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Abstract: Three-dimensional mineral prospectivity modeling serves as a crucial technical
approach in the exploration of deep concealed mineral resources. In recent years, deep learning
methods represented by convolutional neural networks have achieved some progress in integrating
3D predictive information; however, constrained by the local receptive fields of CNNs, it remains
difficult to extract long-range dependencies and global correlations between 3D predictive factors
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and mineralization occurrences, which limits the prediction accuracy for deep concealed ore
bodies. To address these issues, this study develops a 3D-ViT model based on the Vision
Transformer (ViT) architecture, tailored for 3D geological data. The model employs a 3D
voxel-patch embedding module and decoupled 3D positional encoding to explicitly preserve the
structural information of geological bodies. By leveraging a multi-head self-attention mechanism,
a global perceptual field is constructed to model cross-scale spatial relationships between multiple
predictive factors—such as intrusions, strata, and structures—and mineralization evidence. In a
case study of the Shizishan ore field in Anhui Province, the model successfully predicted the main
known ore bodies, achieving an AUC of 0.96. Its accuracy, recall, and F1-score all surpassed those
of 3D-CNN and traditional machine learning models, demonstrating strong predictive capability
and precision. Based on the prediction results, four prospective target areas were delineated in the
deep part of the Shizishan ore field, verifying the method’ s effectiveness and reliability in
detecting concealed mineralization under complex geological settings. This research not only
extends the application of ViT to three-dimensional geoscientific data but also provides a novel
methodology with global perception for intelligent prediction of deep mineral resources, holding
significant potential for practical exploration applications.

Keywords: 3D Mineral Prospectivity modeling; Deep Concealed Ore Bodies; Vision Transformer
(ViT)
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Figure 1 Vision Transformer (ViT) model architecture diagram
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Figure 2 Simplified regional geological map of the Middle-Lower Yangtze River Metallogenic
Belt (Zhou et al., 2017)
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Figure 3 Geological map of the Shizishan ore field (modified from the 321 Geological Party of

Anhui Bureau of Geology and Mineral Resources).
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Figure 8 Capture efficiency curve of the ViT model
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Figure 9 ViT-based 3D mineral prospectivity mapping results

(a) Plan view; (b) 3D perspective view; (c) Target Area I; (d) Target Area II; (e) Target Area III; (f) Target Area IV
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Table 2 Comparison of classification metrics for different prediction models

Y Accuracy Precision Recall F1 Score AUC
3D-VIiT 0.9147 0.8895 0.9471 0.9174 0.9623
3D-CNN 0.8017 0.9412 0.6436 0.7645 0.9403
LR 0.7557 0.7170 0.8448 0.7757 0.8154
RF 0.7757 0.7566 0.821 0.7879 0.8650
SVM 0.7902 0.7512 0.8678 0.8053 0.8696
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Figure 11 Prediction results of different models: Plan views of 3D-CNN (a), LR (c), RF (e), and
SVM (g) models; 3D perspective views of 3D-CNN (b), LR (d), RF (f), and SVM (h) models.

5.2 ARG

AR FEHEH I VIT B, HAZ MR ATE T Re08 KRG MEH @ L ish B3 2 (A FE Rk
W5 A ROCIE,  FRAEINT LU A A9 T vh A 21 1 2 TE] B A RRIE .

AHEFUIMAR 3D Patch Embedding #5573 85 s =4EA B i b, B = ZEmh 5T i %4
RS A i B AN IR B AR RAE IR &M U B4t B SRk R, AERER
JITHE SR T AR 0 23 () 2R VIT B AYIE T 22 3k By B ML 4 = AR R 70, Re e 756 Y
AN B RUZ B (2 (0 R BE b, [R5 S i R iy R 2 5 1016 @ iE 55 2 o el 2
F MK EE BB R KPR BRI OC R F BRI RN SRR RS B i s RO |,
AN bR B3R 2 AR () 33 B A e s A P R IR B 2 () S Bk o 3 R o R T2 Ja ks
E 1] BB ISR ERAE, 20U ik 4 JR P BT DA 3

