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摘要：针对地质钻进过程中多井场数据分布差异显著、隐私约束严格且人工标注缺失等现实问题，本文提出一种基于联邦字典学习的智

能监测方法。该方法以稀疏字典表征为核心，通过事件启发式打分与对齐机制实现无人工标签条件下的异常模式识别与可解释区分；同时

在数据不出域的前提下，引入多井协同训练与服务器端加权聚合，以提升模型在异质井场间的鲁棒性与跨井泛化能力。基于多个实际钻井

工程的现场测井数据，本文构建多井场联邦数据集并开展验证实验。结果表明，所提方法在多井场条件下取得更优的监测效果，分离度指

标的平均水平达到 4.018；弱监督精度的平均水平达到 0.804，显示其在无标注条件下仍能稳定识别典型异常事件。研究结果验证了事件标

注机制在提升模型可解释性与跨井泛化能力方面的重要作用，为复杂地质环境下的分布式智能监测提供了一种可行且有效的技术途径。 

关键词：地质钻进过程；联邦字典学习；弱监督监测；事件启发式标注. 

中图分类号：P634                        收稿日期：2025-11-14 

Federated dictionary learning-based intelligent monitoring for geological drilling processes 

Du Sheng1,2,3,4, Ma Tianyu1, Huang Cheng1, Wu Yunlong5, Fan Haipeng2,3,4,* 

1. School of Future Technology, China University of Geosciences, Wuhan 430074, China; 

2. School of Automation, China University of Geosciences, Wuhan 430074, China; 

3. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China; 

4. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education Wuhan 430074, China; 

5. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China. 

 

Abstract: To address practical challenges in geological drilling, including pronounced inter-well distribution shifts, stringent privacy constraints, 

and the lack of manual annotations, this paper proposes an intelligent monitoring method based on federated dictionary learning. Centered on sparse 

dictionary representations, the proposed approach integrates an event-driven heuristic scoring and alignment mechanism to enable interpretable 

discrimination and abnormal pattern recognition without requiring human-labeled data. Meanwhile, under a data-locality constraint where raw data 

never leave local sites, the method incorporates collaborative multi-well dictionary training and a sample-size–weighted server-side aggregation 

scheme to enhance robustness and cross-well generalization across heterogeneous drilling environments. Experiments are conducted on field logging 

data collected from multiple real-world drilling projects, where a multi-well federated dataset is constructed for evaluation. The results demonstrate 

that the proposed method achieves superior monitoring performance under multi-well settings, with an average separability score of 4.018 and an 

average weakly supervised precision of 0.804, indicating stable identification of typical abnormal events in the absence of annotations. These findings 

substantiate the effectiveness of the event labeling mechanism in improving model interpretability and cross-well generalization, and provide a feasible 

and effective technical pathway for distributed intelligent monitoring in complex geological environments. 
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0（引言 

