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摘 要：为缓解传统滑坡易发性评价对非滑坡样本依赖导致的空间代表性不足与精度不确定问题，本文提出一种

无需非滑坡样本的 FR-K-means 易发性评价方法，并以随机森林（RF）作为对比。该方法基于频率比（FR）量化

关键因子与滑坡发生的条件概率，构建综合因子数据集；进一步利用 K-means 对致灾环境进行相似性聚类，并结

合自然断点法实现易发性分区。以四川平武县为研究区、通江县为验证区的结果表明，FR-K-means 在极高易发

区滑坡捕捉能力优于 RF，滑坡密度分别为 0.124 和 0.098 个/km²（RF 为 0.112 和 0.092 个/km²）。同时，该方法

可清晰刻画流域两岸高风险带，有效减少流域内部极低易发区出现高易发值，减少非孕灾区误判。研究表明 FR-

K-means 具有较好的空间聚焦能力与区域迁移性，可为复杂地质环境区滑坡风险快速制图与精细化管控提供补充

思路。 
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Abstract: To alleviate the insufficient spatial representativeness and accuracy uncertainty caused by the reliance on non-

landslide samples in traditional landslide susceptibility assessment. This study proposes a non-landslide-sample-free FR-

K-means susceptibility evaluation method, with the Random Forest (RF) model adopted for comparison. The Frequency 

Ratio (FR) model is used to quantify the conditional probabilities between key environmental factors and landslide 

occurrence, thereby constructing an integrated factor dataset. The K-means algorithm is then applied to cluster similar 

hazard-inducing environmental conditions, and the Natural Breaks method is employed to delineate landslide susceptibility 

zones.Using Pingwu County as the study area and Tongjiang County as the validation area in Sichuan Province, the results 

indicate that the FR-K-means method outperforms the RF model in capturing landslides within very-high-susceptibility 

zones, with landslide densities of 0.124 and 0.098 events/km², respectively, compared with 0.112 and 0.092 events/km² for 

RF. In addition, the proposed method clearly delineates high-risk belts along both sides of river basins and effectively 

reduces the misclassification of extremely low-susceptibility areas within basin interiors as high-susceptibility zones, 
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thereby decreasing false identification in non-hazardous regions. The results demonstrate that the FR-K-means method 

exhibits favorable spatial focusing capability and regional transferability, providing a complementary approach for rapid 

landslide risk mapping and refined management in complex geological environments. 
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0  引言 

