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矿产预测研究五十年发展轨迹与热点变迁管窥：来

自文献计量学的视角 

白茹, 孙涛* 

江西理工大学 矿业工程学院，江西 赣州 341000 

摘要：矿产勘查是护航国家资源安全与产业供应链稳定的基础性工作，作为矿产勘查的核心环节，矿产预测在大数据与人工

智能技术的助推下实现了跨越式的发展，成为地球科学中的热门研究领域，积累了大量的研究文献。本文采用文献计量学方

法，以国际数学地球科学学会三本会刊在 1969 年至 2025 年间发表的 935 篇矿产预测主题论文为数据源，分析和探讨了矿产

预测近五十年的研究现状、发展轨迹与热点变迁。文献作者、机构和国别的统计结果表明，Carranza, E.J.M.和左仁广分别以

署名作者和第一/通讯作者的身份成为本领域最高产和高被引的学者，中国是矿产预测领域最大的论文产出国，中国地质大学

（武汉）的发文量和总被引频次在全球机构中位居榜首，本研究领域的合作存在较强的地域导向性，高水平、常态化的国际

协同研究网络尚未形成。根据关键词的热点变迁将矿产预测研究分为奠基期（1969-1990）、发展期（1991-2010）和繁荣期

（2011-2025），不同时期的主题任务和发展轨迹取决于该时代热门技术和算法的发展水平。奠基期以矿产资源评价任务为主

的阶段对应了地质统计学（变异函数和克里金插值）热度遥遥领先的时期，发展期 GIS 技术的兴起和广泛应用助力矿产预测

逐渐替代矿产资源评价成为主流科学任务，而繁荣期机器学习算法的盛行则让矿产智能预测成为热度断档领先的研究主题。

矿产预测研究最新的热点和发展趋势是从倚重单一高性能预测模型，转向对智能预测模型内部机制的深入探索与优化，利用

前沿人工智能技术解决决策过程黑箱属性和样本稀缺等矿产预测的固有瓶颈问题。优越的深度学习算法近年来收获了最高的

热度，但经典的浅层学习算法，如擅长处理高维数据及非线性问题的支持向量机和具有强大抗过拟合能力的随机森林，依然

因其高度适配小样本矿产预测任务而成为繁荣期本领域学者的热门选择。本研究借助量化统计分析和可视化工具，不仅为理

解矿产预测的学科发展脉络提供了宏观和全面的视角，也为把握本领域未来智能预测发展方向提供了参考。 
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Abstract: Mineral exploration is a fundamental task for safeguarding national resource security and the stability of industrial supply 

chain. As a core step of mineral exploration, mineral prospectivity mapping (MPM) has undergone transformative development, 

spurred by big data and artificial intelligence, emerging as a prominent research field within Earth science and accumulating a 

substantial volume of literature. In this study, we employ bibliometric methods to analyze and discuss the research status, 

developmental trajectory, and hotspot evolution of MPM over the past five decades, based on a dataset of 935 relevant publications 

from three flagship journals of the International Association for Mathematical Geosciences, spanning from 1969 to 2025. Bibliometric 

statistics on authors, institutions, and countries reveal that Carranza, E.J.M. and Zuo Renguang are the most highly productive and 
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highly cited scholars in the field as listed author and first/corresponding author, respectively. China is the largest contributor of 

publications in this field, and the China University of Geosciences (Wuhan) ranks first in global institutions in both publication 

volume and total citation. The analysis of collaboration networks indicates a strong regional orientation, lacking of a high-level and 

regular international cooperative research network. The evolution of MPM, based on the hotspot analysis of keywords, is divided into 

three distinct stages, namely the foundational stage (1969-1990), the expansion stage (1991-2010), and the boom stage (2011-2025). 

The thematic focus and developmental trajectory of each stage are determined by the prevailing technologies and algorithms of the era. 

The foundational stage, focusing on mineral resource assessment, was dominated by geostatistics (variogram and Kriging). The rise 

and widespread application of GIS technology during the expansion stage facilitated the shift of MPM into the mainstream scientific 

task. In the boom stage, the prevalence of machine learning algorithms led to the dominance of intelligent MPM in the thematic tasks. 

Recent research hotspots and trends indicate a shift from relying solely on high-performance predictive models towards in-depth 

exploration and optimization of the internal mechanisms of intelligent models. The focus is on leveraging cutting-edge AI technologies 

to address inherent challenges such as the black-box nature of decision processes and sample scarcity. Although advanced deep 

learning algorithms have gained significant traction, classic shallow learning algorithms, such as support vector machine which exhibit 

great performance in processing high-dimensional data and nonlinear problems, and random forest characterized by its strong 

resistance to overfitting, remain popular choices among scholars in this field during the boom stage due to their high suitability for 

few-shot MPM tasks. By leveraging quantitative statistical and visualization tools, this study provides a macro and comprehensive 

perspective for understanding the development of MPM, and offers critical insights into future research directions of intelligent 

