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VN — P R A &R, IR T B EEN, AWM. A,
T A RHE m R . P EEA SRR R IR A E e —, RIS 2
(FEARDLPH I 1), /BRI S aT4, HABEa B IR G4 1 5 A & )
F= S A7 (F5 LEE, 2014; Luo et al., 2022; You et al., 2025).

Ze U - R ) it L iy 2 IR P B A B BARR I I i R P X 22— (Mo et all.,
2008, 2011; Zhang et al., 2014; Zhu et al., 2025). YEHABEA RN R A TSR Z A
AR R I R BB AR B, BE A7 8 WSk, JEEE RS A A0, Hal
FHNTAZH IR B FR R DA ™ L & 77 T AT A7 AE 1 2 B il SREADAE(2011)%)
UOPRVRRT DX A S TR R K B T A IR T R T, R Cet/Ce®* 5 (Ew/Eu)N
B, URIDEREN “ai Mo” Jlil™ R 40, AR AL B 0 T SR BE 4R EHA IR . Li 5%
(202 1)Xf WA - 2122 - Rl i X 5 B S A48 B 5 AT R I B A HE-O [RI A7 AN AL A 5
WEFCERH, 5 RIIE R A LG, B A BA S w6180 fH HAR I H 3 it b s,
T LR R L S R A S R, L HEN VD PR A KA AR K. Ren 55
(018X Vb PR XA Hea RIAL R I R G TR Y “ o6 A Bl b8 +47 1 B S Aff -+ K e
FEURR A B R R AR XA, BRI BEA A « R 52I8 7 s i EL A ) Chen
25(2022) Fi VD PPVA AL B TR A A S RO HE R R — S5 R T R R B R A, KRR
FATGE(LILE)E 4. =5t RMHFSE) 78, A Hf [FIA =38R 5 B e ks =
ABARK en(t){E-26.1 £J-10.5, BEIIE R A N BAB S H) endt) (B -14.4 £-2.7, $5R
PAICIR X DADK B/ PR 25ty 2 R bt 32, B AT HF RO 38 2 1A 428 22 9 T RE R OR A
AR5 B R AR S R 5 i o FLIERIR(>20 50 km)Fl 70 Ma R, 1RV (<35 km)fE
JE R (R AR T T BRI S N NAR SRR O R E R Y. 45 L, AR EIEL
T AN . AEVE RS B 1R SRR DL SOR X ZH B2 5 55 I R, Tk = 48— 1A

AR TR, A KRG W BT 8K 58 A IR o R Re i R
Ul G R A imiE M AE R P TESNE B, ORI G IR AR KEE. FiiRE &
B IX ZH A5 1 BB L) T2 (Qu et al., 2022; Wang et al., 2022; Tang et al., 2024; Chen et
al., 2025; Wang et al., 2025). 2K f1 & & 4% K& 43 (OH -« F-- CHFZ Fha] B4 JCZ (W Mn.
Ce. Eu), P IuER 5K 7 2 BT B B B 5 0 0% B 5Kk & &8 . #ih
U BE L (Ce/Nd)/Y EUAE T fili B2 2 B 4% -+ (HREE) 73 A1 55 248, Hrh(Ce/Nd)Y HUAH



P S B BSR AAA (R SE JE R o v B P2 e B8 (I 0 P It A v 463 J8 B T T A AT
T, JCHX LM A BEUR . 5T BE A B R #h 2% S5 1M 42 J8 (W Fey Cu. Mo %%)
SN R o e A B AN Y SR L8 4y IR AE VR A T 1 48 A HITRE R T, ICAE AL -IE SR
AT P T AR, AT Bl 1R AR s R e . B A T S & ER
RS b SR B T, FH T RO A 4 N R RO IR AR B SRR . DR, B R
TUR AR A AR BRI . FURE SR, A RN A R U R
A FE [ T2 (Han et al., 2013; Tang et al., 2024).

AL PR RO TR 5, JF B ACA MBS A1) U-Pb &5 FME e R
B, ZRE s AR AR, G55 2 B ) A, PR T IX A I AR G R B K
Er AL, 200 AT AR T T RR R X VR AR o B S AR U LT DGBERE 27 1]
— & JELE [F]— Bl JR G AN RS A A B B A IR AR B RK & A I R
Gi7E s IR BN S0 BT S I 4 SRR AN T R A ARAE . BRE VD IRA A
- 2 G TR R, FF BRI RO R AE T8 A R — B B =il i B A K
AP SR AR B L K BRI, R A A AR TR Mo TR TR S E
o WHAEE RN BRI - IR 25 K-S 1 P I R4 it sk A 25 S0 40 2 W0 Ay
IR, [E) A oA A T 5 ™ 4 X P i S AL B8 ST

1 WRE RS

1.1 XBHEE R

R Ay B2 ) e P - R AR iy, R 2R id s 1 1Rt e a) bt g A b
R TR R, ACGN 2R E T RS R R AR AT R R
RN . T 57 I R g T 58 KBt IR AR o iy 0 400 B A0 B B G e S £ 4t 7 BT

VORFVRRAT RAL T 2R - K- 75 3 LU oty b BRI RO WL AR B A E R b2, J& Tk
- T B () — 43 o 20K A 5957 T ORI TR L R4k K&
Je R A A =GR AR S, 2012; F57 5%, 2013; PRELHEESE, 2013). X% iH
WP 15 d AEARRIBER NG =St B R BRI b -4 3R, DA Mok 2 e 28 B 9 S i
IR ZN A - PO B, TR T BRI 2 AR IE B A% J5) o HH T SRR PR M 37 B8 AR o
5, WERAAETT PR BN FE T I AR SO R A S R
1.2 T XHE. EikGHERE