滑坡是世界上发生频率最高、危害最为严重的地质灾害之一，对人类生命安全及财产造成严重威胁。由于我

国疆域广阔，地形地貌复杂多样，极端天气频发，使我国成为受滑坡地质灾害影响最严重的国家之一(徐胜华等, 

2020)。据自然资源部统计结果显示，截至 2022 年，在全国登记在册的地质灾害隐患数据中，滑坡地质灾害发生

频次最多，占比高达 40%，对自然环境和人类社会造成严重危害。易发性评价是对滑坡进行风险评估以及潜在滑

坡定位的基础(刘雅婷等, 2025)，可综合分析研究区的各种地质环境因素、历史滑坡数据、滑坡物理规律等，以预

测研究区未来发生滑坡的概率(Lu et al., 2024)，其预测与分析结果可为滑坡灾害风险管理、国土空间规划布局和

滑坡监测提供重要的决策依据。 

目前，滑坡易发性的评价模型主要分为三类：知识驱动模型、物理模型以及数据驱动模型(Li et al., 2017)。

知识驱动模型主要依据专家的知识给滑坡相关的不同因素进行主观的评分与加权，进而得到滑坡易发性评价结

果，是一种定性的评价方法。然而不同专家知识存在差异，评价结果往往存在较强主观性与不确定性，且缺乏可

重复性(MIRUS et al., 2024)；物理模型方法则通过分析滑坡诱发条件对边坡稳定性的影响机理，使用物理模型来

定量评估滑坡发生的可能性。但是，此方法对区域地质力学参数的精度和完整性要求较高，而这些参数在大多数

区域难以获取，导致其在大尺度应用中存在较大限制(古腾飞等, 2024)。相比之下，数据驱动的方法则通过历史滑

坡和非滑坡区域的地质环境来定量评价滑坡的易发性。人工智能技术的快速发展，使机器学习算法在滑坡易发性

评价中得到广泛应用(Huang et al., 2018)，例如支持向量机(徐胜华等, 2020)、随机森林(Corominas et al., 2014)、以

及深度学习模型(Nguyen et al., 2025)等通过处理大量地质、气候、地形等多源数据，能够有效提高滑坡易发性评

价的精度与可靠性。数据驱动的方法因与机器学习结合使其可应用于大区域滑坡灾害易发性评价，精度较高，因

此成为区域尺度滑坡易发性评价的标准方法。然而，数据驱动模型的关键在于滑坡样本和非滑坡样本的选取，其

质量直接影响模型的学习效果和最终的预测精度(Zhu et al., 2024)。在当前的研究中，滑坡样本数据通常来源于历

史滑坡、遥感影像与现场验证，这些数据相对准确(Zhao et al., 2022)，而非滑坡样本无法直接获取，存在较大的

不确定性(苏志萍等, 2025)，若选择的非滑坡样本位于滑坡频率较高的地区，会削弱模型的学习能力，进而影响其

预测性能。 

为减小非滑坡样本选择带来的偏差，近年来已有大量工作围绕“如何更合理地采样非滑坡点”展开。Zhou 等

(Zhou et al., 2018)采用随机采样来进行非滑坡样本的选取，该方法实现简便，但获取非滑坡点的数据随机性较强，

使选取的数据质量可靠性低，可能会将潜在的滑坡归类为非滑坡，从而阻碍模型学习有效特征的能力。林荣福等
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(林荣福等, 2020)通过缓冲区采样法进行非滑坡点的选取，在距离已有历史滑坡点一定缓冲区外随机选择，但缓冲