近年来，随着非常规油气、超深层油气以及复杂构造

区块的开发，钻井工程的安全性和智能化水平需求不断提

升。在钻进过程中，受地层非均质性、孔隙压力扰动、钻

具—井壁—泥浆耦合效应以及机械振动等因素共同作用，

粘滑、卡钻、喷嘴堵塞、井漏/井涌、硬结核、钻柱振动等

多类异常工况频繁发生(李恒等, 2025)。一旦不能及时识别

与诊断，极易造成钻具损坏、钻井延误，甚至诱发井下事

故，对生产安全与经济效益造成严重威胁。 

传统监测方法多依赖人工经验设定阈值或基于单变

量的趋势分析，面对非线性响应时鲁棒性不足。随着传感

器网络与数据采集技术的发展，越来越多研究者尝试利用

数据驱动方法对钻井过程开展智能监测与异常检测。然而

在实际应用中仍存在若干关键难点：（1）不同井队数据受

限于隐私保护与数据隔离，难以集中训练；（2）单井模型

跨井泛化能力不足，在新地质条件下性能显著下降；（3）

多数深度学习方法虽能取得较好效果，但解释性较差，不

利于工程人员快速理解与干预；（4）井场现场计算资源有

限，对模型的实时性和轻量化有严格要求。 

在智能监测领域，已有大量研究探索方法论的演进与

跨学科融合。早期工作主要基于单变量统计与阈值控制，

如移动平均、标准差限值等。这类方法在钻井现场被广泛

使用，但难以应对多变量耦合与复杂工况。随后，多变量

统计方法和传统机器学习方法逐渐应用于钻井异常检测。

然而，这些方法对非线性和非平稳数据的适应性仍有限。 

在深度学习方向，Jia 等从系统综述角度梳理了时间

序列异常检测的主流范式，指出重构式、预测式及混合式

路径分别适用于不同的非平稳程度与告警时滞需求，并强

调在弱标注和早期预警场景下需要可解释的异常得分设

计与稳健阈值策略(Jia et al.,2025)，这些结论与钻井多通

道时序的工程特点相契合。 

面向钻井场景的应用研究方面，Altindal 等提出多变

量钻井数据异常检测通用框架，在真实作业中识别同一时

间域内的多类异常簇，验证了跨工况的可用性(Altindal et 

al.,2024)；Qu 等基于生成对抗网络（（Wasserstein Generative 

Adversarial Network，WGAN）与集成学习完成钻柱振动

状态识别，验证了“深度生成+判别”在复杂振动标签下

的适用性(Qu et al.,2024)；He 等则通过联合优化字典学习

与一类支持向量机提升了遥测数据的稳健异常检测能力，

说明“稀疏/字典表征+简洁判别器”对高噪、非线性条件

具有优势( He et al.,2024)；Faghihi 等从钻柱轴-扭耦合动

力学与时延控制角度揭示了粘滑与极限环特性，为数据驱

动监测中的先验约束与特征构造提供了物理依据(Faghihi 

et al.,2024)。 

在可解释表示方面，Kloska 等提出的动态时间规整

（Dynamic Time Warping，DTW）用人机知识修正时间对

齐的距离度量，在保持低计算开销的同时提升了对非线性

扭曲的鲁棒性(Kloska et al.,2023)，便于在线与边缘部署；

Yao 等提出判别型稀疏表示，在保留稀疏可解释结构的同

时增强类间可分性，为异常类型\字典原子映射提供了判

别性支撑(Yao et al.,2024)；Brito 等给出可解释迁移学习方

案，在旋转机械跨域场景下用可解释归因验证模型判别依

据，可直接复用到钻进多通道数据的工程复盘与干预环节

(Brito et al.,2023)。这些工作共同指向以重构/残差为核心

的评分函数，兼具可解释与可核验特性，便于与工程阈值

策略耦合。进一步地，卷积字典学习（Convolutional 

Dictionary Learning，CDL）提供了兼具形状原子与时间-

频率局部化的可解释特征。Qin 等构建多层 CDL 网络用

于去噪与可解释滚动轴承诊断，将不同层级原子对应到特

定机理成分(Qin et al.,2024)；Kang 等在医学影像中提出带

非局部组稀疏先验的 CDL，验证了在多域、多尺度下保持