XTI, B2 R AR R — 23 (B AN R 7 B 1R 7= AR, TR BRI
FRE A AR BT IRAA, FFAROON B4R A AR, T A 75 A5 B X 3k ) W 2 i B
FEERET, BTN SRS, RATERR IR L A B A IUIE A . A 5T T
B VIT BBLPE PPl AE — A 22 BV T, [R5 2% B 4 XV [ 9 IRFAIEAS 6 o TN &5 SR BN IE
TR RS R IR HERE 77, $E XA IR R e fid iy i, BB B A RME R S RE e
HZ R XOIR E PR . X R, 3D-VIT MU TR ey ted, St 4R
TR JIHUH], RN AR T A e s R 2 () A6 P B B T AR R &R

S VIT BB B AR AR I, (BRI SRS AR AR IR AN E B, A2 A 2 ) &5 SR
DARBRRE, IX 2 A Ak T B ML) AR B 2% ST RS R AE B FH T R PR AT 55 Bl T I £ 3 ]
(Jain and Wallace, 2019) o ASH 0 F L TTRRAE T-4000E 1 3D-VIT HESRFER$2 52 2% =4k 75 [H]
M5 B TH SIS FEE 7 THI A e ST AT o AT R NIV R A R B 0 S, R B AT
XPHT Transfomer #5588 F AT RRRENE 7770, W42 I HACE SR 2 Tl 5 b J5 st PRI AL 2 B0 A 110) O
BRI IT 1)



g5

(1) AHFFHRE T A R H TR AR T PR = e B VIT BRI . S 45
R, AHEZ R RN 2 SI BRI AR FE 22 5] =B BRI 28 AR, AR R VIT
PRRIAE = (5 BRI | IR A 1) RIBAR U TR IR, FHAE 2 T Sedabn L Ui
AR, SR HAE R AT T I RFRT R =4E B A Rk, A RAFHIT T
UNAE b

(2) FETHER VIT BAL, BRI LG TR =4l 1, FEE 4 AR 4
DX s BERIFIN 25 R B A BRI S B, O R R o8 BT PR Nt — 2 3k AR SRt
T3 TR o

References

Chang, Y.F., Liu, X.P., Wu, Y.C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of
the Changjiang River. Geological Publishing House, Beijing (in Chinese with English
abstract).

Chu, G.Z., 1992. Shizishan Oreficld Tectonics and the Characteristics of Its Control Over Rocks
and Ores. Geology of Anhui, 2(2): 1-14 (in Chinese with English abstract).

Deng, H., Zheng, Y., Chen, J., 2022. Learning 3D Mineral Prospectivity from 3D Geological
Models Using Convolutional Neural Networks: Application to a Structure-Controlled
Hydrothermal Gold Deposit. Computers & Geosciences, 161: 105074. doi:
10.1016/j.cageo0.2022.105074

Dosovitskiy, A., 2020. An Image Is Worth 16x16 Words: Transformers for Image Recognition at
Scale. arXiv preprint arXiv:2010.11929. doi: 10.48550/arXiv.2010.11929

Fawcett, T., 2006. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8): 861-874.
doi: 10.1016/j.patrec.2005.10.010

Fu,Z.J., Li, J.J., Ren, L., et al., 2023. SLDDNet: Stagewise Short and Long Distance Dependency
Network for Remote Sensing Change Detection. /[EEE Transactions on Geoscience and
Remote Sensing, 61: 1-19. doi: 10.1109/TGRS.2023.3305554

Gao, L., Gopalakrishnan, G., Nasri, A., et al., 2025. Transformer—GCN Fusion Framework for
Mineral Prospectivity Mapping: A Geospatial Deep Learning Approach. Minerals, 15(7): 711.
doi: 10.3390/min15070711

Huang, X.C., Chu, G.Z., 1993. Multistory Metallogenic Model of the Shizishan Orefield in
Tongling, Anhui Province. Mineral Deposits, 12(3): 221-230 (in Chinese with English
abstract).

Jain, S., Wallace, B. C., 2019. Attention Is Not Explanation. arXiv preprint arXiv:1902.10186. doi:
10.48550/arXiv.1902.10186

Krizhevsky, A., Sutskever, 1., Hinton, G.E., 2017. ImageNet Classification with Deep
Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. doi:
10.1145/3065386

Li, C., Xiao, K.Y., Sun, L., et al., 2024. CNN-Transformers for Mineral Prospectivity Mapping in
the Maodeng—Baiyinchagan Area, Southern Great Xing'an Range. Ore Geology Reviews, 167:
106007. doi: 10.1016/j.oregeorev.2024.106007

Li, H., Li, X.H., Yuan, F, et al., 2020. Convolutional Neural Network and Transfer Learning



