2025）。在

此背景下，如何从多源异构、多尺度、强噪声的找矿数据中有效挖掘与融合弱缓混杂的找矿信息是制约

覆盖区和深部矿产预测精度与可靠性的核心问题。 

找矿预测信息挖掘旨在从复杂找矿数据中提取与成矿过程密切相关的有效信息，揭示成矿系统中隐

含的非线性关联、空间结构和多尺度特征。预测信息融合则通过对不同来源、不同属性和不确定性的预

测信息进行综合约束，降低单一信息的局限性与偶然性，提高预测结果的稳健性与可信度。尤其在覆盖

区和深部找矿条件下，单一找矿信息往往难以形成明确指示，需要通过多源预测信息挖掘与融合，才能

实现对隐蔽成矿规律的识别和有效表达。 

随着大数据和人工智能技术的快速发展，矿产预测正进入以数据驱动和智能分析为特征的新阶段。

大数据作为一种解决问题的新思维，强调多维变量间的关联性，使复杂数据能够“发声”，从而可得到新

的洞察和启发性的答案。人工智能作为一种新的数据挖掘方法，具有强大的非线性建模与特征学习能力，

为深度挖掘预测信息、刻画复杂成矿规律和识别隐蔽成矿信号提供了新的技术路径。在此背景下，国内

外已涌现出一批基于大数据和人工智能技术的矿产预测成功实践，验证了预测信息挖掘与融合在复杂找

矿条件下的有效性。例如，国外学者在澳大利亚、美洲等成矿带，综合地质、地球化学和地球物理等多

源数据，利用人工智能算法实现了对斑岩铜矿、金矿等的定量预测，圈定了一批与已知矿床空间高度吻

合的成矿远景区（Carranza and Laborte，2015；Harris et al.，2015；Ford，2020；Yousefi et al.，2024；Parsa 

and Cumani，2025）。在国内，相关研究基于多源找矿数据，采用随机森林、深度学习等方法，对重要成

矿带开展预测实践，在覆盖区和深部找矿中取得了良好的应用效果（周可法等，2012；Chen，2015；Zhang 

et al.，2016；周永章等，2021；陈建平等，2024；毛先成等，2024；袁峰等，2024；肖克炎等，2025；

Yan et al.，2025，Zuo et al.，2025）。这些研究表明，在多源信息复杂、成矿信号弱化的条件下，大数据

和人工智能技术能够有效挖掘和融合预测信息，为隐蔽矿床识别提供新的技术手段。以预测信息挖掘和

融合为核心的大数据人工智能驱动矿产预测，已经成为全球矿业科技竞争的制高点，正在重塑矿产勘查

的研究范式。基于此，本文围绕大数据人工智能驱动的矿产预测，重点探讨大数据人工智能驱动的矿产

预测的基本概念、研究进展和关键科学与技术问题。 

1 矿产预测 

预测通常可分为三大类：空间预测、时间预测以及时空预测。矿产预测属于空间预测，主要预测哪

里有矿以及矿床/矿体的形成深度。时间预测主要关注未来事件的发生时间，比如火山什么时候喷发，这

类预测通常可观测与监测。时空预测则同时关注未来事件发生的时间与地点，比如雪什么时候下，在哪

里下，这个过程通常可观测与监测。相较于其他类型的预测，矿产预测的显著区别在于，它主要推断过

去发生的地质事件。大多数矿床是地质历史时期形成的，且成矿过程无法观测与监测，导致找矿不确定

性大，找矿成功率低。 

矿产预测主要回答矿床的空间分布（哪里找）、类型（什么类型的矿和矿种）、规模（吨位）和质量

（品位）等基本问题。矿产预测是在成矿动力学背景和成矿规律研究的基础上，总结成矿模型和找矿模

型，厘定关键控矿要素和找矿标志，进而收集和建立研究区地质、地球化学、地球物理、遥感等多源找

矿大数据和预测模型，采用人工智能算法对找矿数据进行挖掘，识别和提取找矿信息，并进行集成融合，

圈定找矿远景区或找矿靶区，并评价其资源潜力（图 1）（Taylor and Steven，1983；Agterberg，1989；

Singer，1993；Bonham-Carter，1994； Zhao，1992；Wang et al.，1992; Carranza，2008；Cheng，2008；



 

成秋明，2025）。矿产预测是一个包括多阶段的系统工程，亟需地球系统、成矿系统、勘查系统、评价系

统相互结合（张振杰等，2021）。地球系统（重大成矿地质事件）和成矿系统（成矿作用以及源、运、储、

变、保）主要研究成矿动力学背景以及矿床如何形成。勘查系统（找矿标志和找矿模型）和评价系统（预

测模型）研究找矿标志及如何发现矿床（图 2）。这些系统可以通过数据、知识与模型的耦合形成统一的

预测框架。地球系统与成矿系统为矿产预测提供成矿背景与机理约束，勘查系统将成矿认识转化为可观

测、可量化的找矿信息，而评价系统则通过定量模型实现多源信息的综合表达与不确定性评估。随着大

数据与人工智能的发展，矿产预测正朝向以数据-知识-模型深度融合为特征的定量化、智能化和可解释

化方向演进。 

 

 

 

图 1.矿产预测工作流程（矿床模型修改自孟旭阳和毛景文（2025）） 

Fig.1. A workflow of mineral prospectivity mapping (The mineral deposit model is modified from Meng and 

Mao (2025)) 

 

 

图 2. 矿产预测（成矿系统和勘查系统分别修改自孟旭阳和毛景文（2025）和成秋明（2025）） 

Fig.2. Mineral prospectivity mapping (The mineral system and exploration system were modified from Meng 

and Mao (2025) and Cheng (2025), respectively) 

 

2 大数据和人工智能 

大数据与人工智能作为新的解决问题思路和新的数据处理和挖掘方法，已经成功应用于矿产勘查的

诸多方面，如地质填图、构造环境分类、矿床成因判别、岩矿鉴定、成矿远景区圈定、地球物理建模和

反演、三维地质建模、岩心录井以及矿产资源评价等（Yang et al.，2024a）。 

2.1 大数据和大数据分析 

大数据是指使用常规方式无法短时间内获取、存储、分析和管理的数据集合，通常具有数据量大、

类型多样、更新速度快、高价值并具有真实性等特征（即“5V”特征）。在地球科学领域，大数据呈现出



 