VOPRVRRHAT PR H B 12 2 BN T B Ge BT 2L R A AR b, RIRE S



WHATEE, B SR R K TR G R R (8] 1a). DX 2 AR 2 b L AR 1)
(NNE)J@Aii, {H P W 2 i ey sm 20 FIAE A, S AR e bR 2o A, 20 51
P IR B N UG AR R

WRH™ 25 R £ SO BRAR I T R VE AR K B -9 22 N KBS RN AR . 8 HE ) AN S
FIFRIN Bk, XS RIS IR FIRAE . E R 2 BB RPIR BGE AL S IR ™
EETYEERAR, R SRKAMBRBHR, AT YaRmmKa. 8a. Rk
045 fEXEEBEE T, 2K B EH A S AA - IIK, 55 A KRS % V)
MG, EMIETTH, 7 X EEZICR M EHER R R G R3], H50E AR 7 A i X
S PEAR FRAE AT, R T RO IR A IS R R A TR AT 1) B . YOIV BEE AR IR
HOEEER IO R R 2 A, DUBCIR S IBCIR AT e o8 EZE M AE R, R i R 4%
WRHIE, B 5SS BOR AR 75 2 1A 9% (Gao et al., 2015).

VOPFVERHET R A AR pR A, ARSI R, R AR SR B stk . B
MRt FEA. mEl. FIcatl, HEENRE, SINERPMERIMMEL b
(E&ESE, 2015). R CIIKA . B BS54y PRI A 51 R 8 NFEE, T2
DA TIPS 5 E KA B A SRR ML IR B A NAZ, SHREIR L
Wl AT e i, A A RPN AT AN, S5 S A REOR AU D 1 S5 T
B BEAEEK RS, RN, BABCRMGRECR R B, 32
WYINGE A A mk b, Bafi. R, FES T RS, B
FERRER AR 2 b AICEW T T IR B8, W SRS ST mItd, ®
P E B EGR N RO B RA A
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Fig. 1. (a) Geological map of the Shapinggou deposit (modified from Zhang et al., 2012), (b) Line profile
lithology distribution of Shapingou molybdenum deposit (modified from Ren et al., 2018)

TAR G ARTE TR VD VA BEA TR IRAAAE T BY(CE AR LK) 1T AU
CO WA/ =AHALZE ) A TIT 24 (5 A0 B A = b 200 AR (Nietal., 2015) , H
o1 R R A T Male Ay, mEA ) —IRE Y 340~550C . #hJE 7.8~16.9
wt.% NaCl. itk &4 Ho0-CO2, ZRIA ) —IRE 2 170~330°C. #% 0.7~6.5
wt.% NaCl. Ak R AT COx ) HaO; 11 BRI TIT B4 b /3 A T4 AL 5 FlE = BB A




I B ARAL A7 35— IR BE 240~450°C . #RFE 0.1~7.4 wt.% NaCl, %452 B35 — iR B
250~345°C. #hJE 0.2~6.5 wt.% NaCl, ARk %14 HoO-NaCl-CO, I BLEAL 35—
[ 240~440°C . £5%% 34.1~50.8 wt.% NaCl, 45 == B 17 25—l i 220~315°C L #5 /% 32.9~39.3
wt.% NaCl, JiRR 58 HoO-NaCl, i B2 A IEEA 7 () 340~550°C 1238 B 22 i S 2 e
AT 170~330°C; EhEE L BIL T REESS, HARPL A A8 = BRGT H B ER B P A 23
.
1.3 FALRHE S5 i

PIRAAAR R S [ BEA BUEEA R(B 1b), B LU B ERRE: BA N P LR
NE, HEADBEBEY . BT W ES T RVERES K AR, AR SRR
FEAREAL AR EE A BRIR BRI S5 s 0 2S IA) b 2 MG ey« A AR R R
JS i AR B B S 1 2 o B S IR AE

ASAEV PR XA AL ZK92 AFNAE R RIET TE KBS (K RINDFIA ST 1L
K BES (SPG RIDIFES (B 1b), K RIVBEERE MK LA 15m %2 300m, SPG &
FUBFERE N KFHIBAR 25 m 28 500 mo S0 FIASEHFE & 7 e DOVEEEAT i Tolk 5 A7
N, R L AL E A 0.06%~0.08% Mo, 154 A =0.02%~0.04% Mo, AN &
A6 5 B 2 BRI IR SRR Tl S A K, ER T TR AL &, BAR
I SPG AR E SUAMN S IERIBES, BTSSR & AT B /0 WEAR™ o Ko A R i 70 ) S
W RS P, BEAT VR A AW (A 2), K RIFERK S (K] 2a. c-e) BRI -
KA, DHCRMIE T, J&E AT IR GORAM BR8] 2a. ), &7 B WAE
W BS54 EaPe. WA T EUCONIERBES, BRRGMRE, FETUNHRAE R 251 ;
EET Y EENKA . RHKAMASE, ROV BREE KA 2 - EHES,
R B E IR G RHCR N K, IR = B BT AR A
TERDIR BAS I BORE, =35 % 7 A0k -0 JHCHR 3R (B 2¢)0 823K i o m] W S 4R 2= B
WAIEEAL (B 2d), REEET DAAHIKEGR Bk T A SR A R B (K 2e). BERAZ A
T EIE - 2 BRAEFRTE, AT, B EENMKA . BB AR
N A2 R AT - ERADIRE AR . SPG RAITERITES (K] 2b, fh)Z 2
K-IKFE A, Jaih Bkt A2, BT ERAS, W2 h55aEonis, & nl ALk
(K 2b). BB T A A FHRNEKPEEBUR KIS, FOIRGMIAR, B4
RIAE R B KA 40 AT LKA A IO, KA MBS R KA
PSR EORE (B 26, hy, ZImFEs H MR A, AHKAERES =R, DA



hy R B2 AT R AL, BRI R 55 T K R 5. B FRE
NER-FEIBH N iR, B2 AT s TR A A itk N e e
BB RE, TRESBT R A G5B N I 2g. h), R EIERBAZN
FHIE -