区距离的确定具有较强的主观性(缪亚敏等, 2016)，导致滑坡易发性预测结果的不确定性增加。为进一步提高非

滑坡点采样的质量，部分研究采用稳定区域采样法，如 Choi(Choi et al., 2012)、周晓亭(周晓亭等, 2022)等人提出

在河道、沟谷等低坡度区域选择非滑坡样本，从而在一定程度上提高非滑坡样本的稳定性。但此类方法可能在特

定地貌类型过度采样，使样本存在整体代表性不足，从而削弱模型的泛化能力(Lu et al., 2024)。近年来，研究者

提出了多种优化采样方法，通过信息量（IV）(黄发明等, 2024)、逻辑回归模型(王悦等, 2024)、半监督学习(吴宏

阳等, 2024)以及集成采样(Fu et al., 2023)等技术方法来改进非滑坡样本的不确定性，这些方法在提高模型精度和

稳健性方面取得了积极进展。    

在上述各类方法中，非滑坡样本的构建都需要依赖“当前未被观测到的滑坡”，潜在的滑坡单元被纳入非滑

坡样本的风险在理论上难以避免。因此，相较于依赖正负样本构建的监督学习模型，无监督的聚类方法为缓解上

述问题提供了另一种思路：在不预先设定非滑坡样本的情况下，仅依赖环境因子对研究区进行分区，从而为滑坡

易发性评价构建一个更为灵活的框架(Gu et al., 2024;刘刘刘刘, 2025)。在这一类方法中，聚类过程侧重于在多维环

境因子空间中识别“条件相近”的区域，再通过引入历史滑坡信息，对不同环境类型的相对易发性进行评估，从

而避免在建模阶段对非滑坡样本做出假设。在众多聚类方法中，K-means 聚类因其实现简单、可扩展性强且易于

与多源栅格因子耦合等优点，被广泛应用于滑坡易发性及相关空间分区研究中。通过对环境因子进行标准化处理，

K-means 能够将环境条件相近的栅格单元归为同一类，再结合各类中滑坡点的分布情况，刻画不同环境类型的相

对危险程度。 

综上所述，本文在充分肯定现有非滑坡样本优化方法与监督模型的基础上，尝试提出一种基于频率比（FR）

与 K-means 聚类的滑坡易发性评价方法（FR-K-means 方法）：不显式采样非滑坡样本，而是在多维环境因子空

间中引入由滑坡清单驱动的 FR 先验，通过 K-means 对研究区进行环境类型分区，并利用各分区内的滑坡密度构

建归一化易发性指数，实现对滑坡易发性的定量分级。该方法通过致灾因子的空间相似性划分，将“滑坡先验”

嵌入无监督分区过程，一定程度上减弱了非滑坡样本构建带来的不确定性，可作为传统监督式易发性评价方法的

一种补充。 

1  研究方法 

滑坡易发性评价的核心在于识别与滑坡发生具有强相关性的因子条件，并在空间上划定此类条件的分布区

域。Guzzetti 等人(Guzzetti et al., 2005)强调了滑坡易发性评估过程中因子与滑坡发生的紧密关系，并指出通过识

别与滑坡发生相关的环境因子，可以有效地评估滑坡风险。现有研究表明，滑坡多发区域往往具有一定的地质、

地貌和气候一致性，因此在环境条件相似单元中开展滑坡概率建模，已成为一种有效的评价策略(Wang et al., 

2017;Wang et al., 2025 )。基于此，本文采用 K-means 聚类算法，以滑坡因子构建环境相似性分区，实质上是对空
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间中滑坡因子的自动划分。在划分出的每一子区中，滑坡发生的频次或密度可作为该区滑坡易发程度的直接量化

指标，这种基于频率的赋值方法在滑坡区划中得到广泛应用(Youssee et al., 2015)。为进一步增强聚类结果与滑坡

发生概率之间的相关性，本文将基于频率比（FR）模型计算的初步概率值作为引导因子加入聚类分析，相当于将 

FR 模型的先验概率信息融合入环境分区过程，有助于提高聚类单元内部的致灾一致性，并为后续基于滑坡密度

的易发性等级划分提供更合理的分区基础。 

1.1 研究思路 

为减弱传统滑坡易发性评价中非滑坡样本采样不确定性对结果的影响，本文提出一种无需显式构建非滑坡样

本集的易发性评价方法。总体思路为：首先基于历史滑坡点与环境因子计算各因子的频率比值，得到表征滑坡先

验信息的初步概率值，并与标准化后的多源因子共同构建多维因子集；其次，采用 K-means 聚类算法在因子空

间中对研究区栅格进行环境相似性分区；随后，在各聚类单元内统计滑坡密度并进行归一化处理以构建相对滑坡

易发性指数；最后，利用自然断点法对易发性指数进行分级，并结合独立滑坡数据和传统随机森林方法对结果进

行验证与对比分析。整体技术流程如图 1 所示。 

 

图 1  滑坡易发性技术流程图 

Fig.1  Technical Flowchart for Landslide-Susceptibility Assessment 

1.2  特征因子预处理 

1.2.1 地层岩性数据的量化处理—蒙特卡洛模拟方法 

在滑坡易发性评价中，地层岩性作为重要的控制性因子，多以定性或分类属性存在，难以直接参与基于数值

计算的模型训练或聚类分析。为了有效地将该因子量化为具有物理意义的数值，本文引入基于地质力学参数的蒙

特卡洛模拟方法。 
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蒙特卡洛方法是一种基于概率统计的数值模拟技术，适用于处理自然系统中存在不确定性或参数变异性的场