多源、异构、多模态以及多时空分辨率等特点（Reichstein et al.，2019；Vance et al.，2024）。 

在矿产预测研究中，大数据并非单纯指数据规模的扩大，而是围绕成矿系统认知与找矿决策目标，

对地质、地球化学、地球物理、遥感、年代学及勘查工程等多源找矿数据进行系统整合，形成可用于预

测建模与不确定性评估的综合性数据体系，本文将其定义为矿产预测大数据。作为地球科学大数据的重

要组成部分，矿产预测大数据具有多维（多变量）、非线性、多尺度、数据稀缺、时空相关性、缺失值多

等特点（Woodhead and Landry，2021）。这些特征决定了矿产预测问题难以通过单一变量分析或简单统计

方法得到可靠解答，也构成了传统找矿分析方法的主要瓶颈。 

从分析范式上看，大数据分析与传统数据分析存在本质区别，主要体现在以下三个方面：（1）关注

的问题类型不同。传统分析主要关注描述性和诊断性问题（如岩石是什么类型、什么构造等），而大数据

分析则采用数据科学关注预测性问题（如这里是否有矿，明天是否会下雪等）；（2）数据与模型复杂度不

同。传统分析使用有限的、干净的数据和简单的算法模型（如线性回归），而大数据分析往往采用大规模、

多模态的原始数据和复杂的算法模型（如深度学习）；（3）解决问题的能力边界不同。传统分析强调因果

关系的解析（如矿床是如何形成的，为什么能形成这类矿床等），而大数据分析更侧重于刻画变量间的整

体相关结构（如矿床与地球化学、地球物理异常是否具有相关性），通过对高维关联模式的识别，往往能

获得新的洞察和更准确的答案（Manyika et al.，2011）。 

大数据的核心不在于数据的体量，而在于分析数据的思维和出发点。大数据分析采用数据科学的方

法，强调变量间的多维关联性，让数据“发声”，分析所有变量（以及变量组合）时间和空间关联以及其

在特征空间中的关联，可以获得传统方法无法得到的新发现，进而得到地质过程或地质事件更全面的洞

察（Mayer-Schönberger and Cukier，2013；Zuo and Xiong，2018）。这并不意味着因果关系不重要，而是

主张将相关关系的研究置于首位，通过相关关系的研究推动因果关系的研究。这对于矿产勘查尤为重要，

通过分析地质、地球化学、地球物理和蚀变信息与矿床之间的时空相关性，进而发现新的矿床/矿体，再

对新发现的矿床进行系统采样，结合室内分析、野外露头和工程揭露观测，探究其成因类型，实现从多

维度关联性入手逐步推动因果关系的研究，进而对矿床如何形成和如何找寻此类矿床得到更多的认识，

提高找矿成功率。 

因此，从矿产预测的角度看，大数据的“增量作用”并不体现在替代地质认识，而在于显著扩展了

可被综合利用的找矿信息维度与关联空间：一方面，通过对多源、多尺度找矿信息的协同分析，大数据

方法能够识别传统分析难以揭示的弱异常、复合异常及其组合特征；另一方面，通过系统刻画不同找矿

信息与矿床之间的时空相关结构，即使在信息不完整、信噪比较低的条件下，仍可实现对成矿有利区的

定量预测，从而有效降低找矿决策的不确定性。 

2.2 人工智能 

人工智能是模拟和扩展人的智能的理论、方法、技术及应用系统。该概念于 1956 年在美国达特茅斯

会议上被首次提出（McCarthy et al.，2006）。人工智能是一个庞大的家族，包含机器学习、计划与调度

等众多分支。人工智能的发展经历了专家系统、浅层机器学习、深度学习和通用人工智能等 4 个阶段，

分别攻克了知识工程、特征工程和定制化等瓶颈（Dhar，2024）。机器学习是人工智能一个重要分支，主

要由输入层、中间层（或隐含层）和输出层组成。根据隐含层的层数，可将机器学习分为浅层机器学习

（隐含层仅为 1 层，如人工神经网络）和深度学习（隐含层数大于或等于 2 层）。深度学习中的“深度”

主要指隐含层的层数。相较于浅层机器学习，深度学习具有更多的隐含层，能够从低级（易识别和提取

的特征，比如“高-大-全”地球化学异常）到高级（难识别和提取的特征，比如覆盖区和深部找矿的微弱

混杂找矿信息）逐层地提取并最终集成融合这些特征（LeCun et al.，2015；Zuo et al.，2019）。深度学习

可有效挖掘复杂、非线性的地学空间数据，揭示地质过程的隐藏模式，具有较高的分类与预测精度，为

覆盖区和深部找矿中的深层次找矿信息挖掘与集成提供了新的工具（左仁广，2021）。 

卷积神经网络是深度学习方法中的流行算法之一，包含三种典型的隐含层，分别为卷积层、池化层

和全连接层（LeCun et al.，1989；LeCun et al.，1998）。卷积神经网络用于矿产预测具有以下优势：（1）



 

输入为图像，可较充分地捕捉矿化的空间特征；（2）共享权值，避免重复学习不同位置的相似矿化特征；

（3）局部感知机制，利于挖掘关键找矿信息，与共享权值、稀疏连接等机制叠加可大大降低计算成本

（LeCun et al.，1989；Li et al.，2021）。卷积神经网络的这些特征使得它能够识别、提取和集成传统方法

难以识别的找矿信息，可提高找矿成效。尽管如此，卷积神经网络输入是规则的图像，难以充分刻画矿

化的空间分布特征及矿床与找矿信息的空间耦合关系（Zuo and Xu，2023）。近年来，Transformer 模型凭

借其多头自注意力机制在建模长程依赖关系方面表现出显著优势，有效克服了卷积神经网络局部感受野

的局限，能够充分表征全局矿化特征（Vaswani et al.，2017）。此外，图神经网络的输入数据是图（由节

点和边组成），既能更好地表征多源地学数据的空间分布，又能高效刻画矿化的空间分布特征及矿床与找

矿信息的空间耦合关系，并顾及矿化的各向异性，是一种正在兴起且亟需发展的矿产预测方法。然而，

成矿过程复杂、成矿事件稀有、成矿特征多样以及人工智能模型决策过程的“黑箱”属性等，使得人工

智能用于矿产预测面临诸多挑战，如找矿数据及其空间耦合关系表征不充分、训练样本不足、模型鲁棒

性差、泛化能力弱和可解释性差等（左仁广，2025）。 

3 大数据人工智能驱动的矿产预测 

大数据人工智能驱动的矿产预测是指在成矿动力学背景和成矿规律研究的基础上，收集和构建找矿

地质文本大数据（包括地质报告、专著、科技论文等）和地质空间大数据（包括地质、地球化学、地球

物理、遥感数据），利用人工智能对地质文本大数据和地质空间大数据进行深度挖掘，对成矿模型和找矿

模型进行抽取和表达，揭示成矿规律，挖掘与集成找矿信息，实现地球系统、成矿系统、勘查系统与评

价系统的有机关联，达到高效圈定找矿远景区/找矿靶区以及评价资源潜力的目的。大数据人工智能驱动

的矿产预测主要包括智能认知、智能学习和智能决策等 3 部分（图 3）。 

 