K-9 .“""."m',J SPG-13

w'f: ,: ~ Yis sl o Y —n Ry e BN T A e

2 WA AR B S A, (e, b E SRR, (c-hy N E R Qz,
fdE; Kfs, #KA; Ms, HzBE: Mol, MHT

Fig.2 The petrographic photos of some granite porphyry in the Shapinggou molybdenum deposit, among

them, (a) and (b) are photos of drill core samples, and (c-h) are petrographic photos. Qz, quartz; Kfs, K-

feldspar; Ms, Muscovite; Mol, Molybdenite



2 A

ARSORTYD PR X AR i B 25 R Bl R AN A AT BT, O R T
HL T (BSE) BRI A OG(CL) BHUGHA R, 43 55 0) B A A 4 BEAT W0 N B S R WL %
HA ) BSE B¢ CL UGS v BRI R 2 B R DR 27 1) 5 A PRI A 5 A 5 3 A 4 [ B A
SEIG R A (XS LS TESCAN MIRA 3) b 58 i BT BSE [R50 IR 28 TAF
i ESHONEIE 15.0kV, R 15nA. #540 CL AR TIER = ESH O
JE 10kV, WHUFLHEE 15nA.

WA B e R AE BIR [F]— S8 = 1 B T BR B (EMPA) 4% B EEAT TN (X282 5
Shimazu EPMA 600). {¢#% TAEEZSHCONIEBE 15 kV, WL 20 nA, - HT B 10
umo HTIRA ZAF BIEZSKRESIE, SRR G AR R IR R EhFE dh o AN
IITRZEN T £2%.

KA R TCZR AN U-Pb [\ 358 (R AE T B2 R R E WO U & 55 B TR R
HEAL(LA-ICP-MS)SE 56 % 5E il o WOEFITM R G4 Coherent GeoLas HD, FCE i3 H
Agilent 7900 ICP-MS. KA WA RBLE R 24 um. 4% 4 Hz, BEE%E 5 Jem?,
T UK ENRE S AT FE AT 2 URARFE X AT o B 2K Bk e 22 40 HT LA NIST610 4R, LA
BCa NWHR, A Iolite FAFX HAR T RIATAE. BEAKH U-Pb &4 L) Madagascar
fluorapatite JybrFEHFEAT 70 184S 1E, Madagascar B A7 HIHER: U-Pb EL {2 % (Thomson et
al.,2012), MMM E rTaEtt, i+ E brid H ) McClure Mountain B 4K A 7E 4 1%
FrkE, 4% McClure FrkE C &N 8 Po HL1E(0.88198)HH /T S EX B . 7F 28 um F BN
ST, AZISARFRRERAT € 1T, 23R 52416 Ma. 51814 Ma 4L NA8 mifF
ke, HAFR R AL T McClure FRfE S B R 1R ZE VPTG, RIARIRBEK A
SEAFSLI RGFE . AR T AL, B A F R Tsoplot B PFZ: ] U-Pb 4681 AIE 1155
IS S

ARG R K& U-Pb RN R @ F 0 e R [F— LA-ICP-MS S48 & 3T . 5258 55
HTRA 24 um RBE, 4 Hz RIA0%, LUK 6 Jem? B E . LLEFRPRUHEES 1 91500
FWARRE, BT T AAREFEAIEN 2 NMhRFE. DL NIST610 1A TE 7 BT ohbs, 2Si fF
JHWFR, HFH ICPMS DataCal £ 7 X} 45t ot 2= £ dm #4740 B (Liu et al., 2010), E5A
R IR AEARAE N GI-1. AHEFEHFIRIS 1 GI-1 [ 2°°Pb/28U 4R34 B 248 M 602 £2 Ma
(MSWD=0.79, n=38), SH#E#{H 599.8+ 1.7 Ma —#(Jackson et al., 2004). EAN3HTHIA



W RS R 25N 18 INBCTFIIER L 95% BAS K FiH 5. #5407 U-Pb 45841 A1 & 224
FEE IS P35 5% ] Tsoplot/Ex4.15 Bt 58 i (Ludwig, 2011).