景。其基本原理是在预设的参数取值区间或概率分布下，通过大量随机抽样，模拟变量的可能值序列，从而近似

估计其统计行为特征。结合该理论，本文依据不同岩性类型在区域工程地质资料中所具有的典型抗剪强度参数黏

聚力（c）与内摩擦角（φ）的统计范围，构建每类岩性的物理参数分布模型。在均匀分布假设下，对各类岩性参

数执行 500 次蒙特卡洛随机抽样，生成具有地质力学意义的数值序列，并以其均值作为该岩性类别的数值表达。 

1.2.2 频率比法 

频率比法是计算每个滑坡特征因子在不同分级区间内滑坡发生的概率，对滑坡的分布与各个影响因子分级之

间的空间关系进行分析(Akinci et al., 2021)。频率比(FR)表示的是影响因子在某一分级区间内滑坡发生的面积和

研究区总滑坡面积的比值以及与该分级下的面积和研究区总面积的比值之比。频率比公式及计算过程如式（1）

所示： 

𝐹𝑅 =
𝑁𝑖𝑗 𝑁𝑟⁄

𝐴𝑖𝑗 𝐴𝑟⁄
(1) 

式中：FR 为频率比值；Nij为第 i 个影响因子中第 j 类发生滑坡的面积；Nr 为研究区滑坡的总面积；Aij表示

第 i 个影响因子中第 j 类所占的面积；Ar 表示研究区内总的面积。 

1.3 K-means 聚类  

K-means 聚类是一种经典的无监督学习算法，广泛应用于空间分区、图像处理、模式识别和地学建模等领域。

该算法的核心思想是通过最小化样本点与其所属聚类中心之间的误差平方和（Sum of Squared Errors, SSE），以

实现最优的样本划分(Huang et al., 2024)。其计算公式如式（2）所示： 

𝑆𝑆𝐸 = 𝑚𝑖𝑛∑ ∑ ||𝑥𝑗 − 𝜇𝑖||
2

𝑥𝑖∈𝐶𝑖

𝑘

𝑖=1

(2) 

其中：k 表示聚类数；Ci表示第 i 个聚类；xj为属于该聚类的样本点；μi 为聚类 Ci 的中心；||xj-μi||²表示样本与

聚类中心的欧几里得距离平方。K-means 聚类的执行流程主要包括以下四个步骤： 

（1）在样本空间中随机选择 k 个样本点作为初始聚类中心；（2）计算所有样本与当前聚类中心之间的距

离，并将其划分到最近的聚类中心所代表的类别中；（3）对每个聚类内的所有样本点计算均值，更新聚类中心

的位置；（4）重复步骤（2）和（3），直到聚类中心位置趋于稳定或达到预设的最大迭代次数，算法终止。 

1.4 易发性评估方法 

由于传统的模型性能评估指标，如受试者工作特征曲线（ROC）及其对应的 AUC 值(Xiao et al., 2020;付智

永等,2023)，通常依赖明确划分的正负样本集，因此在不采样非滑坡样本的条件下，其适用性受到限制(Woodard 

et al., 2023)。相较之下，基于滑坡密度的对比分析方法更适合评价不同易发性等级对滑坡的空间识别效果，也

能更直观反映模型对滑坡敏感区域的实际区划能力(MIRUS et al., 2024)。因此为评价 FR-K-means 模型的易发
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性区划效果，同时与随机森林（RF）方法进行比较，本文采用仅以滑坡清单为基础的验证方法，综合使用分级

滑坡密度与基于面积排序的捕获效率指标对模型进行评估。 

1.4.1 分级滑坡密度与单调性检验 

将历史滑坡点叠加至易发性分区图中，对每一易发性等级 k（极低、低、中、高、极高）统计其对应的面

积 Nk 以及包含的滑坡数量 Lk，计算该等级的滑坡密度 Dk： 

𝐷𝑘 =
𝐿𝑘
𝑁𝑘

，𝑘 = 1,2,3. . . (3) 