图 3. 大数据人工智能驱动的矿产预测 

Fig.3. Big data and artificial intelligence-driven mineral prospectivity mapping 

3.1 智能认知 

智能认知是大数据人工智能驱动矿产预测的基础环节，主要是利用自然语言处理等人工智能技术，

对地质报告、专著、论文等非结构化地质文本大数据进行分析与挖掘，旨在实现矿床知识的自动化提取、

结构化组织与系统化集成。其核心目标在于从海量文献中高效、精准地抽取成矿相关知识与规律，构建

可计算、可推演的结构化知识体系（如知识图谱），识别关键控矿要素与找矿标志，实现矿床模型的智能

抽取与表达，并深化对重大地质事件与成矿作用内在联系的理解，从而推动地球系统与成矿系统研究的

深度融合（图 4）。 



 

 

图 4. 智能认知工作流程 

Fig.4. A workflow of intelligent cognition 

 

随着自然语言处理技术的快速发展，特别是大语言模型（Large Language Models，LLMs）和知识图

谱技术的成熟，智能认知研究已从早期的概念探索迈向实际应用阶段。现有研究主要形成了两条代表性

的技术路线。第一条路线侧重于将成矿相关知识编码为高维语义向量，并将其作为证据图层输入矿产预

测模型。早期的这类研究多采用非上下文词嵌入模型（如 GloVe），通过将地质词汇转化为静态的数值向

量来评估文本语义相似性，初步实现了从区域地质描述报告中自动生成找矿证据图层（Lawley et al.，2023；

Parsa et al.，2025a；Parsa and Cumani，2025）。然而，这类模型无法理解地质术语在不同语境下的多义

性，例如，“花岗岩”在某一语境中可能指代成矿母岩，在另一语境中仅描述岩石类型。这在一定程度上

限制了其知识抽提的精度与可靠性。基于 Transformer 的 LLMs（如 Bidirectional Encoder Representations 

from Transformers，BERT）能够生成与上下文相关的动态词向量，提供更高的语义精度和可靠性（Devlin 

et al.，2019）。因此，研究者开始转向采用基于 Transformer 架构的领域微调大语言模型，通过构建大规

模、高质量的地质文本语料库，对通用 LLMs 进行领域适应性微调。例如，Parsa et al.（2025b）构建了

涵盖多元信息的地质文本语料，并微调了 BERT 模型，预测了加拿大关键矿产。研究结果表明，模型能

够区分不同的地质环境和矿床类型描述，成功将文本中隐含的成矿作用信息（如对密西西比河谷型矿床

容矿岩石、蚀变特征的描述）转化为高维语义向量，并作为证据图层输入到矿产预测模型，提高了从文

本中挖掘隐性知识的能力。然而，该方法将成矿知识编码为高维语义向量的过程具有明显的“黑箱”特

性，可解释性相对不足。 

第二条路线则是构建“大语言模型+知识图谱”的协同融合框架，通过自动化抽取实体与关系，显式

表达成矿知识结构。以斑岩铜矿和南岭稀有金属矿的研究为例，Zhang et al.（2025a）和 Zhao et al.（2025）

利用大语言模型从海量文献中自动化抽取矿床、控矿要素、找矿标志等实体及其复杂关系，并将这些实

体与关系构建成结构化的矿床知识图谱，识别出传统研究中可能被忽略的共性控矿要素或个性异常特征；

将知识图谱中挖掘出的核心规则（如识别出的关键元素组合或构造配置）作为约束或特征，嵌入到矿产

预测人工智能模型中。这种融合策略不仅提高了知识构建的效率，而且使预测结果可追溯至文献本源，

增强了矿产预测人工智能模型的透明度和地质学家的信任度。 

智能认知的研究正朝着深化地质文本语义理解、自动化构建结构化知识体系、增强预测模型可解释

性的方向快速发展。然而，该领域仍需关注的关键科学与技术问题包括但不限于：（1）地质文本数据集

的构建标准，包括数据源类型、规模需求以及数据质量的评价方法；（2）基于文本构建成矿/找矿模型知

识图谱的可靠性评估与不确定性量化；（3）知识图谱通常集成众多矿床的个性信息，而区域矿产预测模

型需提炼研究区内矿床的共性规律，因此需解决知识特异性与模型普适性之间的平衡与融合问题。未来

的突破将更依赖于跨学科协作，以应对高质量地质文本大数据共享、领域知识图谱构建标准与不确定性

评估等核心挑战。 



 

3.2 智能学习 

智能学习是在成矿动力学与成矿规律认知的指导下，利用人工智能算法对多源异构地质空间大数据

进行系统建模与深度挖掘的关键环节。其核心目标在于识别和提取成矿模型和找矿模型中关键控矿要素，

分离和表征弱缓、混杂多解的找矿信息，揭示隐蔽成矿规律，实现从“找矿数据”到“找矿信息”的转

化，并推动成矿系统与勘查系统之间的有效耦合（图 5）。其技术内涵集中体现在数据预处理与特征构建、

证据图层构建以及地质约束成矿信息识别等方面。 

 

 

图 5. 智能学习工作流程 

Fig.5. A workflow of intelligent learning 

 