3 TR

3.1 BERA K EMAFES U-Pb £

e b B AR 1 B T (BSE) R ik K (] 3), daiA B EEE —H
TERE, B RIMAE—E 2SR, BAEY 50~200 um. 7E K RIFEMH, BEACA BEECH
TAER BEE R, SR LB AR A0 T RHCA N B 2 B S N, R i 5 a2
REARA Se /> BEREARAT B fi, /D WLV P lAZ A3, AER BSE KIEH—. SPG R I,
BERAFRO A —F BN, BRSBTS K, fet®, SEa
LA 2 (R AR AN B G, R IR S MR AR R e SRR AIE . WA 5 B EE A
P)(Kfs. Pl Qz. BB HE — AR UL LN BRI, RERERA v EHRK
WEIAT ARG A i A R A I e, D9 )5 S8R I F-C1-OH A o s 4 A
R RO FR AR T A A 2K s LA-ICP-MS (15347 s S BUAE AR N K 3 — 6
B BT AL (B 3 ZLE TR

SPG-17-5C  SPG-19-9C  SPG-19-10

SPG-14-7C SPG-14-8C

o

100 pm

3 YOPRAEHE T AR B AR B B TR . L RS ABE S LA-ICP-MS E TR 7
Br5 U-Pb 5E £E A0 i B
Fig. 3 BSE image of apatite from the Shapinggou molybdenum deposit. Red circles mark the LA-ICP-MS
spots for U-Pb dating and trace-element analyses



S A [ R AR HEAT U-Pb RIS R AT RIS 2 . K RBURE S B IR
AEHR T EIAE N SER N 107128 Ma (20, n=60, MSWD=1.3), SPG RJIFE M T
IRAEAETHH IR T A S4ER N 10548 Ma (20, n=46, MSWD=0.9) (& 4, & 2-3,
B 1)o TRERME, WP IBEK A U-Pb BUREAEE — € EZ I P EREHIE. %
T A A M BRI E RS, e U-Pb 1k R 5 7555 247 5 74 30 ok 72 rp sl s 3
HiE— R E P2 RIE) . &G XEWIET = 5E PSR, HEliZ Pb ZEATRY
B A S DX R 1 S T R A A A k. PR IR e A BB KA U-Pb
R, P RS SRR RS DI 5 RIS 5 R AR, RILE ARG 2 R
AEM BRI S5 R, AE A BURA I R B R e . A SO s S R i
PRI F B YRE AT U-Pb FH5(112~104 Ma)iX — 5 IR . R B o m] S 4R

R

1.0 5200 - N g g g 1.0 b 5200 - » e p e
M () KR BAA A (b) SPGARSIFEAEEA A
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O T HAE#E =107 £ 7 Ma T A4 =105+ 8 Ma
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S
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Fig. 4 Tera-Wasserburg diagram of apatite in the granitic porphyry of the Shapinggou molybdenum deposit

3.2 BERAREHETR

RGBT BB A B A (R 1, TEWLMER 2). Kb F & 808 3.24~4.49
wt.%, “FEIMEN 3.67 wt.%; MnO &8N 0~2.71 wt.%, “FEHEN 0.67 wt.%; MgO &
N 0.002~0.079 wt.%, “FHIMEN 0.027 wt.%; FeO & & A 0~0.23 wt.%, “FH¥I{E N 0.08
wt.%; Cl &8N 0~0.026 wt.%, “FHIME N 0.008 wt.%; S &N 0~0.55 wt.%, “FIJE N
0.10 wt.%; HO H & A 0~1.07 wt.%, THIMEN 0.44 wt.%.

MEITCREM TSR EREE 3), WIFETER RS TR ACA M LT R &2
. FL X REE {HE N 3842~13969 ug/g (CFIIE AN 9680 pg/g), (La/Yb)n1E A 0.3~15.6
CEEME N 1.7), (La/Sm)NEN 0.6~4.0 CFIIEAN 1.7), (Sm/Yb)N{E N 0.2~7.1 CFIME N



0.9). IEFVATE K BEE BEAAT M L0 R BRI EH 3, K RIVE R RN
SPG RHNERWEIRATAR W2 72 7 WA BARIU R L B u X EAU R,
FoA W A it SR BT A, K-5 08 — 284 Y, (H A1 Bu 78 B R85 AN1E 6).

® 1 WFHEHE SRR TR TR S E (Wt %)
Table 1 The chemical composition of apatite in the Shapinggou molybdenum deposit (wt.%)

7S K RIS SPG RIIE R H
(EAL: wt.%) (n=55) TEME (n=49) TEIE
CaO 52.9~56.4 54.3 52.9~55.4 54.1
P,0s 38.9~43.0 412 39.6~42.6 413
F 3.24~4.49 3.70 3.24~4.27 3.64
Cl n.d.~0.025 0.01 n.d.~0.026 0.01
MnO n.d.~1.89 0.56 0.30~2.71 0.80
MgO n.d.~0.063 0.02 n.d.~0.079 0.03
Na;O n.d.~0.70 0.26 0.07~0.53 0.30
ALO; n.d.~0.27 0.01 n.d.~0.023 0.00
S 0.01~0.55 0.09 0.02~0.48 0.10
K>0 n.d~0.19 0.01 n.d.~0.015 0.001
FeO n.d.~0.23 0.09 n.d.~0.17 0.08
H,0 n.d.~0.99 0.41 n.d.~1.07 0.49
CI/F 0~0.0062 0.01 0~0.01 0.01
OH* 0.76~0.83 0.81 0.78~0.83 0.81

E: BEKARIEOH*) S E(RAL: Atoms per formula unit) 25T 8 MHE FHIFCAL, FEERIE
FAI5EAHE Fy CLAI OH (54 (B) XF-ap+XCl-ap+XOH-ap=1), F:r X [REE/R Bt 5%
Piccoli 1 Candela (2002) . “n.d.” FRHEEMTRIIE, nRR L%
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Fig. 5 Chondrite-normalized REE patterns of apatite from the K-series granite porphyry in the Shapinggou
molybdenum deposit (normalization values after Sun and McDonough, 1989)
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Fig. 6 Chondrite-normalized REE patterns of apatite from the SPG-series granite porphyry inShapinggou
molybdenum deposit (normalization values after Sun and McDonough, 1989)

3.3 BiAHHRES U-Pb B4

16 R DEE R s A 2 B AT 2 B IR FRAIR B AR S48, BiA2 4y 100~300 pm,
KA Z N 1.5~2 (B 7). ARRGCL)EE R, ARZHEEAHKE RIS H
gy, WA IRES SRR T T VR AL, RS e KB A K SR AR . BB
SRR IR . PR AN A, SN AR R SR TE M, HEI AR
BURINSS % . D BERRAZ -G R R, FTREIL SR Z I B i BUE IR SR I AR .