prediction in MPM. 
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0 引言 

矿产资源是支撑社会经济可持续发展和工业化进程的关键物质基础，矿产勘查作为发现与探明矿产资

源的基础性工作，其成效直接关系到国家资源安全与产业供应链稳定。矿产勘查是一项艰巨的科学任务，

这是由于作为矿产勘查的目标，矿床是多场、多过程复杂成矿作用耦合的产物，具有在时空分布上的高度

非均质性和极度稀缺性(於崇文, 2003)。矿产勘查的科学研究属性是以获取的矿化信息为基础追索成矿过程

遗留形迹和最终矿化产物，但各种矿化信息弥散于复杂的矿化空间中，其中与成矿密切相关的信息隐藏在

各种形式的地质特征中，并被叠加了成矿期后诸多随机地质过程和空间偏移事件的影响，造成了难以被经

验性判断或简单规律统计识别的复杂矿化分布模式(Thiergärtner, 2006)。矿产预测（mineral prospectivity 

mapping）通过集成地质、地球物理、地球化学、遥感等多源信息，以各种知识驱动或数据驱动的算法揭示

复杂的矿化分布与富集规律，圈定成矿远景区，成为降低勘查风险、提高找矿效率的核心环节。 

早期矿产预测主要依赖地质学家的经验判断和定性分析，20 世纪中叶以来，随着数学地质学的发展，

矿产定量预测逐步兴起，标志矿产预测研究开始走向学科化和系统化。近年来，大数据与人工智能的兴起

宽泛而深刻地改变了地球科学研究的思维范式，也为矿产预测研究带来了以数据驱动和知识/模式发现为核

心的技术革新(成秋明, 2025; 肖克炎等, 2025; 左仁广等, 2024; Zuo and Carranza, 2023)。随着地球探测技术

和空间信息技术的飞速发展，勘探工作可获取的矿化信息的种类和体量急剧膨胀，矿化数据越来越趋向于

多源、异构、高维度、高计算复杂度。在此大背景下，人工智能算法因其强大的数据处理能力和出众的非

线性关系学习能力成为大数据时代矿化模式识别和成矿预测的最佳引擎(孙涛等, 2025)。矿产智能预测作为

新兴的研究分支，在近十年中实现了跨越式的发展，成为地球科学中的热门研究领域(周永章等, 2021)。矿

产预测研究经过逾半个世纪的发展，积累了大量的文献，为数据驱动的文献计量学研究提供了坚实的数据

基础。 

文献计量学的雏形可追溯至 20 世纪初，其正式术语“bibliometrics”由 Pritchard 于 1969 年首次提出，

标志着该学科的正式确立(Pritchard, 1969)。文献计量学是一门运用数学和统计学方法对文献信息进行定量分

析研究的交叉学科，其核心在于揭示知识载体的数量关系、结构特征与演化规律。历经百年发展，文献计

量学已形成涵盖引文分析、共现分析、聚类分析等多元技术体系的理论框架，广泛应用于自然科学、社会

科学、人文科学等各大领域的文献研究和学科分析中(Chen, 2006; Ellegaard and Wallin, 2015)。近年来，随着

大数据技术、人工智能算法与可视化工具的快速发展和迭代，文献计量学融合了科学可视化、知识图谱、

数据挖掘等前沿理念和技术，从而能够更精细地刻画学科发展的宏观结构与前沿动态。 

本文以文献计量学为研究手段，旨在通过量化和可视化的方式探查矿产预测研究的历史轨迹与发展动

态。但矿产预测相关文献卷帙浩繁，基于所有期刊的文献计量工作量远远超出了单个团队的能力范畴。因

此，本文将研究对象限定在国际数学地球科学学会（The International Association for Mathematical Geosciences，

简称 IAMG）的三本会刊（Mathematical Geosciences, Natural Resources Research和Computers & Geosciences）

发表的矿产预测主题的论文上，以“窥一斑而见全豹”的思路开展文献计量学的研究，从作者、机构、国



别、关键词分析、高影响力论文分析等方面探讨矿产预测研究的发展轨迹、研究热点和前沿动态。 

1 数据来源及研究工具 

1.1 数据来源与检索方式 

本文数据来源范围为 Mathematical Geosciences、Natural Resources Research 和 Computers & Geosciences

中矿产预测主题的论文。我们追溯了三本期刊的发文历史，确定论文检索的时间范围。Mathematical 

Geosciences 前身为Mathematical Geology 和 Journal of the International Association for Mathematical Geology，

最早发文可追溯至 1969 年；Natural Resources Research 前身为 Nonrenewable Resources，最早发文可追溯至

1992 年；Computers & Geosciences 的最早发文时间可追溯到 1975 年。在检索数据库的选择上，Web of Science

是认可度最高的检索数据库，但该检索库只收录 1990 年以后的出版物，因此本次研究选择了涵盖三本期刊

全出版期（1969-2025）的 Scopus 数据库，从而能最大程度地收集主题论文。在检索关键词方面，除了矿产

预测（mineral prospectivity mapping）之外，本研究也将地球化学勘探（geochemical exploration）和地球物

理勘探（geophysical exploration）纳入了检索范围，这是由于两者既是矿产预测多源数据的关键来源，本身

也是重要的矿产勘查方法，属于矿产预测的核心研究范畴。考虑到学术界对“矿产预测”“地球化学勘探”

和“地球物理勘探”有多种表述，例如，“mineral prospectivity mapping”的近似表述就有“mineral potential 

mapping”“mineral prospectivity targeting”“mineral prospectivity prediction”等，而且存在一些文献并未在

标题或关键词中明确提及相关主题词，但文章主题确属矿产预测，若仅在 Scopus 限定期刊和主题词进行检

索，极易产生遗漏。因此，为确保原始数据的准确性与全面性，本研究采用主题词检索和人工筛选相结合

的方式构建主题文献数据库。 

主题词检索的检索式为： 

SRCTITLE (Natural Resources Research) OR SRCTITLE (Nonrenewable Resources) OR SRCTITLE 

(Computers & Geosciences) OR SRCTITLE (Mathematical Geosciences) OR SRCTITLE (Mathematical Geology) 

OR SRCTITLE (Journal of the International Association for Mathematical Geology) AND TITLE-ABS-KEY 

(mineral prospectivity mapping) OR TITLE-ABS-KEY (mineral potential mapping) OR TITLE-ABS-KEY 

(geochemical exploration) OR TITLE-ABS-KEY (geochemical anomaly) 

通过主题词检索出的论文与矿产预测高度相关，但数量偏少（549 篇）。为此，我们采用语义宽泛的

“prediction”“mapping”“modeling”“targeting”“exploration”等关键词扩大检索范围，得到约 3000

篇文献，这其中很多与矿产预测没有直接关联，我们耗费大量时间进行了人工筛选，从中得到 762 篇相关

文献。将主题词检索与人工筛选获取的文献进行合并及去重，最终得到了 935 篇文献作为本研究的数据源，

文献出版时间覆盖 1969 年至 2025 年 10 月 29 日。 

1.2 研究工具 

文献计量学研究领域已有多种具备信息可视化功能的工具，其中 R 语言中的 bibliometrix 包、VOSviewer

与 Scimago Graphica 较为常用。Bibliometrix (Aria and Cuccurullo, 2017; Van and Waltman, 2010)专为文献计量



分析设计，支持多种文献数据格式的导入与快速处理，能够生成折线图、柱状图、图谱等多种图表，具有

较高的交互性与可定制性。VOSviewer (Van and Waltman, 2010)以基于概率模型的标准化处理技术和友好的用

户界面著称，尤其适用于关键词共现、作者合作、国家和机构合作等网络分析，提供了网络视图、叠加视

图与密度视图等多种可视化模式，能够生成结构清晰、视觉效果精细的知识图谱。Scimago Graphica 

(Hassan-Montero et al., 2022) 集成图形语法引擎，擅长通过视觉属性映射变量数据，尤其在地理空间信息呈

现方面表现突出，可灵活生成具有较强表达力的专题地图及其他复合图表。 

本研究综合运用了多种工具，在数据处理与分析阶段，利用 Python, VOSviewer, bibliometrix 完成文献

年份分类与数量统计、作者发文数统计、国家和机构发文数统计与关键词频次统计等。在可视化呈现方面，

使用 VOSviewer 绘制作者共现网络图，基于 VOSviewer 和 bibliometrix 的统计数据，借助 Scimago Graphica

软件进一步实现研究机构合作网络的聚类效果，绘制包含国家间科研合作关系的世界地图。 

2 作者分析 

本研究使用 VOSviewer 对 935 篇文献的 2035 位作者进行分析。根据普赖斯定律 (Price, 1963)，要判定

某一作者是否为特定领域的高产作者，该作者的发文量 m 应满足： 

≥ . × √                                      (1)        

其中，nmax 是该领域发表论文最多的作者的发文量。截至 2025 年 10 月 29 日，Carranza, E. J. M.在

Mathematical Geosciences、Natural Resources Research 和 Computers & Geosciences 三本期刊中发表了最多的