在数据预处理与特征构建阶段，地质找矿大数据中普遍存在缺失值和不一致性等问题。相关研究已

由早期基于简单统计的插补方法，发展为以机器学习为核心的数据驱动插补策略。随机森林等浅层机器

学习方法通过拟合变量之间的非线性关系，对缺失数据进行预测，在地球化学数据插补中表现出较好的

稳健性（Carranza and Laborte，2015）。近年来，生成对抗网络等深度学习模型被引入缺失数据插补，通

过生成器与判别器的对抗学习机制，对地质找矿大数据的潜在分布进行建模，生成与真实数据分布相似

的缺失值估计（Luo et al.，2024）。该方法在数据重构过程中能够约束生成地学空间数据的统计特征与空

间结构，但其模型结构复杂，相较随机森林插补方法可解释性较差。在特征选择方面，受试者工作特征

曲线（Zuo，2018）、奇异性指数（Wang and Zuo，2022）和因子分析（Dong and Zhang，2024）等方法被

广泛用于筛选对成矿具有指示意义的元素组合。最新方法通过引入因果发现算法对地球化学元素之间潜

在的因果关系进行建模，不仅为成矿元素组合的识别提供了理论依据，也增强了特征选择过程的合理性

（Luo and Zuo，2025；Liang et al.，2025）。 

证据图层的构建是智能学习连接地质知识与预测模型的关键环节。证据图层通过对控矿要素空间分

布特征的定量刻画，为后续人工智能模型学习成矿信息提供基础输入。围绕控矿要素的栅格化表达与赋

值问题，研究者提出了多种模型与方法。例如，Zuo（2016）建立了岩浆热液矿床的分布密度与矿床离控

矿要素距离的数学模型，不仅可定量度量控矿要素对成矿作用的重要性，而且为控矿要素栅格化赋值提

供了客观依据。成秋明（2012）提出了使用地球化学常量元素组合、重力和航磁地球物理综合异常推断

酸性和基性侵入岩，并据此对侵入岩证据图层进行赋值。向运川等（2014）利用因子分析确定了高场强

元素组合和相容元素组合的比值可作为识别花岗岩类侵入体的区域地球化学综合指标。Wang et al.（2019，

2020a，2020b）利用遥感和勘查地球化学数据，结合多种机器学习算法识别喜马拉雅淡色花岗岩，从而

构建与稀有金属成矿密切相关的淡色花岗岩证据图层。此外，基于遥感和多源空间数据的断裂自动识别

技术（Saadi et al.，2008；Elmahdy et al.，2022；Han et al.，2022；Guo et al.，2023，2025），以及图卷积

神经网络对控矿断裂与岩体的推断方法（Zuo et al.，2025），为复杂构造和岩体信息的定量表征提供了新

的思路。一些较为简便方法如直接计算控矿要素的欧氏距离结果，也可作为控矿要素的赋值方法（Yang 

et al.，2022；Mou et al.，2023）。 

受构造运动、岩浆活动及矿床埋深等因素影响，找矿信息高度混杂且具有多解性。为提高模型对成

矿信息的识别能力和地质合理性，近年来的研究逐渐从纯数据驱动模型转向引入地质约束的智能学习框



 

架。一类方法是在模型训练阶段构建地质约束损失函数，通过惩罚不符合地质先验知识的预测结果，从

全局层面约束模型行为。例如，Xiong et al.（2022）基于花岗岩侵入体对成矿过程的控制作用，构建非线

性物理约束函数并引入变分自编码器损失项，使提取的地球化学异常与花岗岩在空间上显著一致。Luo 

et al.（2022）将长英质侵入体与矿化作用之间的时空成因联系转化为正则化项，引入对抗自编码网络，

并借助特征可视化验证了地质约束的有效性。Zhang et al.（2022）通过分形分析量化已知矿床空间分布

模式，将其作为先验约束加入模型，识别结果更符合区域成矿规律。Luo et al.（2025）采用多重分形奇

异性理论刻画矿床与控矿断裂的非线性关联，将其嵌入记忆增强自编码器以提升异常识别的地质合理性。

Xu et al.（2025）将地质知识嵌入非监督双分支模型的损失函数，提升了地球化学异常识别模型的性能和

可解释性。另一类方法则在模型结构层面嵌入地质知识，通过设计地质约束隐含层或约束潜变量空间，

使模型在局部输出上更符合已知的成矿规律。如 Luo et al.（2023）根据控矿要素与矿床的空间关系构建

了地质约束隐层，并将其嵌入到变分自编码网络中，提高了模型在识别多元素组合异常方面的准确性和

可解释性。Zhang and Zuo（2024）将与研究区钨矿相关的燕山期花岗岩体和断裂与钨矿的空间相关关系

作为先验知识来约束对抗自编码网络模型的潜变量，确保生成的数据不仅与真实地球化学数据相似，还

符合地质条件。 

总体而言，智能学习研究正朝着多源地质数据深度融合、地质约束与数据驱动协同建模以及模型可

解释性增强的方向发展。然而，仍需重点关注以下关键科学与技术问题，包括但不限于：（1）多源异构

地质找矿数据在尺度、精度和不确定性差异下的统一表达与协同学习；（2）控矿要素与矿床空间关联的

定量刻画及其对预测结果稳定性的影响；（3）混杂多解找矿信息的有效分离机制及其地质意义解释。未

来的突破将依赖于找矿勘查与人工智能的深度耦合，高效定量化控矿要素并识别和分离弱缓混杂的找矿

信息。 

3.3 智能决策 

智能决策是指在智能认知与智能学习的基础上，利用人工智能算法对关键控矿要素和多源找矿信息

进行系统集成和综合推理，圈定找矿远景区/找矿靶区，实现从“找矿信息”到“找矿决策”的转化，并

推动勘查系统到评价系统的关联（图 6）。其核心目标不只是给出成矿概率结果，而是构建可信、可解释

性且具备不确定性刻画能力的矿产预测决策框架，为地质找矿提供可追溯、可验证的科学依据。其技术

内涵集中体现在成矿知识系统性嵌入、模型优化与不确定性分析、成矿规律反向挖掘等方面。 

 

 

 

图 6. 智能决策工作流程 

Fig.6. A workflow of intelligent decision-making 

 

在成矿知识嵌入方面，研究范式已由早期“结果解释型”模型逐步演进为“过程可解释型”智能决

策模型，旨在将成矿知识嵌入人工智能驱动的矿产预测全过程，包括数据输入、模型设计及模型输出等

环节，从而构建更加透明和可解释的矿产预测人工智能模型（左仁广等，2024）。在输入数据可解释性方

面，无论是早期研究还是当下人工智能驱动的矿产预测，成矿系统始终在构建地质找矿数据集中发挥了

重要的作用。这一技术路线是指将成矿系统的“源”、“运”和“储”等关键组分转化为不同的勘查指标，



 