BiA ) U-Pb @ 45 R RO (K 8, 9, R 4, 1TEAE 45 R WA 4-8), fEiXIBE
G R A BB A RS EEAE 112~104 Ma, AR T X A8 B 1) F a5 G, 1K
— I R E A B BON— SR A, RIE RIEE R .
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Fig. 9 Zircon U-Pb concordia diagrams for SPG-series samples in the Shapinggou molybdenum deposit

3.4 BAMHMETE

K R5H SPG RFIFE A Th/U EUAE 7371 0.49~3.94 CFIE 1.33)81 0.74~4.12 (*F
PIA 1.32) . K RIIFE S8 A 1ot R & 2 (X REE) A 896~11001 pg/g (415 2525 pg/g),
8Eu LA A 0.03~0.22 (CF¥IMH 0.12). SPG HR AL G4 A Fi Lot R & E(ZREE) N



1056~11469 pg/g (CFHA1E 2550 pg/g), SEu LLAE AN 0.07~0.15 CFH{E 0.11). TEERRIB A
PrdEA AR L e R BB R (R 9, FEEL 10, B3R 5), K R%115 SPG RAIFE A
AR 2k, #EEEmMm L, THEMI. K RIS R 5 mE R,
Eu U A SPG RIVEBMIZAHML, 0 MM LA &

4 P
4.1 WIRAHEY XA K EM5 B B AKX MR R

R Ly B S )3 - - VR FHAE L) 135~110 Ma JHIRIA B s, AN
X AR &R T I OSEERT , eHS Mo, Au. Ag. Pb. Zn &£ & JE KAEEBT KK
TE R M ¢(Mao et al., 2011; Zhang et al., 2014). VPEEVGERT1E iz [X i 7R {3 2
BHIPR,  FC RO B 8] 5 46 2R X A RS 25 A B A Y 1) A 30 ) 23 15 S 0 B
B ACHEAE 5 K003 LUy P R i A I P2 AN 9K 3% 3% D) AH G (Ren at al., 2018; Chen et al.,
2022).

NSV B AR S R, WD FRUA I X A6 5 0T AR T BT R 1 St A S 2 B
HiEH(Ren et al., 2018): 25— BN 135~123 Ma (W&1E 128 Ma), J& K LLI-IR B A 2055
BYBG S T BY R <120 Ma (WE1H 116 Ma), J@ iR K- R E Rm s B . e
Re-Os Z5 2645 #4 A 113.9~111.1 Ma (Mao et al., 2008; # ;L&%, 2011), 55 _FBOkmk
SRR A R R A AL 117~110 Ma)fEiR 20 A R E—5, R ET RS 2%
TH W BRI A AR A T AR R IR A . RO F AT R AN AR . TR AR 1L
SEERHT RO AR RS AR T 128~113 Ma (Mao et al., 2011; Wang et al., 2014), F:[FEIFER 5
S A DR X B R IR T i 8, L 120~110 Ma JCH: 5 9 - s 9
I B AVEH B 25 DX

AWK AT U-Pb SRR EEAE A LE 120~90 Ma (B 4), #5417 U-Pb ERSHE 3= B4
£ 112~104 Ma (& 8. Kl 9), B AZERFEES 2 5 1E 128~108 Ma, 525 —F Btik -1k
A AR AL AR B 0 R A1 Re-Os FRATE S AHYI A (Mao et al., 2008; 3 FL%%,
2011), fam EEIRRT H B BOR A KIES), IS 1 BUE R E) S I R B
AR AR AR 105~104 Ma, JBUE H-FAIK R GUAE £ RO 2 S A2 AE — & 1
L REA IR . ML, BEKA U-Pb 4ERE 40 A0 B 0, 36 B IR (~120 Ma) i
B BUE OSSR AR T, 1/ B S AR R I AR I (<110 Ma) ] e 5 BEACH BUIR A B
PR 2 S SR R A K %, B 3 AT PR I B 52 v - IR o R R 3 7 A K

N



], DR AR 188 TR BRAS L T 8 SR I R, 1772 IR A R AR A 31 R e AR B
I TA) RO 5o BLHHER — B BL(135~123 Ma) IR B TR B A TC B B b B 5, T 28—
B(115~105 Ma) i) sH G AL B B e 2 S L B AR SR B B . B 5 B 22 i 12
K, ARXCE K- R GG SN AT LAAESEZ) 20 Ma A5, HE 1E R ARTE A5
KRB N R AR, TR A T 58 B B - O A R ) — AN BRI TR Y
42 BERASHEARSHERENKSE

PR BT PRI I8 5 v B 7K B AR R s R FE 1R 98 F % (Sun et al., 2015), /&
FUREMEAF T Mo, Cu. AuFEGBEAERMP I EE. Ka 5T, HH0 Min w,
Sn (AR SEA A T A B ACAUR T R E AR R . S KOs ARV A A o B R T
B m AR I, SR B 5 B il (Loucks, 2014; Wang et al., 2014); 7E4
WHFCRIBEE B Mo JLAEAE Cu SO i Z i, ARG e IR 80tk B e 42 1 42 )8 (41 Mo Cu)
MBI EMN S, HEIAEE ClL E S IR RES S WM SR SWRIGE S, Wi
AR TIZEE RS G AERB TR, TR ERE EAHRIEET . B S50
WA RIRTTIE, 5 RS MG 5 I %A RIS AL T E &, TR IR
(Jugo et al., 2010).