Based Mineral Prospectivity Modeling for Geochemical Exploration of Au Mineralization
within the Guandian—Zhangbaling Area, Anhui Province, China. Applied Geochemistry, 122:
104747. doi: 10.1016/j.apgeochem.2020.104747

Li, X.H., Chen, Y.H., Yuan, F., et al., 2024. 3D Mineral Prospectivity Modeling Using Multi-Scale
3D Convolution Neural Network and Spatial Attention Approaches. Geochemistry, 84(4):
126125. doi: 10.1016/j.chemer.2024.126125

Li, X.H., Xue, C., Chen, Y.H., et al., 2023. 3D Convolutional Neural Network-Based 3D Mineral
Prospectivity Modeling for Targeting Concealed Mineralization within Chating Area,
Middle-Lower Yangtze River Metallogenic Belt, China. Ore Geology Reviews, 157: 105444.
doi: 10.1016/j.oregeorev.2023.105444

Li, X.H., Yuan, F., Zhang, M.M., et al., 2015. Three-Dimensional Mineral Prospectivity Modeling
for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin,
China. Ore Geology Reviews, 71: 633-654. doi: 10.1016/j.oregeorev.2015.06.001

Mao, J.W., Shao, Y.J., Xie, G.Q., et al., 2009. Mineral Deposit Model for Porphyry-Skarn
Polymetallic Copper Deposits in Tongling Ore Dense District of Middle-Lower Yangtze
Valley Metallogenic Belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English
abstract).

Mao, X.C., Su, Z., Deng, H., et al., 2024. Three-Dimensional Mineral Prospectivity Modeling
with Geometric Restoration: Application to the Jinchuan Ni - Cu - (PGE) Sulfide Deposit,
Northwestern ~ China.  Natural  Resources  Research,  33(1):  75-105.  doi:
10.1007/s11053-023-10269-2

Mao, X.C., Zhang, M.M., Deng, H., et al., 2016. Three-Dimensional Visualization Prediction
Method for Concealed Ore Bodies in Deep Mining Areas. Journal of Geology, 40(3):
363-371 (in Chinese with English abstract).

Ning, Y., Wang, Y.Z., Lu, J.L., et al., 2025. Mineral Prospectivity Mapping for Multi-Source
Geoscience Data: A Novel Unsupervised Deep Learning Method. Ore Geology Reviews, 186:
106866. doi: 10.1016/j.oregeorev.2025.106866

Porwal, A., Gonzalez-Alvarez, 1., Markwitz, V., et al., 2010. Weights-of-Evidence and Logistic
Regression Modeling of Magmatic Nickel Sulfide Prospectivity in the Yilgarn Craton,
Western Australia. Ore Geology Reviews, 38(3): 184-196. doi:
10.1016/j.oregeorev.2010.04.002

Singer, D.A., 2018. Comparison of Expert Estimates of Number of Undiscovered Mineral
Deposits with Mineral Deposit Densities. Ore Geology Reviews, 99: 235-243. doi:
10.1016/j.oregeorev.2018.06.019

Sun, T., Li, H., Wu, K.X, et al., 2020. Data-Driven Predictive Modelling of Mineral Prospectivity
Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi
Province, China. Minerals, 10(2): 102. doi: 10.3390/min10020102

Vaswani, A., Shazeer, N., Parmar, N., et al., 2017. Attention Is All You Need. Advances in Neural
Information Processing Systems, 30. doi: 10.48550/arXiv.1706.03762

Wang, G.W.,, Li, R.X., Carranza, E.J.M., et al., 2015. 3D Geological Modeling for Prediction of
Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 71: 592-610.
doi: 10.1016/j.oregeorev.2015.03.002

Wang, J.J., Xie, H.R., Wang, F.L., et al., 2023. A Transformer—Convolution Model for Enhanced
Session-Based Recommendation. Neurocomputing, 531: 21-33. doi:



10.1016/j.neucom.2023.01.083

Xiao, F., Cheng, Q.M., Hou, W.S., et al., 2025. Three-Dimensional Prospectivity Modeling of
Jinshan Ag-Au Deposit, Southern China by Weights-of-Evidence. Journal of Earth Science,
36(5): 2038 - 2057. doi: 10.1007/s12583-023-1822-6

Xu, X.C., Fan, Z. L., He, J., et al., 2014. Metallogenic Model for the Copper-Gold-Polymetallic
Deposits in Shizishan Ore-Field, Tongling, Anhui Province. Acta Petrologica Sinica, 30(4):
1054-1074 (in Chinese with English abstract).