矿产预测主题论文，累计发文量达 70 篇，因此本研究取 nmax=70。根据公式计算得 m≥6.27，即发表 7 篇及

以上论文的作者可被认为是本领域的高产作者。利用 VOSviewer 绘制出高产作者共现网络图（图 1）。图

中节点大小与作者发文量正相关，其中 Carranza, E. J. M., 左仁广（Zuo, Renguang）和成秋明（Cheng, Qiuming）

位列高产作者的前三位。节点间连线的粗细表示作者间的合作强度，连线越粗，代表两位学者共同发表论

文的次数越多。图 1 显示了以 Carranza, E. J. M., 左仁广和成秋明等为核心的多条粗连线，可见他们不仅是

高产作者，也是学术合作网络中的关键枢纽。该网络图以不同颜色区分出若干相对独立又相互交叉的研究

社群，相同颜色的作者通常隶属于同一研究团队或具有紧密的学术合作关系。例如，以 Carranza, E. J. M.和

Yousefi, Mahya 为核心的社群、围绕左仁广等中国地质大学（武汉）学者的密集网络、围绕成秋明等形成的

跨国、跨机构研究集群，清晰地反映了领域内以学科团队和研究方向为纽带的紧密协作群体。同时，少数

跨颜色的细连线表明不同社群间存在一定的学术交流与合作。也有部分节点位于网络边缘，与其他节点的

连线稀疏或完全缺失，表明这些作者可能在相对独立地开展研究（图 1）。 



 

图 1 高产作者的共现网络图 

Fig.1 Co-occurrence network of highly productive authors 

表 1 列出了发文量最高的前十位作者及其论文累计被引频数，本文中论文被引频数均指论文在 Scopus

中的被引次数。Carranza, E.J.M.在发文量（70 篇）和总被引次数（5035 次）上均居首位，左仁广（54 篇，

3201 次被引）和成秋明（31 篇，2148 次被引）紧随其后。这些高产领军作者之间也存在合作关系，如 Carranza, 

E.J.M.与左仁广在 2011 年发表的论文“Support vector machine: A tool for mapping mineral prospectivity”被引频

数高达 435 次，彰显了卓越学者间典范合作研究的成效。在论文署名作者中，第一作者和通讯作者往往是

研究成果的关键贡献者，因此，本研究利用 Python 和 VOSviewer 分析了 935 篇论文中第一作者或通讯作者

发文的情况，列出了发表论文数量最多的前 10 位作者，如表 2 所示。左仁广以第一作者或通讯作者发表了

最多的论文（50 篇），并拥有最高的第一/通讯作者论文累计被引频次（2898 次），Carranza, E. J. M., 成秋

明, Singer, D.A.等学者也是领域研究成果的关键贡献者，作为研究主导者的发文量和论文累计被引频数均位

居前列（表 2）。 

 

 

 

 

 

 

 

 



表 1 高产作者发文量和被引频数统计 

Table 1 Publication volume and citations of highly productive authors 

作者 国家 所属机构（2025） 
发文

量 

累计被

引频数 

Carranza, E. J. M. South Africa University of the Free State 70 5035 

Zuo, Renguang China China University of Geosciences（中国地质大学-武汉） 54 3201 

Cheng, Qiuming China China University of Geosciences（中国地质大学-北京） 31 2148 

Xiong, Yihui China China University of Geosciences（中国地质大学-武汉） 21 1580 

Wang, Gongwen China China University of Geosciences（中国地质大学-北京） 19 388 

Agterberg, F. P. Canada Geological Survey of Canada 17 1376 

Parsa, Mohammad Canada Geological Survey of Canada 17 355 

Mao, Xiancheng China Central South University（中南大学） 15 445 

Deng, Hao China Central South University（中南大学） 15 267 

Pan, Guocheng China China Jiliang University（中国计量大学） 15 233 

 

表 2 高产第一作者/通讯作者发文量和被引频数统计 

Table 2 Publications and citations of highly productive authors served as first or corresponding author 

作者 国家 所属机构（2025） 
发文

量 

累计被

引频数 

Zuo, Renguang China China University of Geosciences（中国地质大学-武汉） 50 2898 

Carranza, E. J. M. South Africa University of the Free State 17 1897 

Cheng, Qiuming China China University of Geosciences（中国地质大学-北京） 13 1482 

Singer, D. A. United States The Pennsylvania State University 13 678 

Pan, Guocheng China China Jiliang University（中国计量大学） 12 203 

Wang, Gongwen China China University of Geosciences（中国地质大学-北京） 12 294 

Liu, Yue China China University of Geosciences（中国地质大学-武汉） 11 303 

Parsa, Mohammad Canada Geological Survey of Canada 11 301 

Agterberg, F. P. Canada Geological Survey of Canada 10 762 

Maghsoudi, Abbas Iran Amirkabir University of Technology 10 668 

 

3 机构与国别分析 

3.1 机构分析 

本研究通过 VOSviewer 对 Mathematical Geosciences、Natural Resources Research 和 Computers & 

Geosciences 三本期刊中参与矿产预测研究的机构进行了统计分析，结果表明 935 篇文献的作者来自 934 个

不同机构。表 3 列出了发文数量最多的前 10 个研究机构及其累计被引频数。中国地质大学（武汉）的发文

量和总被引频数均位居榜首，表明其在矿产预测领域极高的参与度和活跃度。该机构有多名学者（左仁广、

熊义辉、刘岳）位于高产和高被引作者之列（表 1 和表 2）。国内的中国地质大学（北京）和中南大学也是

矿产预测研究的学术重镇，贡献了大量的论文和被引频数（表 3）。 

 



表 3 高产研究机构发文量和被引频数统计 

Table 3 Publications and citations of highly productive institutions 

排名 研究机构 发文量 累计被引频数 

1 China University of Geosciences（中国地质大学-武汉） 106 5030 

2 United States Geological Gurvey 62 1304 

3 China University of Geosciences（中国地质大学-北京） 59 1401 

4 Geological Survey of Canada 57 2934 

5 Central South University（中南大学） 24 357 

6 University of KwaZulu-Natal 23 833 

7 University of Twente 20 2529 

8 York University 20 1973 

9 University of the Free State 18 230 

10 Amirkabir University of Technology 17 832 

 

为直观揭示矿产预测领域内主要研究机构之间的合作关系，本研究利用 VOSviewer 和 Scimago Graphica

绘制了机构共现网络图（图 2），包含发文量在 6 篇及以上的研究机构。图中机构节点的尺寸与其发文量成

正比，节点间连线的粗细则对应机构之间学术合作的紧密程度。从图 2 中可知，中国机构是矿产预测领域

研究的主要力量，分别形成了以中国地质大学（武汉）和中国地质大学（北京）为首的两支合作机构众多

的研究集群。同时，来自美国、加拿大、伊朗、澳大利亚、南非等国的机构也表现活跃。但从整体来看，

该网络大致呈现出以某一国家的机构为核心的子群聚集现象（图 2），相同国家的机构合作更为紧密，而跨

国的合作连线相对较少、较细，指示了本研究领域的合作存在较强的地域导向性，高水平、常态化的国际

协同研究网络尚未形成。 

 