4.2.1 FRE

FEVFZ T DM B AN TUS 35 10 Z A AE % DI R (Wu et al.,
2017; Guo et al., 2022; Yan et al., 2024). X FE HIH T BA S 2 ORELRHE, A HFT Mo LA
MBS BRI EET AR ARG, AL A0S s Rt H R . It
VES RN AR AR R AT LR AR A Mo*, Mo®*, Mo®" (Williams-Jones and
Migdisov, 2014, Brugger et al., 2016). {EbJEVESMFE T, HEZED Mo 718, 554
EIGMAENER) MoSy (EHE™), Mila T-45 SUtiE, AR T RIBLTH, ERME &1
T, U Mo® N, TEREHRRR(MoO4») &4 &), ZiE T & CIA FIIHEH, 1T/
REfuo, TIEKTOHE N & S IFIEIR UTIE (Fang et al., 2025). (Rlt, SHF&80 PRk, &
SR A BT EL Mo TR AFEAE, 118 #8270 (In CI'y Fry HoO) MM #E Mo 5 Be 4 % 1k
FROBED), Tem e ISR, fHRR S K- PR RET AU E
PEHAE S IR B o R 7088 pH AE AR UTE , AT SR U R (E G SE, 2021). %
MR JE AR IE W] R RE I 5 3% rh A e R IR FE 5478, [RHRVE R T S S A2 .
n, TEEAIREFATT, AR TR W] R T AR R £h i AE AL T AR AE
X mtn SN S0, Bt T AR M PTIE LS (Hin et al., 2019). [



I, SR FEI T EnE v] B AR A K B & B s BRI AA, SUR BT IR AT,
VAR TR AR B D9 52 2% B ML BR AL 5775 5 (Loader et al., 2017). RItL, 1ERTFLIDERVAEH
B, ZRG 5 8 AR FE X 2 M T RHUIRAEAT AN, A BT SR A B X
B 0 AT AL

B A AE L B R B BOR IR E M, JCHRAE A m AL A A SR AT
SR TO R AL RE S B S ORAT T 22 I3 ) SR IR AR A 85645 S (Zheng et al., 2022). Eu 7
W T Eu IAEERT S B0 Bu 5 HAWM T R R A B E 7 B R (Trail et al.,
2012), A 8Eu &/~ (SEu = Eun/(Smn*Gdn)"?). fEEALIAEE K, Eu EZ KL BEu’ R
FAAE, B4 Bu FHARSE R ICR Z AT AZ 2R/, I SEu 24608 1, A5RM
MR ESFH; MIEEFEZMET, Eu B2 L BB, Hiraes SFEURE M SEu fit
5 (Bromiley, 2021; Wang et al., 2022; Ji etal., 2024). 7 ZEE K2, SEu MU ZAIRSE
i, EWRIK A BRI W, B Bu? e AR, RIME AR AR
WA B FE SBu . LI 5 RBEE SR B ) Mn JLF 584 L Mn* TR U
£, HEEFEZIBREG . Ca bl sl b Ha 5 00 LURCE 3 U iz ], o 4tk B2 114
L0 AR R (Stokes et al., 2019). ik, MnO & &M SEu 1EAH 7T PR Mt B
TB, T 580 8% EBRS BN E IR S8R AT 0 b, 2 R AN [ Ak 2
) FRI AR OB A 22 5, T A A B Dy s B 24 TR R SRR P P M — U0

B A — FhRE IRERR S0, RS LEANR] A MO BT 25 140 N T OO F IR A L i 22 3 PR 3R
SERFAE, 72T SR A% BT & R A 2% 2% 4 U7 Tl B A # BE4E H (Hoskin and Schaltegger,
2003). H Ce/Nd LUAEFIAR AL ] B S Bt 1 % pigact 42 H 4200% B2 1100 30 (Zheng et al., 2021),
Ce M1 Nd BAMAMLIGER, BB, HRNnASREHAEE—EmERE. &4
BN, AHRES CST A Cett, Cet BE T Ahd ik 285 [R] S B ARk N A
1%, I Ce AT EET G, BFUARRER WAL S, Nd FEEARRE,
Ce/Nd B 2 & s REIRE T, AHHH Ce LL Ce™ fFHE, #ifiH i Ce F1Nd & &
FAFE, Ce/Nd HH MW {%(Han et al., 2013; Loader et al., 2017; Bromiley, 2021)s
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Fig. 10 MnO-dEu diagram of apatite (a) and Nd-Ce/Nd diagram of zircon (b) from the granite porphyry in
Shapinggou molybdenum deposit. The data of Jinduicheng molybdenum deposit are from Xu et al. (2023),
the data of Shijiawan molybdenum deposit are from Chen et al. (2025), and the data of Shiyaogou
molybdenum deposit are from Han et al. (2013)

