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Abstract : To investigate the enrichment characteristics and underlying mechanisms of phosphorus (P) in
groundwater within the river lateral interaction zone, this study conducted hydrochemical and phosphate oxygen
isotope (6'%0p) analyses on three lateral interaction zones (Jiangling, Jianli, and Honghu) within the Four Lake Basin.
The results revealed the widespread presence of significant P enrichment zones in the groundwater of the interaction
zones, with the locations of enrichment differing between the unconfined and confined aquifers. Hydrochemical
analysis indicated that P enrichment in the Jianli section is primarily driven by organic matter mineralization. In
contrast, in the Jiangling section, it is more closely related to mineral dissolution/release. The Honghu section
appears to be regulated by a combination of both processes. The 6'®0, data confirmed the crucial role of microbially

mediated reductive dissolution of P from iron oxides in the enrichment of P in the confined aquifer. The spatial

HEWH: EFRERPIARSGE ST (U2340206), WAL ERHRAIFESHRBE (2025CSA007), HZEK
BRI EIE S ERFIEEIEH (52409024)

PEH I/ Bt 2001~), 5, Bi-EAF 70 A, 220 7007 M A Hh R /K SR i A P R b 22 3 #2, ORCID :0009-
0008-7167-3532, E-mail: 2395493379@qq.com, Tel: 13627109929

SEWPSES: XE, #R, EEBRTRAREAEEY ¥ 5K, ORCID: 0000-0002-1080-0883, E-
mail: hliu2009@cug.edu.cn; XN, ERm&LIREMN, FEHFRI7HVKERRE S5EH, E-mail:
wlhllg814704@163.com



variation and dominant mechanisms of P enrichment in the interaction zones are regulated by hydrological processes.
More intense hydrological dynamics enhance the role of organic matter in P enrichment, shifting the enrichment
zone closer to the Yangtze River.

Key words: groundwater; interaction zone; phosphorus; phosphate oxygen isotope; Four Lake Basin
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2 5 KA B B TR B T R . BB AL S A BT RI P R AN D Rr S K, ok
B2 B TR AETETS /K Lol At N R K ATHE T K 7K A4 (Liu et al., 2025).
T L& O YL N 3R K I B 5 Yo — o Hb R /KR —Fh L K SR, 78 S
PR T A HERE . SR A A oIl A 72 55 FH i (Aeschbach-Hertig and Gleeson, 2012).
AT 3 A Ay 1 7K A 55 P B 25 5 - 3 T AR A R B o e DA R A, TR it K H Y
Tl i e il K ) DA SR — B Z A0 (Tao et al., 2020). SR ERSKIER 22 (ORI FE 73t R K A0 o 5
W A FI B (Ke et al., 2024 , Tao et al., 2020), N 7KBET5 42 A A B 75 i U (Rl )
iz —,

TAT L A2 3 Pty M AN o (1) B B A Ay o BT K AL I ) 2S84, Tl 1) 22 oAt Hh R AR
K 5H R KRS58 H.(Mao et al., 2024). 32 HAF 4% B2 24Kz sha i i ek
— SE BRI 2ERA B, TR A 2 R AR Y BR (b 25 AR P A SR (L et al., 2024).
B A R — A B OB T Z AR I IR ] 170 22 F s HH T BB AT LE [RURE IR B 40 AT, 22 s AT Y
AKIRIZ BN AT e AR P R A2 51 R P AN R AR Ak 20 A 33 1T 5038 38 s Hh B 1
B AL o IS 00 e K B AREON B M R K ERAEAE — R R, AR AS LA U H R R
R AT T B AT ES .

AT P L 28— RIT o AT Hr J A H T T Y o R el S M R 7K e b B b (Lia et al.,
2020). —Uk TREMIHEIZAT & R E M 2 RN, TR (195 ok FAm] 1) 52 F Ay
WA A R IERS . 70 A1 P~ A EE 2 (Miiller et al., 2008, Dai et al., 2025). {1
T U A AR 2 AT R H 1) DY A A U 7 e S AR A PRI ) @ B 2% tH (Tian et al., 2021). 3T
TR B IR IRV 27 km A IR 7K KA AIH VL 2 [ A7 AE BRI S (5K AT et al., 2009),
DU S S IR L AL T HH AT L DR 7K 3 et G Hp s o AT 7 A B BRI TR 37 28 LAy
T 1) SR AAE T A R ML i et 24 b /K AR 5 e B 9 B B Y