图 2 研究机构共现网络图 

Fig.2 Co-occurrence network of institutions  



3.2 国家间科研合作分析 

本研究利用 VOSviewer 对 935 篇目标文献进行了作者的国别分析，共有 72 个国家的学者参与了矿产预

测主题论文的发表，结合 Scimago Graphica 绘制了国家间的合作网络图（图 3），图中显示了发文量 4 篇及

以上的国家，并呈现了国家间的合作关系。图中节点代表国家，节点越大，表示该国家发文数量越多；节

点颜色的深浅反映该国国际合作总强度，颜色越深代表与他国合作越频繁；不同节点连线的粗细代表国家

间合作的频繁程度。从图 3 中可知，中国-加拿大、中国-南非之间的连线最粗，表明中国与这两个国家学者

间的国际合作最为频繁。各国节点下方标注了合作国家的数量，其中澳大利亚合作国家最多（21 个），加

拿大与中国紧随其后。 

本研究利用 bibliometrix 进一步细化了各国学者的国际合作活跃度。如图 4a 所示，发表论文最多的前 5

个国家为中国（248 篇）、美国（65 篇）、加拿大（59 篇）、伊朗（59 篇）和澳大利亚（40 篇），五国作

者产出了本领域 50.4%的论文。根据署名作者国别情况可将论文划分为两类：（1）单一国家合著论文（single 

country publications, SCP），即所有作者均隶属于同一国家的论文；（2）多国合著论文（mutiple country 

publications, MCP），即作者来自至少两个国家的论文。中国是最大的论文产出国，MCP 论文数量也最多，

但 MCP 占比远低于 SCP（图 4b），表明中国学者在进行研究时更倾向于国内合作。相比之下，伊朗、加

拿大和澳大利亚学者在开展国际合作方面表现更佳，MCP 占比高于中国（图 4b）。但整体而言，所有国家

的 MCP 占比均低于 SCP 占比，表明当前矿产预测领域的研究仍以国家内部合作为主导模式，国际合作偏

少。 

 

图 3 国家合作网络图 

Fig.3 Cooperation network among different countries 



 

图 4 (a) 前五高产国家的发文数, (b) 发文量前五国家的国内合作及国际合作占比 

Fig.4(a) Publications of top 5 highly productive countries, (b) Proportion of domestic and international 

collaborations for the top 5 highly productive countries 

 

 

 

4 发展轨迹与热点变迁分析 

4.1 发展轨迹分析 

4.1.1 基于发文量的发展阶段划分 

分年度统计的发文量可作为衡量学科发展阶段的重要指标 (张向阳等, 2025; Zhang and Sun, 2025)。本研

究使用 bibliometrix 对各年份的发文数量进行了统计（图 5），并统计了文献来源期刊的发文量数据（图 6）。

1969-2025 年发文量呈现出稳步提升的总体趋势，根据年度发文量和增长率将矿产预测研究划分为三个阶段。

起步期（1969-1991 年）发文量整体较少且不稳定，多数年份在 10 篇以下。增长期（1992-2018 年）发文量

总体稳步增长，但仍有一定波动，基本保持在 10-20 篇之间。值得注意的是，1992 年发文量飙升至 34 篇，

在前后年份中非常醒目。经核对文献数据，该年份发文量异常的原因在于 Mathematical Geology 在这一年的

24 卷第 6 期推出了一期矿产预测专辑，该专辑的 13 篇论文被纳入本研究中，且 Natural Resources Research

在这一年创刊，增加了文献来源。爆发期（2019-2025 年）发文量呈现爆发式增长，2019 年相比 2018 年增

长率超 187%，2020 年相比 2019 年又增长了 47%以上，2021 年达到峰值 70 篇，2022-2025 年间发文量波动

幅度相对较小，保持在发文量的高峰区间。Mathematical Geosciences 和 Computers & Geosciences 多年来保

持了大体稳定但略有波动的发文量，在 2019 年以后发文量稳步增长。Natural Resources Research 虽然创刊

最晚（1992 年），但贡献了三本会刊发文总量一半以上的矿产预测主题论文，表现出鲜明的期刊特色，特

别是 2019 年之后，人工智能驱动成矿预测研究的兴盛推动了相关主题发文量暴涨（图 6），使该期刊成为

报道矿产智能预测研究成果的主要平台之一。 



 

图 5 年度发文量与阶段划分 

Fig.5 Annual publication volume and stage division 

 

图 6 分文献来源刊物的年度发文统计 

Fig.6 Annual publication volume counted by source journals 

4.1.2 基于关键词内涵的发展轨迹分析 

基于发文量的阶段划分是文献计量学中常用和有效的方法，但由于本研究只节选了三本期刊的文献，

年度发文量具有较强的随机性波动（图 5），据此划分发展阶段不够精准、合理。为此，我们以十年为基本

单元统计了不同年代热门关键词的出现频数（表 4），其中 1969 年归入第一个十年，最近的 2021-2025 年

作为单独的统计单元。我们根据不同年代关键词出现频数的显著变化及其反映的发展内涵划分出奠基期、

发展期和繁荣期三个发展阶段。 

（1）奠基期（1969-1990） 

本阶段是对 IAMG 会刊文献追溯的起点，但并不是矿产预测研究的起点。实际上，矿产预测在这一阶



段已经开始由早期定性研究为主向定量研究转变，许多用于矿产预测的数据分析和建模的方法已在这一阶

段发展成熟，为后续这一领域研究的发展和繁荣奠定了坚实的基础，因此我们将这一阶段定义为奠基期。

从研究内容上看，本阶段是矿产预测定量化和计算机化的开端，矿产资源评价（mineral resource assessment）

是本阶段的主要科学任务，地质统计学（geostatistics）成为核心工具，区域化变量的空间变异性分析利器

变异函数（variogram）和克里金（Kriging）空间插值算法被广泛用于资源/储量估算和品位空间建模。地球

化学数据（geochemistry）是这一时期最重要的数据源，多变量分析方法（multivariate analysis）受到关注和

重视。判别分析（discriminant analysis）、聚类分析（cluster analysis）、趋势分析（trend analysis）、自相

关分析（autocorrelation）等经典数据分析方法也是本时期的重要研究内容。该阶段可以视为用计算机替代

人工分析和计算、实现定量化的起步阶段，但智能化成分很浅。我们注意到这个阶段需要学者自行编制计

算机程序来完成各种数据分析任务，Fortran 是本阶段最常用的编程语言。由于这一阶段仅有 Mathematical 

Geology 和 Computers & Geosciences（1975 年创刊）产出相关文献（图 6），文献量偏少，我们在这一阶段

适当引入 IAMG 会刊之外的文献，以更好地反映这一阶段矿产预测的发展动态。现代矿产定量预测和评价

的起点可追溯到 1957 年，Allais 构建概率模型（对数分布和泊松分布模型）评估 Sahara 地区矿床勘探的经

济前景(Allais, 1957)。进入本研究划分的奠基期后，众多国外学者围绕矿产资源总量评价与潜力预测开展了

大量的理论和应用研究(Agtergberg, 1974; Barry and Freyman, 1970; Harris, 1973; Griffiths and Singer, 1973)，