原子可读性与稳定性的可行性(Kang et al.,2024)。然而，

CDL 方法在工程落地中仍存在若干不足。其训练过程通

常依赖较大的迭代次数和矩阵运算，对计算资源要求较高，

难以直接满足钻井现场的实时性约束。其次，卷积原子虽

然具备时间-频率局部化特征，但在面对多通道非平稳信

号时，难以保证不同物理量间的耦合关系得到充分表征，

解释性仍存在局限。 

针对数据隔离与跨井协同的难题，联邦学习

（Federated Learning，FL）成为近年重要的发展方向。

Huang 等从泛化、鲁棒与公平三个层面系统总结了联邦学

习关键机制，提示油气场景需同步考虑鲁棒聚合、通信效

率与评测基准(Huang et al.,2024)；Xiao 等则给出知识驱动

的分簇式联邦以缓解少样本与分布差异问题 (Xiao et 

al.,2024)。总体来看，现有的 FL 机制能够在不直接共享

原始数据的前提下实现跨井、多区块的数据协同训练，可

以较好解决数据隐私保护与安全合规问题。同时，通过参

数或模型的聚合更新，可以有效提升模型的跨域泛化能力，

在一定程度上克服了单井模型性能受限的不足。这些优点

为智能钻进监测的协同化与规模化应用奠定了重要基础。 

尽管相关研究已在钻进异常检测与智能监测方面取

得了重要进展，但仍存在若干不足。当前大多数深度学习

方法依赖大规模集中数据训练，而在监测与异常检测中受

制于数据隐私与跨井数据隔离，集中建模往往难以实现。

同时，不同井场数据之间普遍存在非独立同分布特性，导

致模型在跨井应用时泛化能力不足，难以保证在复杂构造

与多样地质条件下的稳定性。此外，部分方法虽然在识别

精度上表现优良，但可解释性有限，难以为异常原因溯源

和现场干预提供直观支撑。另一方面，一些可解释模型如

卷积字典学习在计算效率和实时性方面仍存在瓶颈，难以

直接满足井场快速响应的需求。 

针对上述问题，本文提出一种基于联邦字典学习的地

质钻进过程智能监测方法。该方法在不共享原始数据的前

提下，通过联邦框架实现跨井协同；利用字典学习的稀疏

重构特性构建可解释的异常表征；并引入“正常带阈值”判

别机制，实现轻量化的过程监测与异常事件标注。本文的

主要贡献如下： 

1）在联邦字典学习框架下，本文对正常数据进行统



 

 

计建模，构建误差带，并采用严格的超阈值判定规则识别

异常，从而实现对钻进异常的轻量化、可核验检测。 

2）提出基于多维物理量特征的启发式事件打分机制，

并结合 DTW 二次归并策略，建立事件原子—异常模式的

映射关系，提升异常段的可解释性与事件级定位精度。 

3）在保证数据不出域的前提下，本文开展多井协同

字典训练，并在服务器端聚合各客户端字典模型；进一步

结合客户端—服务器双层流程，构建面向地质钻进场景的

联邦字典学习监测体系，并在多口井数据集上验证其跨域

泛化性能与工程可行性 

1（相关工作 

1.1 地质钻进过程 

钻进工程的根本任务在于利用钻头持续破碎井底地

层，从而形成井眼并不断延伸井筒。在这一过程中，钻具、

井壁与循环泥浆之间存在复杂的物理耦合，构成一个高度

非线性、时变的动态体系(邓国庆等, 2017）。 

具体而言：钻具系统由钻头、钻柱以及井下动力钻具

构成，其受力状态直接决定破岩效率与作业安全；井壁环

境则受地层非均质性、孔隙压力差异及区域应力场作用影

响，易在局部形成井径缩小、坍塌或卡阻等不稳定状态；

循环泥浆通过立管与环空形成闭合循环，不仅承担携带岩

屑、平衡地层压力和冷却钻头的功能，其流变特性和压力

波动亦会对井筒稳定性产生直接影响；动力学响应方面，

钻压、扭矩、转速、泵排量、钩载等关键参数在钻进过程

中不断变化，既能够刻画正常破岩过程，也可能因受扰动

而产生异常突变。钻进系统组成如图 1 所示。 

 

 

图 1 地质钻进过程示意图 

Fig.1 Schematic diagram of the geological drilling process 

 