并根据勘查指标的特征进一步收集能够表征不同勘查指标地质、地球化学、地球物理特征的地质找矿大

数据集（McCuaig et al.，2010）。例如，在矽卡岩型铁矿预测中，燕山期花岗岩可视为“源”勘查指标，

根据燕山期花岗岩与围岩的物理化学特征差异，构建包含勘查地球化学主量和微量元素数据、航磁数据

和数字高程模型数据的预测数据集（Zuo et al.，2025）。在模型设计方面，技术路线已经从纯数据驱动的

找矿信息集成融合模型发展为知识-数据双驱动的找矿信息集成融合模型。例如，左仁广等（2024）提出

可解释性矿产预测人工智能模型结构，将成矿规律加入到人工智能模型的损失函数（软约束），并将关键

控矿要素加入到人工智能模型的隐含层（硬约束），构建了地质约束的矿产预测人工智能模型，实现了人

工智能决策与成矿知识对齐，提高了矿产预测人工智能模型的准确性和可解释性。在模型输出方面，技

术路线从仅关注预测概率图转变为解释是什么控矿要素的耦合作用导致该处成矿概率较高。在这方面，

归因算法（如 SHAP，Shapley additive explanations）发挥了重要作用。其基本原理是将模型预测结果回

溯到各个输入特征上，定量评估不同控矿要素及其交互作用对预测结果的贡献程度（Yang et al.，2024b）。 

模型结构优化与超参数调控是智能决策可靠性的关键保障。矿产预测人工智能模型超参数众多、结

构复杂，极大地影响了模型的预测精度和泛化能力。因此，模型结构优化与超参数调控方法至关重要，

可有效提升模型性能的稳定性和预测结果的可靠性。左仁广（2025）综述了矿产预测人工智能模型中重

要的结构超参数（如卷积核的尺寸和数量以及网络层数）和运行超参数（如学习率、批处理大小和迭代

次数）的优化方法。矿产预测人工智能模型结构优化可以采用消融实验思路，通过逐步移除或调整模型

结构模块，分析不同结构超参数对预测性能的影响，从而确定合理的模型结构配置。例如，Zhang et al.

（2025b）设置了消融实验，讨论了不同的网络层数和注意机制的引入对预测结果的影响，以寻求最优的

预测模型结构。矿产预测人工智能模型运行超参数调控则可采用网格搜索、随机搜索和贝叶斯优化等方

法，在给定超参数空间内寻优，确定模型的最优超参数组合，以提升模型预测精度和泛化能力。例如，

Yin and Li（2022）应用贝叶斯优化算法优化矿产预测集成学习模型，在定义超参数搜索空间中找寻最优

超参数配置。 

矿产预测结果的不确定性评价是智能决策走向实际找矿应用的必要前提。矿产预测人工智能模型的

各个环节都可能引入不确定性。Zuo et al.（2021）提出了矿产预测不确定性来源、分类和评价方法，为

矿产预测不确定性分析提供了理论基础。在随后的研究中，相关工作进一步对不同环节的不确定性进行

了定量评估，例如训练样本选择（Zuo and Wang，2020）、证据图层选择（Zuo et al.，2015；Yang et al.，

2023）、人工智能模型结构和运行超参数设置（Wang et al.，2025）等引入的不确定性。量化矿产预测不

确定性至关重要，使得地质学家不仅关注成矿概率较高的区域，还能够识别预测结果中不确定性较低的

区域，从而为矿产勘查提供可靠的依据。矿产预测贝叶斯深度学习模型将贝叶斯理论与神经网络模型相

结合，为矿产预测的不确定性量化提供了一种有效方法，通过将神经网络的参数视为随机变量而非固定

值，实现了在预测成矿概率的同时量化不确定性（Huang et al.，2022）。 

从更长远的视角看，智能决策的重要发展方向在于由“成矿概率预测”迈向“成矿知识发现”。相比

于仅输出成矿概率，矿产预测人工智能模型更侧重从多源地学数据中挖掘潜在的控矿规律与成矿模式，

揭示不同控矿要素之间的非线性关系及其协同作用机制。在成矿知识发现层面，相关研究仍有待开展和

深入。近年来，符号回归与深度学习结合的研究思路已经在遥感领域展现了良好的应用前景。例如，Yu 

et al.（2025）将 Transformer 与符号回归相结合，构建了多光谱遥感波段与冠层高度、地上生物量和碳储

量之间的非线性拟合关系，从而从高维遥感数据中提取具有物理含义的数学表达式。这一思路为矿产预

测提供了借鉴，有望推动矿产预测人工智能模型从成矿概率预测向可解释的成矿规律与知识发现转变。 

智能决策研究正朝向将成矿知识系统性嵌入人工智能模型全过程、提升预测结果可解释性与可信度、

并实现找矿决策与资源评价协同优化的方向快速发展。然而，该领域仍需重点关注的关键科学与技术问

题包括但不限于：（1）如何在人工智能模型的输入、结构与输出全过程中统一嵌入成矿知识，并协调软

约束与硬约束之间的作用机制，以避免过度约束或知识失配；（2）矿产预测人工智能模型不确定性评价，

包括不同不确定性来源的区分、量化与传播机制以及不确定性评估在找矿决策中的合理利用；（3）如何

从矿产预测人工智能模型中反向挖掘可验证的成矿规律，实现预测结果由概率表达向成矿知识表达的转



 