Xu, Y., Zuo, R.G., Chen, Z.Y., et al., 2025. Recent Advances and Future Research Directions in
Deep Learning as Applied to Geochemical Mapping. Earth-Science Reviews, 105209. doi:
10.1016/j.earscirev.2025.105209

Xu, Y.Y, Li, Z.X., Xie, Z., et al., 2021. Mineral Prospectivity Mapping by Deep Learning Method
in  Yawan-Daqiao Area, Gansu. Ore Geology Reviews, 138: 104316. doi:
10.1016/j.oregeorev.2021.104316

Yang, F.F., Zuo, R.G., 2024. Geologically Constrained Convolutional Neural Network for Mineral
Prospectivity ~ Mapping.  Mathematical ~— Geosciences,  56(8):  1605-1628.  doi:
10.1007/s11004-024-10141-w

Yousefi, M., Lindsay, M.D., Kreuzer, O., 2024. Mitigating Uncertainties in Mineral Exploration
Targeting: Majority Voting and Confidence Index Approaches in the Context of an
Exploration Information System (EIS). Ore Geology Reviews, 165: 105930. doi:
10.1016/j.oregeorev.2024.105930

Yuan, F., Li, X.H., Zhang, M.M., et al., 2018. Research Progress of 3D Prospectivity Modeling.
Gansu Geology, 27(1): 32-36 (in Chinese with English abstract).

Zhai, M.G., Wu, FY., Hu, R.Z., et al., 2019. Critical Metal Mineral Resources: Current Research
Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2):
106-111 (in Chinese with English abstract).

Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992. Metallogenic Regularity of Iron and Copper Deposits
in the Middle and Lower Valley of the Yangtze River. Mineral Deposits, 11(1): 1-12 (in
Chinese with English abstract).

Zhang, S., Carranza, E.J.M., Wei, H.T., et al., 2021. Data-Driven Mineral Prospectivity Mapping
by Joint Application of Unsupervised Convolutional Auto-Encoder Network and Supervised
Convolutional Neural Network. Natural Resources Research, 30(2): 1011-1031. doi:
10.1007/s11053-020-09789-y

Zhou, T.F.,, Fan, Y., Wang, S.W.,, et al., 2017. Metallogenic Regularity and Metallogenic Model of
the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11):
3353-3372 (in Chinese with English abstract).

Zuo, R.G., 2025. Key Technology for Intelligent Mineral Prospectivity Mapping: Challenges and
Solutions. Science China Earth Sciences, 68(9): 2976-2991. doi: 10.1007/s11430-025-1622-1

Zuo, R.G., Yang, E.F., Cheng, Q.M., et al., 2025. A Novel Data-Knowledge Dual-Driven Model
Coupling Artificial Intelligence with a Mineral Systems Approach for Mineral Prospectivity
Mapping. Geology, 53(3): 284-288. doi: 10.1130/G52970.1

B b 30525 3R

WENHL, XIHARE, RE B, 1991 KITH R H B 7 AL 5T 3ot At



it IE, 1992 4B i+ LA™ H A4 i Je Hoas 5 0 VR B 7. 22 Bt T, (2):1-14.
UFER, AEELE, 1993 8107 1LE H 2460 — (2 BB R, (03):221-230.
5OC, BRAZE, WHET, 55, 2009 AT H R Bl i B 4R X A 22 & J@m A RIS B4 R

HUF, 28(02):109-119.

BIRR, RETE, B, &, 20164 X IR BRARAT A = g T AR TN 7 i b T A T
40(03):363-371.

HRE, UTFR, MR, 55, 2014 ZREBEINT L0 B 42 S m IR 1 s 505 A 2
%, (4):1054-1074.

U, ZRRRNE, SKREHEH, 55, 2018 = 4ERH TR 7ot e Hof s, 27(1):32-36.

EPE, RmEoc, WHImE, 5, 2019805 AR S IR LR S L E R R 4
33(2):106-111.

A, WETR, MO 22, 25, 1992 KT H I I i X 8k B 258 B R 78 17 R B JSR , (01):1-12.

JAVE R, Jars, AR, 55, 2017 KT H RSO T SO B AN R B A A 2E ), 33 (1)
3353-3372.