由此，钻进过程的运行状态实质上是一个多物理场、

多因素耦合的复杂动态系统。该系统对外部扰动与地层条

件变化高度敏感，任何环节的不平衡都可能被放大并传导

至整体过程。当地层应力与孔隙压力分布不均、钻具受力

失衡或循环泥浆性能偏离设计要求时，往往会触发不同形

式的异常事件。这些异常不仅改变监测参数的动态响应模

式，而且极易引发钻具损坏、井壁失稳甚至井控风险。正

因如此，对钻进过程进行系统性的机理分析与监测建模，

对于理解异常的发生与演化规律，以及为后续的智能诊断

提供理论支撑，具有重要意义。 

1.2 典型异常事件及其机理 

钻进过程是一个强非线性、多物理场耦合的动态系统，

井底地层、钻具动力学与泥浆流体之间相互作用密切(夏

天等, 2023）。任何地层性质、井壁稳定性或循环系统的扰

动，均可能破坏钻进系统的稳定性，从而引发不同类型的

异常事件。这些异常通常伴随钻压、扭矩、立管压力、钩

载及泵排量等参数的突变，是钻进安全与作业效率下降的

主要诱因。根据其物理机理和响应特征，可将钻进异常大

体归为六类典型模式。 

1）粘滑振动。粘滑振动是由钻柱扭转惯性与井壁摩

擦力交替作用引起的强非线性自激振动。其表现为钻柱在

“静摩擦—滑移”阶段周期性转换，能量在粘滞阶段积聚、

滑移阶段突释放，从而产生明显的扭矩和转速振荡(Choe 

et al.,2023)。长期粘滑不仅造成钻头磨损与钻柱疲劳，还

可能诱发横向涡动或纵向跳跃，是深井与高转速钻进中最

常见的振动失稳类型之一。 

2）卡钻。卡钻是钻井中最具破坏性和经济损失的复

杂工况之一，通常由井壁塌方、差压吸附或井径缩小等原

因引起。当钻柱与井壁发生相对静止后，受泥浆滤液侵入

或地层压力差作用，钻具被吸附在井壁上，导致钩载与钻

压急剧上升、钻柱活动受限甚至完全失去运动自由(Victor 

et al.,2024)。 

3）井漏与井涌。井底压力与地层孔隙压力间的失衡

是井漏与井涌产生的根本原因。当井底压力高于地层破裂

压力时，泥浆渗入地层导致井漏；反之，当井底压力低于

孔隙压力时，地层流体返入井筒形成井涌 (Chen et 

al.,2023)。其典型信号表现为环空流量异常、立管压力突

变及密度分布异常。

图1.cdr

 

4）喷嘴堵塞。喷嘴堵塞是钻头水力系统失效的常见

诱因，多由岩屑堆积、固相污染或泥浆失稳造成。堵塞后

会使立管压力迅速升高、泵压异常波动，同时造成钻头冷

却不足与携屑能力下降(Shao et al.,2023)。长期堵塞状态会

导致钻头过热、磨损加剧，并可能诱发随后的卡钻或井漏

事件。 

5）钻头磨损。在高磨蚀性或硬地层中，钻头切削齿

长期受冲击与摩擦作用而产生磨损，或因岩屑携带不畅形

成（“球状附着”现象。该类异常导致钻速显著下降、扭矩

与钻压逐步上升，能量传递效率降低(Huang et al.,2024)。 

6）振动与冲击类异常。此类异常通常出现在钻遇硬

泥浆循环
系统 钻杆

司钻房

钻头

井架

泥浆泵



 

 