化，从而构建成矿知识嵌入与成矿知识发现相互促进的闭环体系。未来的突破将更加依赖矿床学理论、

找矿勘查与人工智能方法的深度融合，以应对智能决策在复杂成矿系统背景下面临的可解释性、不确定

性与知识发现等核心挑战。 

4 主要认识 

大数据和人工智能时代未来已来，并将不以个人意志为转移地推动矿产勘查范式创新。大数据人工

智能驱动的矿产预测涉及数据、算法、算力和人才四个核心要素。其中，数据是制约大数据人工智能找

矿成败的关键，没有高质量、多源协同的找矿大数据，大数据分析和人工智能算法难以充分发挥其潜在

优势。尽管我国找矿数据共享机制正在逐步完善，但在实际应用中受制于数据分散管理、保密属性差异

和共享标准不统一等因素，找矿数据仍普遍存在获取门槛高、公开程度有限和信息孤岛等问题，难以形

成可支撑大规模智能预测的统一数据基础，这在客观上制约了大数据人工智能驱动矿产预测的发展。在

算法层面，浅层机器学习方法（如人工神经网络）和深度学习模型（如卷积神经网络）已经成功应用于

各个学科领域。然而，这些算法大多为通用方法，直接应用于矿产预测效果并不理想，且大部分人工智

能算法为黑箱模型，地质学家很难理解其预测结果，可信度和可解释性较差，亟需研发顾及成矿理论和

找矿数据特点的可解释性矿产预测人工智能算法。与此同时，地质找矿大数据不仅包括大规模文本数据，

还包含结构复杂的多源空间数据，具有高维度和强计算需求等特点，对高性能计算资源，尤其是图像处

理器和并行计算能力提出了更高要求。 

在四个要素中，复合型人才是实现数据、算法与算力有效融合的关键纽带。大数据人工智能驱动的

矿产预测亟需既具备扎实地质理论基础，又系统掌握地球信息技术、数据科学与人工智能方法的复合型

人才。近年来，围绕这一需求，我国已相继布局和建设“地球信息科学与技术”“资源环境大数据工程”

等新兴交叉专业，以及“地学大数据”交叉学科，为培养面向地学大数据与智能预测方向的复合型人才

提供了重要学科载体。这类专业在服务深部与覆盖区找矿、推动矿产勘查智能化方面具有广阔的发展前

景，但总体上仍处于起步阶段，相关高层次人才储备与工程实践经验仍显不足，亟需在人才培养体系和

科研实践中进一步加强。 

从长远发展看，大数据人工智能驱动矿产预测的深入推进，亟需在保障数据安全与合理使用的前提

下，进一步完善找矿数据分级分类共享机制，鼓励历史勘查数据、基础地质数据和科研数据的规范化开

放，推动数据标准统一与质量控制体系建设，为智能算法训练、模型对比验证和预测结果复现提供可靠

的数据基础。只有在数据体系、方法体系、计算资源和人才体系协同完善的条件下，才能充分释放大数

据和人工智能在矿产预测中的增量价值。 

大数据人工智能驱动的矿产预测包含智能认知、智能学习和智能决策三个相互关联的重要组成部分，

分别对应地球系统与成矿系统、成矿系统与勘查系统以及勘查系统与评价系统之间的耦合与联通。这三

者构成有机整体，缺一不可，只有在找矿大数据体系建设、地质约束下的智能算法研发、高性能计算支

撑以及复合型创新人才培养等方面协同推进，才能真正实现智能矿产预测的发展目标。 

 

致谢: 感谢中南大学毛先成教授、合肥工业大学袁峰教授、江西理工大学孙涛教授对论文初稿提出

的宝贵修改建议。 

 

参考文献 

Agterberg F P. Computer programs for mineral exploration[J]. Science, 1989, 245(4913): 76-81. 

Bonham-Carter G. Geographic information systems for geoscientists: modelling with GIS[M]. Elsevier, 1994. 

Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Elsevier, 2008. 

Carranza E J M, Laborte A G. Random forest predictive modeling of mineral prospectivity with small number of 

prospects and data with missing values in Abra (Philippines)[J]. Computers & Geosciences, 2015, 74: 60-



 

70. 

Chen Y. Mineral potential mapping with a restricted Boltzmann machine[J]. Ore Geology Reviews, 2015, 71: 

749-760. 

Cheng Q M. Non-linear theory and power-law models for information integration and mineral resources 

quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5): 503-532. 

Dhar V. The paradigm shifts in artificial intelligence[J]. Communications of the ACM, 2024, 67(11): 50-59. 

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language 

understanding[C]. Proceedings of the 2019 conference of the North American chapter of the association for 

computational linguistics: human language technologies, 2019, 1: 4171-4186. 

Dong Y L, Zhang Z J. Deep forest modeling: an interpretable deep learning method for mineral prospectivity 

mapping[J]. Journal of Geophysical Research: Machine Learning and Computation, 2024, 1(4): 

e2024JH000311. 

Elmahdy S I, Ali T A, Mohamed M M, et al. Topographically and hydrologically signatures express subsurface 

geological structures in an arid region: a modified integrated approach using remote sensing and GIS[J]. 

Geocarto International, 2022, 37(7): 2095-2115. 

Ford A. Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au 

mineralization in the Eastern Lachlan Orogen, NSW, Australia[J]. Natural Resources Research, 2020, 29(1): 

267-283. 

Guo D S, Yang X S, Peng P, et al. The intelligent fault identification method based on multi-source information 

fusion and deep learning[J]. Scientific Reports, 2025, 15(1): 6643. 

Guo L, He Z T, Li L L. Responses of stream geomorphic indices to piedmont fault activity in the Northern segment 

of the red river fault zone[J]. Remote Sensing, 2023, 15(4): 988. 

Han S, Li H, Li M C, et al. Deep learning–based stochastic modelling and uncertainty analysis of fault networks[J]. 

Bulletin of Engineering Geology and the Environment, 2022, 81(6): 242. 

Harris J R, Grunsky E, Behnia P, et al. Data-and knowledge-driven mineral prospectivity maps for Canada's 

North[J]. Ore Geology Reviews, 2015, 71: 788-803. 

Huang D Z, Zuo R G, Wang J. Geochemical anomaly identification and uncertainty quantification using a 

Bayesian convolutional neural network model[J]. Applied Geochemistry, 2022, 146: 105450. 

Lawley C J M, Gadd M G, Parsa M, et al. Applications of natural language processing to geoscience text data and 

prospectivity modeling[J]. Natural Resources Research, 2023, 32(4): 1503-1527. 

LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 

LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural 

computation, 1989, 1(4): 541-551. 

LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of 

the IEEE, 1998, 86(11): 2278-2324. 

Li T, Zuo R G, Xiong Y H, et al. Random-drop data augmentation of deep convolutional neural network for 

mineral prospectivity mapping[J]. Natural Resources Research, 2021, 30(1): 27-38. 