形成了以统计分析法为主体的成熟的矿产资源定量评价体系，成为本阶段最显著的研究进展，里程碑事件

是 1976 年在挪威洛恩举行的国际地质对比计划 98 号专题“资源研究中计算机应用标准”归纳总结了 6 种

标准的矿产资源定量评价方法：单位区域价值估计法、体积估计法、丰度估计法、德尔菲估计法、矿床模

型估计法和综合法(毛先成, 2006)。国内学者也在这一阶段开展了卓有成效的矿产定量预测与评价的研究工

作，赵鹏大院士在 1990 年矿产资源统计预测国际学术研讨会上总结了国内这一阶段的特色工作(毛先成, 

2006; 朱章森和朱磊, 1998)：中国地质大学的矿床统计预测(赵鹏大等, 1983)、长春地质学院的综合信息预测

(王世称等, 1989)和成都地质学院的求异理论无模型预测(朱章森等, 1990)。此外，学者们还在三维成矿预测

(毛先成和陈国珖, 1988)、矿产预测不确定性研究(桂宝林, 1984)、矿床勘查评价专家系统(方玉禹, 1987)等方

面开展了前沿性的探索工作，为后续相关研究方向的发展和兴盛提供了宝贵的先导性经验。 

（2）发展期（1991-2010） 

地理信息系统（GIS）技术的兴起和广泛应用是本阶段最醒目的标志性事件，它使得地质、地球物理、

地球化学和遥感等多源数据的集成（data integration）与空间分析成为可能。在 GIS 技术的强力推动下，矿

产预测（mineral prospectivity mapping）在这一时期逐渐替代矿产资源评价成为主流科学任务，并分化出知

识驱动和数据驱动两类模型。两者的分歧之处在于集成证据层并确定模型参数的方式：知识驱动模型依赖

专家的经验知识设定规则，而数据驱动模型则基于已知矿床与证据层之间的统计关系进行预测。知识驱动

模型适合勘探程度较低的绿地地区（greenfield），这些地区缺乏充足的已知矿床/矿点开展统计分析。专家

系统（expert system）是早期（1991-2000）知识驱动模型的热点，而模糊逻辑（fuzzy logic）则在 2000 年之

后成为最具代表性的知识驱动算法，其热度一直延续至今（表 4）。从统计数据来看，数据驱动模型是更为

盛行的矿产预测模型（表 4），这类模型更适用于具有一定勘探程度、已探明足够数量矿床/矿点的棕地地



区（brownfield）。证据权重法（weights of evidence）和逻辑回归（logistic regression）是这一时期涌现出的

两类经典数据驱动算法。在另一个数据驱动方法的分支上，机器学习算法从这一时期开始登上矿产预测的

热词榜单。与其他学科领域一样，机器学习最开始的应用围绕人工神经网络（artificial neural network）这一

人工智能早期最经典的算法展开，在新世纪的第一个十年中收获了不低的热度（表 4）。但受限于数据、算

法和算力，机器学习研究尚未系统开展，并不是这一时期数据驱动矿产预测的主流方法。 

（3）繁荣期（2011-2025） 

这一时期是矿产预测真正进入智能时代的十五年。机器学习全面取代地质统计学和概率统计内核数据

驱动模型成为最核心的技术标签，关键词出现频数飙升（表 4）。通用领域人工智能算法的飞速进化与迭代、

空间探测技术进步带来的海量多源勘查数据和计算机算力指数级增长共同推动了这一变革。研究方法方面

的变化最为明显，研究焦点从传统基于概率统计内核的算法转向了各类机器学习模型，支持向量机（support 

vector machine）和随机森林（random forest）在本时期迅速盛行。在本阶段后期（2021-2025），深度学习

（deep learning）开始展现其优越性，卷积神经网络（convolutional neural network）超越随机森林和支持向

量机，成为关键词出现频数最高的具体算法。研究内容方面，矿产预测已经从早期单纯追求预测精度转向

了关注预测结果的可靠性和实用性。不确定性（uncertainty）是矿产预测任务的一个固有属性或缺陷，其根

源来自成矿系统的高度复杂性和多源矿化数据中的噪声信息，数据驱动算法的“黑箱”实施过程进一步加

剧了矿产预测结果的不确定性，这一问题已经成为影响预测结果可靠性的关键因素（Zuo et al., 2021），在

本阶段引起了学者们的高度关注（表 4）。同时，学者们也更加注重智能预测模型的实用性。一方面，矿产

勘探（mineral exploration）频繁出现在关键词中；另一方面，三维建模（3d modeling）和遥感（remote sensing）

出现在本时期两个十年的热词榜中，反映了矿产预测研究正努力契合当下勘查工作在拓展深度（三维立体

深部勘探）和广度（勘查程度浅的高寒山区遥感找矿）方面的现实需求(荆林海等, 2025; 毛先成等, 2025; 袁

峰等, 2019)。 



 

表 4 矿产预测领域关键词分时期出现频数统计表 

Table 4 Frequencies of keywords in mineral prospectivity mapping counted by period  

1969-1980 1981-1990 1991-2000 2001-2010 2011-2020 2021-2025 

关键词 

出现 

频数

（次） 

关键词 

出现 

频数 

（次） 

关键词 

出现 

频数 

（次） 

关键词 

出现 

频数 

（次） 

关键词 

出现 

频数 

（次） 

关键词 

出现 

频数 

（次） 

mineral exploration 8 kriging 7 
mineral resource 

assessment 
22 gis 19 

mineral prospectivity 
mapping 

36 
mineral prospectivity 

mapping 
77 

geochemistry 6 geochemistry 6 mineral exploration 14 
mineral prospectivity 

mapping 
18 geostatistics 18 machine learning 54 

discriminant analysis 5 mineral exploration 5 gis 9 weights of evidence 15 mineral exploration 16 deep learning 31 

mining 5 geostatistics 5 data integration 7 artificial neural network 14 gis 12 uncertainty 24 

petroleum exploration 5 
petroleum 

exploration 
5 gold deposit 7 

mineral resource 
assessment 

10 gold deposit 12 mineral exploration 21 

regression analysis 4 variogram 4 expert system 6 gold deposit 9 uncertainty 12 
convolutional neural 

network 
19 

simulation 4 
discriminant 

analysis 
3 geostatistics 6 mineral exploration 8 machine learning 11 random forest 18 

data processing 3 
geophysical 

exploration 
3 weights of evidence 6 fractal analysis 5 fractal analysis 10 gold deposit 17 

fortran 3 image analysis 3 classification 5 logistic regression 5 geochemical exploration 16 
mineral resource 

assessment 
14 

geochemical exploration 3 
multivariate 

analysis 
3 kriging 5 prospectivity 4 porphyry copper deposit 10 geostatistics 12 

geostatistics 3 outliers 3 
mineral prospectivity 

mapping 
5 spatial association 4 kriging 9 3d modeling 11 

mineral resource 
assessment 

3 prediction 3 knowledge-driven 4 uncertainty 4 random forest 9 geochemical data 11 

trend analysis 3 resource appraisal 3 mineral deposit 4 
conditional 

independence 
3 weights of evidence 9 geochemical exploration 11 

area of influence 2 trend analysis 3 petroleum exploration 4 fuzzy logic 3 logistic regression 8 support vector machine 9 

classification 2 autocorrelation 2 variogram 4 fuzzy set 3 remote sensing 8 geophysical exploration 8 

cluster analysis 2 cluster analysis 2 conditional simulation 3 geochemistry 3 3d modeling 7 gis 7 
conditional simulation 2 contouring 2 exploration target 3 geostatistics 3 artificial neural network 6 graph network 6 

contouring 2 data integration 2 geochemistry 3 hydrothermal alteration 3 classification 6 porphyry copper deposit 6 

deposit modeling 2 drilling patterns 2 interpolation 3 kriging 3 
compositional data 

analysis 
6 remote sensing 6 

graphics 2 exploration models 2 mineral deposit model 3 data integration 2 
mineral resource 

assessment 
6 kriging 5 

 