结核、岩性突变或钻具动态耦合失稳条件下。纵向冲击会

使钻压周期性丧失接触力，横向涡动则导致钻具绕井轴非

对称旋转，而钻遇硬层时则产生瞬态高频振动和能量集中

(Nosse et al.,2023)。这些高频动力扰动易引发扭矩、钩载

和立管压力的周期性波动，加速钻具疲劳损伤。 

钻进过程中，各类异常事件虽表现各异，但其本质均

源于地层、钻具与流体系统间的耦合失稳。振动类异常主

要受钻具动力学控制，流体类异常则与井底压力和流体循

环失衡密切相关，而钻头磨损属于渐进性退化过程。不同

类型的异常在主导机理、观测信号与工程影响方面均存在

明显差异。为便于后续智能监测建模与字典原子构建，表 

1 对典型异常事件的特征进行了对比与归纳。 

综上所述，钻进过程中异常事件的发生往往具有隐蔽

性和突发性，其信号表现受地层扰动、井壁应力变化及流

体波动的共同影响。不同异常间可能在时域或幅值上呈现

相似响应，导致边界模糊、特征混叠。同时，井下环境高

噪声、采样频率不均与测点分布有限等因素，使得异常识

别过程充满不确定性。如何在多源异构的钻井数据中准确

捕捉异常的动态演化规律，提升监测的灵敏度与可靠性，

仍是钻进智能监测研究面临的重要难题。 

表 1 钻进典型异常事件机理与特征对比 

Table 1 Comparison of Mechanisms and Observable Characteristics of 

Typical Drilling Anomalies 

异常类型 主要诱因 典型信号变化 

粘滑振动 
钻柱扭转惯性与井壁摩

擦耦合 

扭矩、转速周期性波

动 

卡钻 
井壁塌方、差压吸附、

井径缩小 

钩载、钻压急剧升

高，钻柱受限 

井漏与井涌 井底与地层压力失衡 
立管压力突变、环空

流量异常 

喷嘴堵塞 岩屑堆积、泥浆固相 泵压上升、流量下降 

钻头磨损 硬地层钻进、携屑不畅 
钻速下降、扭矩缓慢

上升 

振动与冲击

类异常 

非均质地层、钻具共振

耦合 
钩载、扭矩高频波动 

 

1.3 字典学习 

字典学习利用少量具有代表性的原子对高维样本进

行稀疏线性重构，从而兼顾表示的紧凑性与可解释性

（Liang et al., 2025）。其核心假设在于：样本可由少数原

子的线性组合表征，且相应的稀疏系数刻画了原子与样本

在形态特征与机理内涵层面的对应关系。设样本矩阵
N MX  、字典 K MD  、稀疏系数 N KA  ,常用模型

为， 

2

, 1

1
min

2
A D FX AD A ‖ ‖ ‖‖   (1) 

其中， 0  控制重构保真与稀疏性的权衡；原子单位化

避免尺度不适定。对单样本 X 的重构误差为， 
2

2
ˆ( )D Da  x x∣ ‖ ‖  (2) 

可用作一致的质量度量与异常评分，误差小表明样本被少

数原子良好解释，误差大则指示其偏离已知模式。 

1.4 联邦学习 

联邦学习面向（“数据可用不外出”的约束，采用本地

训练与中心聚合的协同范式。各参与方仅交换模型参数或

中间量而非原始数据，兼顾隐私与建模效果(Huang et 

al.,2023)。设第 c 个参与方的本地目标为 ( )cF  ，全局优化

目标为， 

1

1

| |
min ( ) ( ), .

| |

C
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c c c C
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F F 


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  (3) 

典型的加权平均聚合在每轮通信中将本地更新后的参数

c ，按样本量加权汇总， 

new

1

C

c c

c




     (4) 

该框架在带宽受限、数据异构与隐私合规场景下具有优势，

但也面临客户端算力差异引起的偏置和潜在鲁棒性问题。 

2 基于联邦字典学习的监测模型 

为适应隐私受限、工况多变的井场环境，本文构建客

户端学习、服务器聚合、在线监测的完整监测流程。方法

以字典原子为可解释载体，客户端完成数据对齐与窗口建

模，经自适应聚类与物理启发式评分初始化事件标签，并

分别学习正常字典与事件字典簇，仅上传字典与统计权重。

服务器基于样本权重归一化加权聚合，形成全局正常/事

件字典，避免原始数据外泄。在线阶段计算最优事件重构

误差并据正常带阈值直判，仅对超阈值片段着色标注，保

证告警可核验。现场分布变化或新增事件出现时，通过轻

量增量更新周期性刷新事件因子与字典，实现持续适配。 

 

图 1 监测模型架构图 

Fig. 2 Monitoring Model Architecture Diagram 

2.1 客户端阶段 
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同作用使多通道信号呈现非平稳与突变并存的特征。为在