Liang Z, Xiong Y H, Zuo R G. Coupling graph attention networks with causal discovery for geochemical anomaly 

recognition[J]. Mathematical Geosciences, 2025, 57(8): 1665-1693. 

Luo T H, Zhou Z L, Tang L, et al. Identification of Geochemical Anomalies Using a Memory-Augmented 

Autoencoder Model with Geological Constraint[J]. Natural Resources Research, 2025, 34(1): 23-40. 

Luo Z J, Zuo R G. Causal discovery and deep learning algorithms for detecting geochemical patterns associated 

with gold-polymetallic mineralization: a case study of the edongnan region[J]. Mathematical Geosciences, 

2025, 57(1): 193-220. 

Luo Z J, Farahbakhsh E, Müller R D, et al. Multivariate statistical analysis and bespoke deviation network 

modeling for geochemical anomaly detection of rare earth elements[J]. Applied Geochemistry, 2024, 174: 

106146. 

Luo Z J, Zuo R G, Xiong Y H. Visual interpretable deep learning algorithm for geochemical anomaly 

recognition[J]. Natural Resources Research, 2022, 31(5): 2211-2223. 



 

Luo Z J, Zuo R G, Xiong Y H, et al. Metallogenic-factor variational autoencoder for geochemical anomaly 

detection by ad-hoc and post-hoc interpretability algorithms[J]. Natural Resources Research, 2023, 32(3): 

835-853. 

Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity[J]. 

McKinsey Global Institute. 2011. 

Mayer-Schönberger V, Cukier K. Big data: A revolution that will transform how we live, work, and think[M]. 

Boston: Houghton Mifflin Harcourt. 2013. 

McCarthy J, Minsky M L, Rochester N, et al. A proposal for the dartmouth summer research project on artificial 

intelligence, august 31, 1955[J]. AI magazine, 2006, 27(4): 12-12. 

McCuaig T C, Beresford S, Hronsky J. Translating the mineral systems approach into an effective exploration 

targeting system[J]. Ore Geology Reviews, 2010, 38(3): 128-138. 

Mou N N, Carranza E J M, Wang G W, et al. A framework for data-driven mineral prospectivity mapping with 

interpretable machine learning and modulated predictive modeling[J]. Natural Resources Research, 2023, 

32(6): 2439-2462. 

Parsa M, Cumani R. Class Label Representativeness in Machine Learning-Based Mineral Prospectivity 

Mapping[J]. Natural Resources Research, 2025, 34: 1901-1925. 

Parsa M, Lawley C J M, Cawood T, et al. Pan-Canadian predictive modeling of lithium–cesium–tantalum 

pegmatites with deep learning and natural language processing[J]. Natural Resources Research, 2025a, 34(2): 

639-668.  

Parsa M, Cumani R, Fam H J A, et al. Large Language Models and Geoscience Transformers for Predictive 

Mapping of Canadian Critical Minerals[J].  Natural Resources Research, 2025b. 

https://doi.org/10.1007/s11053-025-10564-0. 

Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth 

system science[J]. Nature, 2019, 566 (7743): 195–204. 

Saadi N M, Aboud E, Saibi H, et al. Integrating data from remote sensing, geology and gravity for geological 

investigation in the Tarhunah area, Northwest Libya[J]. International Journal of Digital Earth, 2008, 1(4): 

347-366. 

Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. 

Nonrenewable resources, 1993, 2(2): 69-81.  

Taylor R B, Steven T A. Definition of mineral resource potential[J]. Economic Geology, 1983, 78(6): 1268-1270.  

Vance T C, Huang T, Butler K A. Big data in Earth science: Emerging practice and promise[J]. Science, 2024, 

383(6688): eadh9607. 

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. In: Proceedings of the 31st International 

Conference on Neural Information Processing Systems, 2017, 30: 5998-6008. 

Wang S C, Wang Y T, Liu S H, Wang, K. Overview of a theory and method for prediction of mineral resources in 

China[J]. Mathematical geology, 1992, 24(6): 597-608. 

Wang Z Y, Zuo R G. Mineral prospectivity mapping using a joint singularity-based weighting method and long 

short-term memory network[J]. Computers & Geosciences, 2022, 158: 104974. 

Wang Z Y, Zuo R G, Kreuzer O P. Uncertainty quantification of deep learning algorithms for lithological 

mapping[J]. Mathematical Geosciences, 2025. https://doi.org/10.1007/s11004-025-10235-z. 

Wang Z Y, Zuo R G, Dong Y N. Mapping geochemical anomalies through integrating random forest and metric 

learning methods[J]. Natural Resources Research, 2019, 28(4): 1285-1298. 

Wang Z Y, Zuo R G, Dong Y N. Mapping of Himalaya leucogranites based on ASTER and sentinel-2A datasets 

using a hybrid method of metric learning and random forest[J]. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 2020a, 13: 1925-1936. 

Wang Z Y, Zuo R G, Dong Y N. Mapping Himalayan leucogranites using a hybrid method of metric learning and 

support vector machine[J]. Computers & Geosciences, 2020b, 138: 104455. 

Woodhead J, Landry M. Harnessing the power of artificial intelligence and machine learning in mineral 

exploration—opportunities and cautionary notes. SEG Newsletter, 2021, 127: 19-31. 

https://doi.org/10.1007/s11053-025-10564-0
https://doi.org/10.1007/s11004-025-10235-z


 

Xiong Y H, Zuo R G, Luo Z J, et al. A physically constrained variational autoencoder for geochemical pattern 

recognition[J]. Mathematical Geosciences, 2022, 54(4): 783-806. 

Xu Y, Zuo R G, Bai Y. Geological knowledge‐guided dual‐branch deep learning model for identification of 

geochemical anomalies related to mineralization[J]. Journal of Geophysical Research: Machine Learning 

and Computation, 2025, 2(1): e2024JH000468. 

Yang F F, Zuo R G, Kreuzer O P. Artificial intelligence for mineral exploration: A review and perspectives on 

future directions from data science[J]. Earth-Science Reviews, 2024a, 258: 104941. 

Yang F F, Zuo R G, Xiong Y H, et al. Dual-branch convolutional neural network and its post hoc interpretability 

for mapping mineral prospectivity[J]. Mathematical geosciences, 2024b, 56(7): 1487-1515. 