ERLE, ASH 52 H 5 E 7 BH DU 0 e 22 B o el 1Y) s R ARRAE s 487 DU dsiAs [
A 172 A2 Ly P AR o AR SR 9 45 SR AT DA i b b 7K s o B (R AT ST B 4
RS, A BTV A I /KT s il R K 08 A B

1 MBS T

1.1 B XE

58 XA T AR DB (B 1), RPN E 2 EE B T 140 km. X )R T
TR ZE RS, PSR 15-17°C, 4FFEM E7E 1100 mm(Du etal., 2020b). 5 DY FARL
KBV ) 22 AL B2 i 70 X IR K B R ) 32 B4 82 )= (Du et al., 2018), K75 [X
JE TR a5 A0 JTURS B0k - SIS HE, Rt e, JE R 10-35 m, YRR
P F B A TE (40%-50%) K50 (30%-40%) KA (10%-15%) FIJ5fEAT (5%) 4%,
TEE/KZEN 2B Mesa H s 2L E5/KE, T /KBEIEFEE Duetal, 2020a). 7EHFFLIX
P K PRV fR Ik s Bk VR 4 BDLL-2.56 mg/L, 7KJE/K A4 BDL-4.31 mg/L, TS /KETIH



YR, RN 0.62-0.95 mg/g (AIAZHASHE 0.087-0.418 mg/g, BR4E AW 0.499-0.598
mg/g, FRARE LI 0.251-0.319 mg/g) (Tao et al., 2020).

112°40'0"E
' ® i T KRAE A
K3 @ i ACKFER
z
,:\c__
TLR%
i kit
KT g
At N
2 13 30Kilometers A

K1 B DX b 2R A B R s 50 A

Fig.1 Location of the study area and distribution of sampling sites
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Fig.2 Hydrogeological profile of three interaction zones
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Fig.3 Distribution of phosphorus species across the three interaction zones

R EERL D0 JE T 7K AT 83 B2 DX 45k A 25 3 A7 25 v B 2 P b /K (TR /K Ak
FEMIME 0.29 mg/L; A& /KB FE5ME 0.63 mg/L) (Tao etal., 2020). SYLICTE A ##h 7k
FAEE, AT AR TN ) 52 EL 7 1 R K S SR FE I TR BRI 0.03-0.27 mg/L, 1)
8 0.10mg/L; 7&JE/KBEIRE N 0.04-0.75 mg/L, ¥JMH 0.13mg/L), XAJRE SRR E N KEE
B A P81 Ji it DX B 5 2 ) 7K SCRE AR A 5% o VAT 7 AN ) 52 L o A7 B S ) ZE D R A 24 T £
Oyits, FEREH . FRZEI LS (Mao etal., 2024, Maetal., 2023). AHF 5% FIREAE S Bl &
DB R RIS, (EHALH H AT AE L

2.2 P#RE MR B B E R XK AL AL

FEVLDCP JE o X Bl R K A, T 32 B G WL DA S W03 A R T KRR (Tao et all,
2020). AHFFT XK S BER] Fe? I H W AHGME (R?=0.43, p<<0.05), XEHEH
BRI AR K TR A BRI TR . WF 7T X R R /K R i & 0 TOC CF4ME 26.70
mg/L) WESEH 2 AR B IR A NLUR .

Redfield FCAR 5 FH T %8 2 i SR M85 A A HLTUR U B 8% (Zhou et al., 2022), 24 NH4":TDP>
16:1 B IHA L RIERIBE S5 £ 5. B4 B8 T =48 B 5 AR KRR, aTLE
HAE TOC & EBACHIVLIERT (MIME 14.43 mg/L) % HAEARMG, 1078 WA RO 922 B
G LU A, U0 X A 58 LS AR R K B S A LT A B R AR TE N R 2 . EAE R
I, FEMFIBIEEEVL 2 km s X A 6% 32 SR B A WL AL, T /RS8BT TR VL 3 km
A7 km B BEX I ERELL<16, IXRIEHUR BN BB IR%AC T S B X ) E 2
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Fig.4 NH4": TDP ratio in the confined water at each monitoring site across the three interaction zones
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Fig.5 Distribution of TOC concentrations across the three interaction zones
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IR SR AR 22 0 i A — PP, 9 J1 IR T H (Gooddy et al., 2018). AW 5T
X 4318 B AR B A EAT T 8180, B, AT TULRE . SR AW 3L 5 AN AR R
IR 8130, 1E . Wik 6 Fizn, A KH 8180, fHTE 9.529%-13.467%0.2 8], FIHLFIK (7.143%0)
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Fig.8 Water level fluctuations at a distance of 1 km from the river across the three interaction zones
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