MBS, SHEWAUA KIBBEK A MnO A mK, SEu BiAMmE, 164
B™ AFMQ 1H9+1.0 £+3.6 CFIIMEN+2.1), AZIEHE AFMQ 9 0 £+2.0, B4 Z W
FALI A (Xu et al., 2022; Chen et al., 2025). X T K &FFES, H MnO & &8/ SEu
REWN: SPG RAIFEME MnO & B8, AR BARN SBu fH, H &K
BT K #5. &E0KA™T Eu RICAEZE FURE, TG RIS+ Eu 174
TR 5 B 45 b DA RS AR SR BE AR LR R 3R, OGS 40 P2 1) B e F v i U TR

K RIFEM A Ce/Nd LWEARILIH S, Ce/Nd LW AN/, Nd S &0
%8 (B 10b), S HE S g o AR b AU FE ARV B AR LB B . SPG R FIFE
Ce/Nd LUAE A A B I 2 3 i, Nd & =K HAR IR DN, BoRH s AR —, M
PR AR T K RIIEE. SPG R 5 &N 420580 A REA—5, Hy
MG ML T, K RFUFE R E R R [F &5 1 R 2 5K Ce/Nd AT Nd %
FVEE, YA R RICT T ORI SRR E AR, X ARG 12 R R % )
o ABEFEN K FI SPG R B RS0 B 72 7 1) T 3 AR 2 $R A2 & o0 i, 04
B A Ce/Nd- B A MnO-8Eu FF-1E  Log(fO2) A 5 if ANHIFFL.45 16 Lot , 1 4k #—Fa s o

ASHIF S AV I A AR IR FE SR P Min 2 BE L (M2 B0 R B 6 R AT AN 5. i T AR
FRE ARG T BE KA B I R T R B, MishZ 2% -fET R, TikEl
Ce*'/Ce™ Bl Eu*"/Eu* s P E VI A OR B2 BRIk, SR AT ISR H i B TR A
i Mn & 2 5 R EIRE 2 RGOS A 50 b7 2 B8 (Miles etal., 2014), A1 F -



Log(f0,) = —0.0022(40.0003)Mn(ppm) — 9.75(+0.46)

Log(fOx) (B ARAK, FUREERAL, oW B it J5l, dl i B A 4% B A AR

AUEH (B 1D, ﬁ?K?ﬂﬁm,ﬂ@Wé%ﬁ@&ﬁ%$:mwm)%ﬁtmﬁ

F; SPG RFIFES:, AR HRBAR Log(fOr)Hili-22, MARFIATE-25 it @il
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Fig. 11 Diagram of apatite Log(fO-) for the granite porphyry in Shapinggou molybdenum deposit

T A 5 s A ) AR P R AN A 7 T YD PRV BEA X S0 B 1 2 () AR A, 38 9 3RAT]
PRAL T O T A A S B AR I BB R R R T H LS I S TR AETE,
HIE I TE AR E (4 S G B 7 AR RGP IR RE T, IX0 T R RS R 22K
HEL, TMICARGR R BT U R RE PR T BH KT A AN TIE, S 1A AL AR 43 AT

4.2.2 R/KESRRHE

FEPEE TN IR, & K AL ETHRIES S B th AN WrRETBOR B VIO, IX e fA
i Moy Cu S5 Je 3R . B A KA S EUMIRE . ) DL SRR FE ARk, FAIR

HIVEfERE IR R 2% S YIRS EME R 2 o3, iRt — 0o g L AL, JFm& KA
J&UTIE K B 1 (Jiang et al., 2024; Loucks, 2014). & k& EillE, HmshEME L
O3 B R P AR, TR ZE 1 B e IE R s 55, ABEET IR it 147 F)
At DR, KA IERL. 5 IR A5 RS AR = A 5 R I R O E
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B T AA- B AR EAE B S BL SO TR, it 28/ A R B AC PO HEN
%, SECS TETE. BERA DB N A Y S-OH, BERKAR S-OH T2l k)
HIRMHER Y B AORAS, AR AT A T s A A2 oK B 8 A R 4 BAR AR
A AP T R 5 & 7K B K48 %0hn & (Du et al., 2019; Sadove et al., 2019). K A7 h S-
OH HEMEN IR RERBTRIR SIET N, mKEEFITE&BITRNITR 5%
fiit, MRS BRI T EJE R PUE SICRE . U FA SIS HEY B K A5
FRAER S (0.1~0.5 wt. %)+ OH (0.84~0.90 apfu) X [8], #EAAS/KER, L OH AKX
Ak, IXEEHT R B A PR S-OH & BRSO Ak b &K B, Atk rEa,
& BTG RAE B KA BRI ITR AL, AR T & B R MER S UTE. 1K R
ﬂﬁ@%ﬂﬁ&%¢ﬁﬁsmmzm%wﬁOHm%w&mmmamﬂnm,%wg
IKERAG, OHBEABEK A G HD . TERXFET I IEREBGRIIA RS, KEER
K, ARSI T OH It N, WK T & @ n R MiTr e ). MERURIIK S B AR
RATAESLAF S T A B T &E RV SR, &BITR W RIEE KA s
g, WA R T0 W iiiE S R B YRR 5 SHERAG ST 2 [A]
TERH AN S ERE DS ERE E R,

AU A3 WT BB IR AT AR B T IR SR A, R B S 4 o S R o3I
Wit R I R HILLRHAT A ST K 45 o B, I BOG! Fl CL A B2 A R,
WK F/CL EL AN . BEE IR BERRAS, SRS BE. fMINA S S K I uRSs &, F
FEXT B8 5 3E N5 KA W ke, AR R AR IR R BN X & Cl (Stock et al., 2018; Zhao
etal, 2024). HE— D4R RSERAE DRI, E KNSR B