Yang F F, Wang Z Y, Zuo R G, et al. Quantification of uncertainty associated with evidence layers in mineral 

prospectivity mapping using direct sampling and convolutional neural network[J]. Natural Resources 

Research, 2023, 32(1): 79-98. 

Yang N, Zhang Z K, Yang J H, et al. Applications of data augmentation in mineral prospectivity prediction based 

on convolutional neural networks[J]. Computers & Geosciences, 2022, 161: 105075. 

Yin J N, Li N. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity 

mapping[J]. Ore Geology Reviews, 2022, 145: 104916. 

Yousefi M, Lindsay M D, Kreuzer O. Mitigating uncertainties in mineral exploration targeting: Majority voting 

and confidence index approaches in the context of an exploration information system (EIS)[J]. Ore Geology 

Reviews, 2024, 165: 105930. 

Yu Z Y, Idris M, Wang P, et al. SatelliteFormula: Multi-Modal Symbolic Regression from Remote Sensing 

Imagery for Physics Discovery[J]. arXiv preprint arXiv:2506.06176, 2025. 

Zhang C J, Zuo R G. Incorporating geological knowledge into deep learning to enhance geochemical anomaly 

identification related to mineralization and interpretability[J]. Mathematical Geosciences, 2024, 56(6): 1233-

1254. 

Zhang C J, Zuo R G, Xiong Y H, et al. A geologically-constrained deep learning algorithm for recognizing 

geochemical anomalies[J]. Computers & Geosciences, 2022, 162: 105100. 

Zhang Z J, Yang Z X, Jian F Y, et al. Interpretability-enhanced mineral prospectivity models: A synergistic 

approach using large language models, knowledge graphs, and machine learning[J]. Mathematical 

Geosciences, 2025a. https://doi.org/10.1007/s11004-11025-10231-11003 

Zhang Z Q, Wang G W, Carranza E J M, et al. Three-dimensional mineral prospectivity mapping using a residual 

convolutional neural network with lightweight attention mechanisms[J]. Ore Geology Reviews, 2025b, 185:  

106797. 

Zhao M L, Zhang Z J, Yang J, et al. Knowledge graph construction and knowledge discovery for porphyry copper 

deposits[J]. Ore Geology Reviews, 2025, 186: 106875. 

Zhao, P D. Theories, principles, and methods for the statistical prediction of mineral deposits[J]. Mathematical 

Geology, 1992, 24(6): 589-595. 

Zuo R G. A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization[J]. 

Scientific Reports, 2016, 6(1): 27127. 

Zuo R G. Selection of an elemental association related to mineralization using spatial analysis[J]. Journal of 

Geochemical Exploration, 2018, 184: 150-157. 

Zuo R G, Wang Z Y. Effects of random negative training samples on mineral prospectivity mapping[J]. Natural 

Resources Research, 2020, 29(6): 3443-3455. 

Zuo R G, Kreuzer O P, Wang J, et al. Uncertainties in GIS-based mineral prospectivity mapping: Key types, 

potential impacts and possible solutions[J]. Natural Resources Research, 2021, 30(5): 3059-3079. 

Zuo R G, Xiong Y H. Big data analytics of identifying geochemical anomalies supported by machine learning 

methods[J]. Natural Resources Research, 2018, 27(1): 5-13. 

Zuo R G, Xiong Y H, Wang J, et al. Deep learning and its application in geochemical mapping[J]. Earth-Science 

Reviews, 2019, 192: 1-14. 

Zuo R G, Xu Y. Graph deep learning model for mapping mineral prospectivity[J]. Mathematical Geosciences, 

https://doi.org/10.1007/s11004-11025-10231-11003


 

2023, 55(1): 1-21. 

Zuo R G, Yang F F, Cheng Q M, et al. A novel data-knowledge dual-driven model coupling artificial intelligence 

with a mineral systems approach for mineral prospectivity mapping[J]. Geology, 2025, 53(3): 284-288. 

Zuo R G, Zhang Z J, Zhang D J, et al. Evaluation of uncertainty in mineral prospectivity mapping due to missing 

evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China[J]. Ore Geology 

Reviews, 2015, 71: 502-515. 

陈建平, 周冠云, 褚志远, 等.山东蒙阴金刚石矿床地质大数据三维建模与成矿预测[J]. 矿床地, 2024, 

43(04): 802-820. 

成秋明. 面向人类智能与人工智能融合的矿产资源预测新范式[J]. 地学前缘, 2025, 32(4): 1-19. 

成秋明. 覆盖区矿产综合预测思路与方法[J]. 地球科学(中国地质大学学报), 2012, 37(06): 1109-1125. 

毛先成, 邓浩, 陈进, 等. 金属矿山深部资源三维智能预测理论与方法[J]. 矿产勘查, 2024, 15(08): 1365-

1378. 

孟旭阳, 毛景文. 斑岩铜矿时间分布规律与影响因素[J]. 岩石学报, 2025, 41(2): 4164-4177. 

向运川, 龚庆杰, 刘荣梅, 等. 区域地球化学推断地质体模型与应用——以花岗岩类侵入体为例[J]. 岩石

学报, 2014, 30(09): 2609-2618. 

肖克炎, 李程, 唐瑞, 等. 大数据智能预测评价[J]. 地学前缘, 2025, 32(04): 20-37. 

肖克炎, 邢树文, 丁建华, 等. 全国重要固体矿产重点成矿区带划分与资源潜力特征[J]. 地质学报, 2016, 

90(07): 1269-1280. 

袁峰, 李晓晖, 田卫东, 等. 三维成矿预测关键问题[J]. 地学前缘, 2024, 31(04): 119-128. 

张振杰, 成秋明, 杨玠, 等. 机器学习与成矿预测:以闽西南铁多金属矿预测为例[J]. 地学前缘, 2021, 

28(3): 221-235. 

周可法, 陈衍景, 张楠楠, 等. 中亚地区典型矿床的特征提取技术及预测方法[J]. 干旱区地理, 2012, 

35(03): 339-347. 

周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(03): 

67-75. 

左仁广, 成秋明, 许莹, 等. 可解释性矿产预测人工智能模型[J]. 中国科学:地球科学, 2024, 54(09): 2917-

2928. 

左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(03): 49-55. 

左仁广. 智能矿产预测的技术挑战与解决方案[J]. 中国科学:地球科学, 2025, 55(09): 3104-3119. 

 

 

 
 

 