数据不外出的约束下提取可解释、可聚合的本地表示，客

户端首先完成通道对齐与尺度统一，将不同井队的量纲差

异与采集偏差消除为统一量纲的多通道序列 F

tx  （，随

后采用全局统计量进行标准化以提升跨井可比性与数值

稳定性， 

 1/2 , 1, ,t tx x t T      (5) 

其中，、由训练端总体数据估计并在各井端共享，确保

井间一致的刻度。考虑钻进过程的短时激励与瞬态响应，

客户端以长度W  ,步长 S （的滑动窗口构造局部片段，既保

留井下动力学的时间邻域，又满足边缘侧在线处理需求， 

 
1, ,

1 ( 1)

[ ]
i i

W F

i W

i

X x x

i S

 





   

  
 (6) 

将窗口展平为 WF

i x 后，先在低维嵌入空间以 K-means

进行初筛(Liu et al.,2023)：样本量占优簇近似为正常态，

其余簇作为候选异常。K-means 的目标为， 

 2

{ },{ } 2

1 1

min
ik k

N K

r ik i k

i k

r 
 

 z‖ ‖   (7) 

其中, N 表示待聚类样本数， K 表示聚类簇的个数,
iz 为 ix

的低维嵌入，
k 为簇中心。为赋予统计分簇以工程语义，

客户端对候选异常计算与表 1 对应的物理启发式事件评

分并以分位阈值对最高分事件稳健命名，弱化井间尺度差

异与噪声影响。对仍未知的窗口，采用多通道 DTW 二次

归并提升类内形状一致性， 

2

( , )

W( , ) min ( ) ( )i e i e

p q

X X p q


  ‖ ‖   (8) 

其中
e 为为事件 e的原型, 为合法对齐路，在标签稳定

后，客户端分别针对正常段与各事件段执行字典化表示，

以少量原子线性叠加解释多通道窗口，得到可解释、可聚

合的结构参数。考虑井场信号的尖峰噪声与跨通道协同激

活特性，采用稳健重构与组稀疏相结合的字典学习框架，

并显式引入事件—正常的判别间隔与类间去相关约束。总

体优化目标为， 

( ) ( )

( ) ( )

{ },{ }

( ) ( )
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式中， ( )  为 Huber 损失以抑制尖峰噪声，
( )

, 2

c

i ga‖ ‖为按通

道簇分组的组稀疏，
iw 融合样本占比与聚类置信度，

disc

为判别间隔项，使事件样本更贴合其对应事件字典而远离

正常字典， 

( ) ( )

disc
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其中， ( ) ( ) 2

decor ( )c c

F

c c

D D




‖ ‖ 为类间去相关正则(Zhang 

et al.,2023)，避免不同类别学习到形状相近的原子。该目

标在保持稀疏可解释的同时，强调正常/事件边界与原子

正交性，使后续以最小事件重构代价进行阈值直判与事件

标注更为稳定、可核验。 

2.2 服务器阶段 

服务器阶段在不接触原始数据的前提下，将各井端产

出的正常/事件字典与统计量进行一致化融合，得到具有

跨井代表性的全局参数；同时保留必要的频度与置信信息，

支撑后续在线监测的稳定性与可迁移性。首先，对正常字

典实施样本数加权的线性融合。设第 c 个客户端的正常字

典为 ( )n K M

cD  对应正常窗口计数为 ( )n

cn ，则有， 
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其中，
eC 为在本地检测到事件的客户端集合。此方案避免

了无数据客户端的干扰，也保留了事件在不同井区的形状

共性。融合完成后，服务器保留每类的有效参与数、总样

本权重与字典行范数等元信息，用于在线阶段的置信控制

与可视化标注。整个过程仅交换字典与统计量，支持安全

聚合以进一步降低重识别风险；同时采用行归一与逐事件

独立融合，确保全局原子在跨井条件下保持数值一致、形

状可读、来源可溯，为在线监测提供稳定的全局基线。 

2.3 在线阶段 

在线阶段在统一的通道映射与标准化体系下，对待监

测井场数据进行窗口化评分、阈值构建与事件标注。记服

务器端进行归一融合后的全局字典为， 
( ) ( )