CLARXS T F 52 5k N AAH, 1 F i) T OR B AE S AR o BEACH 1 Fy CL 28 RO ARE
10 B T A R AR R A - FE S XS By AR CL MR A AR R A T
BT MR AR R E SR R B T CLBS L F AR B I 8 A ot 52 5
KT C IR RS R A ROKE RSN B, B 12b P EIR, SHEWEHTRA K
TEEHH 2 PR C1 (0~0.01 wt.%)+HK F (2.0~2.8 wt.%) X [f], KA T35 C1 HARXT
T F IR R K RIIFES A SPG RAIFE AL FE(R C1(0~0.02 wt.%)+1 F (3.0~4.5 wt.%)
X 18], FENX B AT T 22 CLE'E F KRR, F 5B 5 NBEICA )5, B35
ZRRAR S B WIAE MR ALIR R, GG R B R REIBOT R
R—IE A TN T R R K S =A%, K R SPG RIS 8 ATE A
THEKGM, & FISAS5EaN CL A g EE, Wi &K f+ S-OH &
RGP

5 T IR (Ce/Nd)Y/ Y-T (L) EUAB X 5 2 5 7k s AN AR R LA sk, AR (b T
TR B K IR SR o) & SRR FE IR (Qu et al., 2022). Ce. Nd 5 Y fEM A
AT AR EZE T PR MBRENE KRBT FriEm, TE K KEW T E b
KA, SR . SUEM LT RATRR, TR CeV R A T A, Y BB R AT
WK, Y SR, HMCe/Nd/Y HETHE. E TN E R s, HE
B R E RERAT, TR AR AR a(Si02)=1; MRAE AT AN SLIR M 2 FE A R,
TE B R AL B BB AR TiO, A BUR @ BT 1, WEUEYEES 0.5~0.7,
R ASCR A a(TiO2)=0.6 AT THE (Ferry and Watson, 2007; Hayden and Watson,
2007; Watson et al., 2006) . & 13 H1 IR H(Ce/NdYY F1 TARFE) R LR REW, HEH
SRR R R B AR ARSI R 3 X e B R
PR, RILHTE M 05 ARG A, HAZHOR B A ) IR, T8 ie S 2R 4y
S JE HHEUE SR B 5 U B PR AR S 45 R AN B
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Fig. 13 Diagram of zircon (Ce/Nd)/Y-T (Ti-Zmm, °C) for the granite porphyry in Shapinggou molybdenum
deposit

BB S 2 A R R(Ce/NdY Y X33, S B A 45 b T3 10 5 S A B el
oKEE. MLoRmes, K RYVESA AT 5E 580 n) 5 28 X A-AE g BN,
A A SR ST At A EEE R R AR WIGRE . E(Ce/Nd)Y X35k, S 2 Ak
WG SO A% B 1 o o 72 181 13 o, KRB A AL FBR B 53 (700~900°C )« (Ce/Nd)/Y fi%(0~0.06),
[ 321 350 P 1 X TH] (600~800°C ) 77 (Ce/Nd)/Y (0~0.14)iL#5; SPG  F 414k A1 %34 i il
(700~900°C)~ fiK(Ce/Nd)/Y (0~0.02), [F]i1#H =il (650~800°C). 15i(Ce/Nd)/Y (0~0.08)iL
o B A% EIR 2 RIR . R(Ce/Nd)YY X3, U5 R I m lEa ) g X T IZ 2, 7R
HO8 TR BN BN 5 Y A S B SR B TR, R KA R, W
TIEH(Ces Ndv ) IR ERNAR S s B I KR . mi(Ce/Nd) Y XIB S
Az, R HARGRIR AR SR ZN S, KB IR o TR s A AR TUE
X — R R PRI S S0 IR G, #7817 R A FR KR U B A R RO
PR B SN HGRESUE A o X — A% - A8 A 34 3 T S L S 1 4 B 45 B R R o R A
AR, MEHER AR R RN . S5 AT NE A HEO AL RWITL, S0 TER A KM
B A HEO R RARFRE &, eu)fE5 §%0 H A H]-14.2 + 4.3 A1 5.82 + 0.33%0



(Ren et al., 2018; Li et al., 2021; Chen et al., 2022), ¥PEEGTE i T A B AR KB 5205
F . SR8 YR AR T SOE Y RN R S URARFE . 255 HaO BEINi& sy, il pes BY4H
PRI 22 [ NI L % N R B R0 20 0 B Dk, 3025 S - A4 A LA P v AL B B
PRI RS 5 R s S OB .
4.3 WEXYRTER S A H8w

T AR PR X G S E IR o3 R BEE )RR 5 e B i a2
SEAZHIX A R T A AT RIS AN B, 3 R R T R RN TR B
I F#(Renetal., 2018). 7ESE—F B, WHRAN X MR T I0EARA, IR T i
FRAEBIER, B KA. ZREKUSRENE, BFREEEAL, KRB H
BRI VR . BEA A AL RO, RS IR, SR YIRR B, i
BRI R AR L BARL . I IRAE R B A, IR R
MR (B 14), 28— 25A B IR TE (7T e IR R W 258 IR A )ik B, 25—
FE KT U BRI B T & 7 78 53 RG4S0 | T TR, TR S
TR AR, BA F SRR R R AR, SR AL TR B ALY B 1A
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Fig. 14 Tectono-magmatic model for the rocks at Shapinggou (modified from Ren et al., 2018)
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