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Abstract: To address practical challenges in geological drilling, including pronounced inter-well distribution shifts, stringent privacy constraints,
and the lack of manual annotations, this paper proposes an intelligent monitoring method based on federated dictionary learning. Centered on sparse
dictionary representations, the proposed approach integrates an event-driven heuristic scoring and alignment mechanism to enable interpretable
discrimination and abnormal pattern recognition without requiring human-labeled data. Meanwhile, under a data-locality constraint where raw data
never leave local sites, the method incorporates collaborative multi-well dictionary training and a sample-size—weighted server-side aggregation
scheme to enhance robustness and cross-well generalization across heterogeneous drilling environments. Experiments are conducted on field logging
data collected from multiple real-world drilling projects, where a multi-well federated dataset is constructed for evaluation. The results demonstrate
that the proposed method achieves superior monitoring performance under multi-well settings, with an average separability score of 4.018 and an
average weakly supervised precision of 0.804, indicating stable identification of typical abnormal events in the absence of annotations. These findings
substantiate the effectiveness of the event labeling mechanism in improving model interpretability and cross-well generalization, and provide a feasible
and effective technical pathway for distributed intelligent monitoring in complex geological environments.
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Fig.1 Schematic diagram of the geological drilling process
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Average Rotary Speed - rpm
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Mud Density P g/em’
Diameter - mm
Average Hookload HKLD kgf
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Table 2. Cross-well comparison of PW and separation d for the evaluated methods
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