* *, { }eK Mn K M e

eD D


    (12) 

分别对应正常与事件集合 （，对每个新到达窗口向量
M

i x ，在线求解轻量稀疏编码并计算事件重构误差， 

( ) ( ) 2

* 2
ˆ( ) e e

e i i iD a  x x‖ ‖  (13) 

并以最优事件重构误差作为主评分 min ( )i e e is  x （。为

在多峰或偏态评分分布下自适应刻画“正常带”，在线阶

段采用核密度估计算法对滑窗内评分样本
1{ }m

i is 
（进行非

参数建模，背景密度近似为， 

1

1ˆ( )
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j

j

s s
f s K

mh h

 
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 
  (14) 

其中， js （表示第 j （个样本的评分值，m （为窗口内样本数

量,核函数 ( )K  取高斯核(Bhupendra et al.,2024)。基于该密

度可得到平滑的累计分布，在给定分位比例 q下得到正常

带阈值 ，并以超过阈值/未过超阈值完成二元直判。 

对判为异常的窗口执行事件标注。首先依据表 1 对

应的物理启发式评分函数给出候选标签；同时依据重构准

则选择最小误差事件为另一候选。若两者一致，直接输出

该事件；若不一致，则检查重构分离度是否超过固定阈值，

超过则采用重构准则，否则保留启发式结果。最终仅对超

阈值的时间区间加粗着色并标注事件名称。 



 

 

3（实验验证 

无统一人工标注的井场条件下客观评估监测模型的

有效性与可迁移性，本文采用六口井作为训练端、另一口

井作为测试端的留一井交叉验证，以衡量在地质与工况分

布变化下的稳健性。选取专家增强的动态时间规整监测

（ Expert-enhanced Dynamic Time Warping Anomaly 

Detection, E-DTWA）(Kloska et al.,2023)方法、主成分分析

（Principal Component Analysis， PCA）(Jaffel et al.,2014)

法以及基于注意力的多实例学习方法 (Attention-based 

Multiple Instance Learning, A-BMIL）(Kong et al.,2019)在

相同阈值控制与评估口径下进行对比试验。数据来自

USROP 多井场钻井作业数据，共 7 口井，总样本量约为 

1.99×105，单井样本量约为 6.39×103 至 5.30×104，反映了

不同井场数据规模的显著差异。覆盖钻进过程的关键物理

量，如表 2 所示。 

由于 USROP 数据集缺少逐窗、逐事件的人工标签，

直接计算召回率或精确率并不适用。本文以分离度效应量

与弱监督精度作为核心度量。基于各方法在测试井上输出

的窗口级异常评分序列
is （与统一阈值 （，将样本划分为阈

上集合 { : }i iS s s    与阈下集合 { : }i iS s s    。分离

度效应量衡量两集合在评分空间的拉开程度(Sondre et 

al.,2024)，定义为， 
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其中 s ， s 与
2s ，

2s 分别为两集合的均值与方差。 

表 2  USROP 数据集主要监测变量 

Table 2. Main monitored variables in the USROP dataset. 

变量 缩写 单位 

Measured Depth - m 

Weight on Bit WOB kgf 

Average Standpipe Pressure SPP kPa 

Average Surface Torque TQ kN/m 

Rate of Penetration ROP m/h 

Average Rotary Speed - rpm 

Mud Flow Q L/min 

Mud Density p g/cm3 

Diameter - mm 

Average Hookload HKLD kgf 

 

弱监督精度用于评估阈上告警的工程一致性与标注

可信度。在缺乏人工真值的前提下，利用本文建立的物理

启发式事件规则与最小事件重构误差一致性作为弱标签

标准(Zhang et al.,2023)：对每个
is S  若启发式推断的事

件类型与最小重构误差对应的事件一致，则记为弱真阳性。

弱监督精度定义为， 

w

TP
w

N
P

N

   (16) 

其中, N
为阈上告警窗口数， w

TPN 为弱真阳性数量。 

 

 

图 3  (a): 本文方法下的井场 7 监测结果图；(b): 本文方法下的井

场 2 监测结果图；(c): E -DTWA 方法下的井场 7 监测结果图；(d): 

E-DTWA 方法下的井场 2 监测结果图；(e): PCA 方法下的井场 7 监

测结果图； (f): PCA 方法下的井场 2 监测结果图; (g) A-BMIL 方法

下的井场 7 监测结果图; (h) A-BMIL 方法下的井场 2 监测结果图. 