 



4.2 关键词热度变迁分析 

关键词的热度变迁反映了该领域研究焦点的动态变化，追踪关键词的热点变化是捕获和洞悉学科发展

趋势的重要窗口。本研究统计了全时代累计出现频数最多的 26 个关键词在三个发展时期的热度变化情况，

考虑到每个发展阶段文献数量差距很大，单纯用出现频数代表热度对文献数量少的早中期关键词而言并不

合理。为此，本研究采用（特定时期关键词出现频数/该时期文献总数）的数据标准化方式消除文献数量不

平衡的影响，以关键词的出现频率来反映其在特定发展阶段的热度，同时，我们根据关键词的科学内涵，

将入选的关键词分为研究任务与对象、技术手段、具体算法三个组别进行对比讨论，统计结果如图 7 所示。 

从图 7a 可以清晰地看出，本领域的主题研究任务经历了从奠基期矿产资源评价为主，到发展期矿产资

源评价与矿产预测并举，再到繁荣期矿产预测占主导的历程。这种主题任务的变化是由技术手段的发展水

平决定的，以矿产资源评价任务为主的阶段对应了具体算法组别中地质统计学（克里金和变异函数）热度

遥遥领先的时期（图 7c），而繁荣期机器学习算法的盛行则将矿产智能预测的热度推到了断档领先的地位

（表 4 和图 7）。地球物理勘探和地球化学勘探这两种具体的勘探任务的热度都呈现出有趣的两端热、中间

冷的模式，但两个热门时期的研究焦点有所差异：奠基期两者的热度主要来自对地球物理和地球化学数据

处理方法的探索；而在繁荣期，得益于地球物理勘探广域探测和深穿透能力，以及先进的地球化学异常提

取方法，地球物理和地球化学成为多源数据驱动矿产智能预测中重要的数据来源和证据层。金矿和斑岩铜

矿是矿产预测领域最热的研究对象，金矿在三个时期一直保持稳定的热度，而对斑岩铜矿的研究多来自繁

荣期。如前文所述，不确定性研究成为繁荣期矿产预测研究摆脱通用智能预测模式、抓住矿产勘探固有特

性的一个显著标志，成为这一时期的热点研究方向。图 8a 显示了有关研究任务与对象的关键词的出现频数

累积折线，大部分关键词的频数累积速度从奠基期到繁荣期平缓增加，矿产预测和不确定性两个关键词呈

现出在繁荣期急剧增加的变化趋势，反映了与这两个主题关键词相关的研究依然处于热度攀升、方兴未艾

的阶段。 

技术手段的热度也呈现出契合上文分析的变化趋势（图 7b），即地质统计学在奠基期占据绝对主导地

位，GIS 及其促进的数据集成则成为发展期的主题，机器学习和深度学习则主导了繁荣期矿产预测的发展。

遥感技术在三个阶段都保持了稳定的热度，并与繁荣期出现并迅速热门的三维建模技术一起成为矿产预测

的重要支撑技术。分形分析（fractal analysis）作为为数不多的矿化信息非线性表征工具，在发展期和繁荣

期都保持了较高的热度。GIS 的热度经历了发展期的鼎盛，在繁荣期急剧下降，这种热度下降实际上并不说

明 GIS 技术已经遇冷，恰恰相反，GIS 是当前任何矿产预测研究都不可或缺的平台和技术，作为所有预测

方法开展的前提和基础，多源数据的集成和管理都需要通过 GIS 来实现。事实可能是由于 GIS 技术的基础

性和流行度，矿产预测领域的学者们已经将 GIS 视为了常规、理所应当采用的技术手段，因此越来越少的

学者在关键词中将 GIS 作为文章的特色来强调，造成了 GIS 关键词出现频数的骤降。图 8b 显示了技术手段

关键词的频数累积折线，机器学习和深度学习在 2020 年后保持着极高斜率的频数增长速率，反映了热门人

工智能算法在当下矿产预测领域依然保持强劲的发展潜力。 

除去奠基期的多变量分析、变异函数和克里金法，算法在发展期和繁荣期的热度几乎全部被数据驱动



算法占据（图 7c），有两个热度变化特征值得注意。一是虽然证据权重和逻辑回归两种算法主要活跃在机

器学习尚未盛行的发展期，但在繁荣期依然收获了一定的热度，这是由于这两种经典算法常作为对照算法

出现在机器学习驱动的矿产预测研究中。二是尽管人工神经网络在繁荣期完全被卷积神经网络这种同分支

的深度学习算法取代，但同属浅层学习算法的随机森林和支持向量机依然在近年保持极高的出现频数累积

速率（图 8c），随机森林累积增长曲线的斜率甚至与卷积神经网络极为接近。这是由于在很多矿产预测实

例中，由于矿床样本的极度稀缺，具有数据贪婪属性的先进新兴智能算法很难获取能发挥其预测性能上限

的充足训练样本集，克服稀少数据过度训练引起的过拟合成为这种场景下矿产预测需要面对的重要挑战，

在算法层面具有优越性的深度学习在预测成效上未必能稳定超过经典的浅层学习算法，特别是随机森林这

种具有强大抗过拟合能力的集成学习算法。经典算法依旧盛行的现象是矿产预测领域学者不盲目迷信前沿

算法、注重具体研究区实际预测成效的体现。 

 

图 7 高频关键词在三个发展期的出现频率：(a) 研究任务与对象关键词, (b) 技术手段关键词, (c) 具体算法

关键词 

Fig.7 Frequency ratios of high-frequency keywords in three development periods: (a) keywords related to research 

tasks and targets, (b) keywords related to techniques, (c) keywords related to specific algorithms 



 

图 8 高频关键词的频数累积折线：(a) 研究任务与对象关键词, (b) 技术手段关键词, (c) 具体算法关键词 

Fig.8 Cumulative Lines of frequencies of high-frequency keywords: (a) keywords related to research tasks and 

targets, (b) keywords related to techniques, (c) keywords related to specific algorithms 