 

根据图 3 与表 3 的结果所示，本文方法在跨井场留一

验证中表现出更高且更集中的指标水平。弱监督精度 wP
在各井场间的取值范围约为 0.684–0.920，平均值为 0.804；

分离度d 的取值范围约为 2.939–6.876，平均值为 4.018。

上述结果表明，与 PCA、E-DTWA 与 A-BMIL 方法相比，



 

 

本文方法在不同井场之间具有较好的稳定性与一致性，能

够在分布变化条件下维持有效的正常—异常区分能力。 

从整体均值对比角度看，本文方法的分离度均值显著

高于对比方法的均值水平，同时弱监督精度的平均表现也

更优，说明异常片段在误差尺度上能够形成更清晰的边界

与更可靠的定位结果。进一步对不同井场的差异化表现进

行分析可知，本文方法在若干井场上同时表现出更突出的

可分性与定位稳定性，表明当正常波动边界相对明确且异

常响应具有较强一致性时，误差带约束与超阈值判定更易

形成清晰的判别间隔；而在分布漂移更强、工况切换更频

繁或异常形态更复杂的井场，相关指标可能出现一定幅度

回落，反映出跨井异质性对模型区分边界的影响。与此同

时，个别井场中对比方法在单一指标上亦可能占优，说明

不同方法对特定井场统计特性具有一定敏感性。综合而言，

本文方法在多数井场上维持较优且更稳定的综合表现，其

优势主要体现在跨井条件下对正常—异常边界的清晰化

能力与对复杂工况扰动的鲁棒性提升。 

表 3  各井场下各方法的弱监督精度 Pw与分离度 d 对比 

Table 2. Cross-well comparison of wP and separation d for the evaluated methods 

方法 指标 井场 1 井场 2 井场 3 井场 4 井场 5 井场 6 井场 7 平均 

本文方法 
Pw 0.750 0.704 0.684 0.834 0.887 0.920 0.852 0.804 

d 6.876 2.939 3.674 4.538 2.987 3.875 3.239 4.018 

E-DTWA 

(Kloska et al.,2023) 

Pw / / / / / / / / 

d 3.667 3.845 2.321 2.654 2.069 1.964 1.785 2.615 

PCA 

(Jaffel et al.,2014) 

Pw / / / / / / / / 

d 3.067 2.316 3.321 2.458 1.983 1.542 1.061 2.249 

A-BMIL 

(Kong et al.,2019) 

Pw 0.687 0.535 0.704 0.654 0.554 0.768 0.329 0.604 

d 3.688 2.636 1.644 2.569 4.872 3.065 1.801 2.639 

 

4（结论 

本文针对地质钻进过程中存在的数据异质性与标注

缺失问题，提出了一种融合事件启发式标注机制的联邦字

典学习方法。该方法在无人工标签条件下，通过窗口化建

模与动态聚类提取钻进特征模式，并利用事件启发式规则

对异常片段进行自适应命名与分类，实现了异常行为的可

解释区分。事件标注不仅为字典学习提供了具有物理意义

的初始划分，使得字典原子能够对应典型工况特征；同时

也在模型训练与聚合阶段引导了异常子空间的稀疏重构，

从而提升了全局模型的稳定性与跨井泛化能力。多井场实

验结果表明，所提方法在无监督条件下仍能实现稳定的异

常检测性能，验证了事件启发式标注在弱监督场景中实现

字典可解释化与模型稳健化的关键作用，为复杂井场环境

下的分布式智能监测提供了新的理论与方法支持。 
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