为了了解矿产预测领域的新兴热点和未来发展趋势，我们将研究视角聚焦于近三年文献，并屏蔽图 7

中的主流关键词，得到了具有更高时间分辨率的新兴热词图（图 9），图中黑圆的大小与相应关键词出现频

数成正比。图 9 反映出矿产预测领域最新的发展热点与趋势，即从倚重单一高性能预测模型，转向对智能

预测模型内部机制的深入探索与优化，利用前沿人工智能技术解决矿产预测领域的固有瓶颈问题(左仁广, 

2025)。机器学习预测过程存在“黑箱”属性，成为制约预测结果可靠性与地质可解释性的关键瓶颈。作为

应对策略，可解释性（interpretability）研究成为当下矿产预测领域的一个核心热点。SHAP（Shapley additive 

explanations）提供模型决策过程中全局和局部视角的精细特征贡献度，成为近年来开展可解释性分析的热

门工具。知识图谱（knowledge graph）则代表了另一种解决思路，即将地质学家的先验知识、成矿规律和

矿床模型以结构化的方式嵌入预测系统，不仅有助于提升模型可解释性，也为实现数据与知识联合驱动的

成矿预测提供了重要路径。矿产预测的另一个固有痛点问题是高质量标签数据的严重匮乏，使得矿产预测

本质上成为一类典型的小样本学习问题，极大限制了模型的泛化能力与应用成效。近期热点关键词反映了

学者正从多角度寻求解决方案：通过生成对抗网络（generative adversarial network）合成高质量训练样本来

扩充数据规模；通过迁移学习（transfer learning）将已有的知识或模型从数据丰富的场景迁移至目标区，提

升小样本场景下的学习成效。XGBoost 和深度森林（deep forest）则代表了近三年算法层面的进化，两者都

是在前期预测成效优异的树结构集成学习模型（如随机森林）的基础上进行优化，进一步增强了预测模型



的防过拟合机制和可解释性。自注意力机制（Self-Attention Mechanism）和 Transformer 架构的兴起则表明：

在技术层面，学者开始致力于让模型能够自动关注并加权关键地质特征的重要性，从而更精准地捕捉关键

矿化信息；在理念层面，本领域的学者已经着手接驳当前最前沿的大模型技术，自然语言处理（natural 

language processing）出现在热词榜也从侧面反映了大语言模型开始进入矿产预测研究的视野。矿产预测大

模型虽然目前仍处在前沿探索阶段，但已在智能架构创新、多模态融合、跨区域泛化等方面展现出了巨大

的发展潜力(师路易和左仁广, 2025; 王永志等, 2025)。 

 

 

图 9 矿产预测领域近三年新兴热门关键词 

Fig.9 Newly emerging hotspot keywords in the domain of mineral prospectivity mapping in the most recent three 

years 

4.3 高影响力论文分析 

文献的被引频数反映了论文在相关领域受到的关注度与认可度，是评估其科学价值和学术影响力的核

心依据(Garfield, 2009; Kang and Ding, 2024)，高被引论文也从侧面反映领域内的研究热点与关键问题。本研

究使用 bibliometrix 统计了 935 篇文献在 Scopus 数据库中的被引次数。表 5 列出了被引频数排名前 10 的论

文。 

这些高被引论文指示了某个特定年代的研究热点，反映了矿产预测领域的一些本质核心问题。我们通

过分析和总结，将这些卓越的研究成果归为五个热点主题。 

 

 

 



表 5 被引频数前十的高被引论文信息表 

Table 5 Information of top 10 highly cited papers 

论文信息 论文 DOI 被引频数 

Cressie, 1988, Math. Geol. 10.1007/BF00892986 466 

Zuo and Carranza, 2011, Comput. & Geosci. 10.1016/j.cageo.2010.09.014 435 

Cheng et al., 2000, Nat. Resour. Res. 10.1023/a:1010109829861 392 

Filzmoser et al., 2005, Comput. & Geosci. 10.1016/j.cageo.2004.11.013 364 

Carranza and Laborte, 2015, Comput. & Geosci. 10.1016/j.cageo.2014.10.004 320 

Yousefi and Carranza, 2015, Comput. & Geosci. 10.1016/j.cageo.2015.03.007 308 

Abedi et al., 2012, Comput. & Geosci. 10.1016/j.cageo.2011.12.014 282 

Xiong and Zuo, 2016, Comput. & Geosci. 10.1016/j.cageo.2015.10.006 260 

Cheng and Agterberg, 1999, Nat. Resour. Res. 10.1023/A:1021677510649 230 

Porwal et al., 2003, Nat. Resour. Res. 10.1023/A:1022693220894 223 

 

（1）空间预测中的插值算法。Cressie (1988) 深入探讨了空间预测中的普通克里金法，强调了地质统计

学中内蕴平稳性的假设，重点剖析了变异函数关键参数对空间预测结果的影响机制。这篇论文系统性地奠

定了普通克里金法的应用基础，推动了普通克里金法在矿产研究领域的广泛应用，为精准刻画成矿元素品

位空间分布提供了有力工具。 

（2）地球化学异常分离。Cheng et al. (2000) 将空间分析与频谱分析相结合，利用傅里叶变换和分形理

论，从频域角度分离地球化学异常，有效解决了异常和背景重叠分布的难题，显著提升了弱异常的检测能

力。Filzmoser et al. (2005) 摒弃了传统的单变量分析思路，提出一种基于稳健统计和自适应阈值的多变量异

常检测方法，结合多变量异常图符号与颜色编码，增强了对异常值空间分布和潜在成因的解释能力。Xiong

和 Zuo (2016) 首次将深度学习（自编码器网络）应用于地球化学异常识别，通过无监督预训练重建输入的

地球化学数据，将样本的重建误差作为异常识别的新指标。论文将深度学习模型引入勘查地球化学领域，

为处理高维、非线性、非正态分布的地球化学数据开辟了新途径。以上论文都克服了传统地球化学异常分

离基于值驱动和分布模拟的局限，推动了地球化学数据分析向模式驱动和智能驱动的范式转变。 

（3）矿产预测的评价工具。Yousefi 和 Carranza (2015) 提出了一种结合 P-A 图（Prediction-Area plot）

和 C-A 分形模型（Concentration-Area fractal model）客观、量化评估证据层权重的方法，P-A 图和归一化密

度（normalized density）在后续大量研究中被用于评估机器学习模型的预测成效，成为矿产预测结果评价中

的核心工具之一。 

（4）高度适配矿产预测任务的机器学习算法。Zuo 和 Carranza (2011) 系统阐述了基于支持向量机的矿

产预测完整工作流程，包括样本集构建、核函数选择和模型验证等，此外，文中负样本选取原则和构建多

套训练集的方案为后续大量相关研究提供了重要启示，促进了监督学习在矿产预测的推广应用。Abedi et al. 

(2012) 将常用的二分类支持向量机扩展到多分类框架，采用“一对一”策略训练多个二分类器，再通过投

票机制确定待预测样本的多分类归属，实现更精细的成矿远景分级。Carranza 和 Laborte (2015) 论证了随机

森林算法在小样本（12 个矿点）和证据层数据存在缺失的苛刻条件下，依然能提供高精度预测结果并保持

模型良好的可解释性。以上论文为支持向量机和随机森林在矿产预测领域的广泛应用奠定了理论和应用基



础，这两种历久弥新的经典算法在当下依然是本领域学者最常选用的机器学习算法之二（图 7c），成为大

数据与深度智能时代一抹独特的亮色。 

（5）模糊集理论在矿产预测中的应用。Cheng 和 Agterberg (1999) 提出了模糊证据权重法，将传统证据

权重法从离散域推广到连续域，并可以根据研究区条件灵活地采用数据驱动或者知识驱动的方式定义关键

的模糊隶属度函数（fuzzy membership function）。Porwal et al. (2003) 提出了一种知识驱动和数据驱动并行

的模糊矿产预测模型，并设计了一套模糊化、推理引擎构建和去模糊化的完整实施流程优化矿产预测结果。

这两篇论文都致力于将模糊集理论融入矿产预测方法体系，克服传统离散数据处理中的信息损失的问题，

打破了知识驱动和数据驱动模型间的壁垒，丰富了矿产预测的研究思路和方法。 

以上十篇论文不仅在发表当时解决了领域研究的重大问题，推动了学科发展，在之后的时代也持续被

领域内的学者关注和引用，其中的创新思维、严谨方案和实用框架超越了年代的限制，依然被当下学者广

泛借鉴。图 10 显示了这些论文的被引频数累积折线，考虑到最后一个数据点记录的仅是 6 年（2020-2025）

的引用量，我们可以认为所有论文的频数增长速率都在递增，特别是其中五篇(Zuo and Carranza, 2011; Abedi 

et al., 2012; Carranza and Laborte, 2015; Yousefi and Carranza, 2015; Xiong and Zuo, 2016)最近时期的变化斜率

显著超过了前一个年代，反映了这些论文的热度依然在攀升。 

 

图 10 高被引论文的被引频数累积折线 

Fig.10 Cumulative Lines of citations of highly cited papers  

5 研究局限与不足 

文献计量学本质上是一种数据驱动的研究，原始数据质量对于研究结果具有关键性的影响，可能存在

的文献缺失成为本文研究最主要的局限与不足。首先，本文选取的 935 篇文献不能完全代表近五十年矿产

预测研究的成果，每个期刊都有偏好的范围，本研究文献来源的三本期刊更青睐注重算法和模型创新的论

文，而在数学地球科学领域还有不少其他的重要期刊，如 Ore Geology Reviews 发表的矿产预测主题论文更

注重地质背景及结果的地质验证和解译，Journal of Geochemical Exploration 则偏重地球化学勘探和数值模



拟成矿预测的研究。因此，本研究可能会遗漏某些研究方向的论文成果，比如数值模拟驱动的矿产预测是

近十年来的一个热点研究方向，但在本研究关键词分析中没有得到体现。其次，受当时检索技术条件所限，

1990 年之前的一些文献的信息有所缺失，没有收录到关键词和摘要，这对本研究了解奠基期的发展轨迹产

生了不利的影响。最后，基于领域所有相关文献的矿产预测发展轨迹和热点变迁的分析是一项浩大的工程，

虽然本文已经将研究范围缩小到 IAMG 的三本会刊，但在全部 10972 篇文献中检索出有效文献，依然会不

可避免地出现遗漏。特别是矿产预测研究分支甚广，作者写作风格各异，很多相关文献的标题和关键词无

法被我们列出的检索式搜索到。我们花费了大量精力进行扩大检索范围后的人工筛选，补充了大量的有效

文献，但依旧会遗漏部分文献。展望后续研究，我们认为可以通过部署训练大语言模型，对海量文献进行

智能筛选，获取全面而精准的主题文献库。 

尽管当前研究存在以上不足，我们认为本文研究成果依然是有效和有意义的。我们团队对 2006-2024

年间源自所有期刊的矿产预测主题论文开展了文献计量学研究(Zhang and Sun, 2025)，研究成果都可以与本

文的发现和推论相互印证，表明了本文源自三本期刊的文献研究具备足够的代表性。而在之前的研究中，

我们深感 2006-2024 年文献反映的研究进展远远不能反映矿产预测研究的完整发展轨迹，因此本文以覆盖

1969-2025 年的 IAMG 会刊文献为切入点，“管窥”领域发展轨迹和热点变迁，更充分地展现矿产预测五十

年发展脉络的全貌。 

 

6 结论 

本研究采用文献计量学的研究工具，对 IAMG 三本会刊中 935 篇矿产预测主题文献进行了量化分析和

结果可视化呈现，在此基础上剖析和探讨了过去五十年矿产预测研究的发展轨迹与热点变迁。主要研究工

作和结果可概括为以下四个方面： 

（1）Carranza, E. J. M., 左仁广和成秋明是矿产预测领域最高产和论文被引次数最多的三位作者，左仁

广以第一作者/通讯作者发表了最多的论文，并拥有最高的关键贡献论文累计被引频次。中国是矿产预测领

域最大的论文产出国，中国地质大学（武汉）的发文量和总被引频次在全球机构中位居榜首。作者和机构

间以学科团队和研究方向为纽带形成紧密协作群体，但不管是在作者、机构还是国家之间，本研究领域的

合作都存在较强的地域导向性，国内合作的占比远高于国际合作，高水平、常态化的国际协同研究网络尚

未形成。 

（2）基于关键词内涵的发展阶段划分能清晰地解析矿产预测研究的发展轨迹。奠基期（1969-1990）是

矿产预测定量化和计算机化的开端，科学研究任务主要是矿产资源评价，地质统计学（变异函数和克里金）

是本阶段的核心工具。发展期（1991-2010）以 GIS 技术的兴起和广泛应用为显著标志，矿产预测在这一时

期逐渐替代矿产资源评价成为主流科学任务，知识驱动的专家系统和模糊逻辑以及数据驱动的证据权重法

和逻辑回归成为这一时期的热门算法。繁荣期（2011-2025）是矿产预测真正进入智能时代的阶段，机器学

习算法全面取代地质统计学和概率统计内核数据驱动模型，这一阶段的代表性算法是前期的支持向量机和

随机森林及后期的卷积神经网络。矿产预测研究内容从早期单纯追求预测精度转向了关注预测结果的可靠

性和实用性，并努力契合当下勘查工作在拓展深度和广度方面的现实需求。 



（3）关键词热度变迁分析结果表明，矿产预测研究的主题任务经历了从奠基期矿产资源评价为主，到

发展期矿产资源评价与矿产预测并举，再到繁荣期矿产预测占主导的历程，这种变化是由不同时期技术手

段和具体算法的发展水平决定的：矿产资源评价任务为主的阶段对应了地质统计学热度遥遥领先的时期，

而繁荣期机器学习算法的盛行则助推矿产智能预测成为热度断档领先的主题。不确定性研究的热点成为繁

荣期矿产预测研究摆脱通用智能预测模式、解决矿产勘探固有缺陷的一个显著性标志。在算法层面上，数

据驱动算法占据发展期和繁荣期的几乎所有热度，虽然优越的深度学习算法近年来收获了最高的热度，但

支持向量机和随机森林两种经典的浅层学习算法依然因其对小样本矿产预测任务的高度适配性成为繁荣期

本领域学者的热门选择。矿产预测最新的热点和发展趋势是从倚重单一高性能预测模型，转向对智能预测

模型内部机制的深入探索与优化，利用前沿人工智能技术解决决策过程黑箱属性和样本稀缺等矿产预测领

域的固有瓶颈问题。 

（4）高被引论文反映了矿产预测研究发展历程中的热点和本质问题，被引频数前十的论文反映的热点

主题包括空间预测中的插值算法、地球化学异常分离、矿产预测的评价工具、高度适配矿产预测任务的机

器学习算法和模糊集理论在矿产预测中的应用。这些卓越成果中的创新思维、严谨方案和实用框架超越了

年代的限制，依然被当下学者广泛借鉴。 
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