滑坡密度反映了不同易发性等级对滑坡事件的富集能力，是检验分级合理性与空间聚焦性的基础指标。在

合理的易发性分级下，滑坡密度应随等级由低到高近似单调递增，高、极高易发区的单位面积滑坡密度显著高

于中、低等级；该思路已在多项滑坡易发性研究中作为常用的验证手段(MIRUS et al., 2024)。 

本文分别对 FR-K-means 与 RF 两种方法的易发性结果进行上述统计，比较各等级滑坡密度的梯度与单调

性，并进一步分析高、极高易发区的滑坡富集程度，以评价不同方法对高风险区域的空间识别能力。 

1.4.2 面积排序与滑坡捕获效率 

在分级滑坡密度检验的基础上，为更直观地衡量模型在有限面积内对滑坡的“捕获效率”，本文采用基于栅

格易发性指数排序的面积–滑坡累积分布分析方法。具体步骤如下： 

(1) 将研究区内所有栅格单元按易发性值从高到低排序； 

(2) 在排序序列上依次累加栅格面积，得到任意面积占比 a（如前 10%、20% 等）所对应的栅格集合，并 

统计该集合中包含的滑坡数量及其占全部滑坡的比例； 

(3) 以面积占比为横轴、累计滑坡占比为纵轴，绘制面积–滑坡累积曲线，该曲线在形态上等价于常用的  

success-rate 曲线； 

(4) 计算面积–滑坡累积曲线下面积，记为 AUCSR，并在若干代表性面积阈值（如前 10%、20%）处记录对 

应的滑坡捕获率，用于比较不同模型在相同面积约束下的滑坡识别能力。 

这类基于易发性指数排序的 success-rate 曲线，以及相应的曲线下面积（AUC），已在滑坡易发性研究中

被广泛采用(Chung and Fabbri, 2003;Frattini et al., 2010)，作为不依赖分类阈值的精度评价指标，可在仅依赖滑坡

清单的前提下，定量刻画模型对高易发区域的空间聚焦能力。 

本文在 FR-K-means 与 RF 两种方法的易发性结果上均构建面积–滑坡累积曲线，通过比较二者在相同面

积占比下的滑坡捕获率及 AUCSR值，评价不同模型在高风险区域空间聚焦性和面积利用效率方面的差异。 

2 研究区概况与数据 

2.1 研究区概况 
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平武县隶属于四川省绵阳市，地处绵阳市西北部，地理坐标为东经 103°50′-104°58′，北纬 31°59′-33°02′，总

面积约 5974 平方千米。平武县地处盆周山区，具有典型的山地地貌景观。全县地貌类型以山地为主，地质构造

位置处于扬子准地台的西缘龙门山褶皱断裂带、昆仑秦岭的西秦岭-摩天岭东西构造带，以及松潘-甘孜地槽褶皱

带的结合部位，地形起伏较大，整体地势为西北高、东南低，西北最高处近岷山山脉雪宝顶约为 5588 米，东南

部河谷分布较广最低处海拔约 600m，相对高差近 5000m。平武县属于北亚热带季风气候，气候温和，降水丰沛，

年均降水量约为 792 毫米，6 月至 9 月是平武的汛期，月平均降雨量超过 100 毫米。复杂的地形条件和丰沛的降

雨，加之边坡开挖和修建道路等人类活动，使平武县滑坡灾害频发。由中国科学院资源环境科学与数据中心提供

的详细滑坡历史数据资料可知，截至 2022 年，平武县共登记在册滑坡事件 808 起，其中由降雨引起的滑坡共 639

起，大多为中小型滑坡。本文选取降雨型滑坡事件进行研究，研究区的地形特征和滑坡灾害的空间分布如图 2 所

示。 

2.2 数据及来源 

选择合适的滑坡影响因子是滑坡易发性建模的关键步骤。根据平武县滑坡致灾机理及相关的研究成果(Bao 

et al., 2023; Huang et al., 2025)，本文从地形地貌、地质、水文环境条件、人类工程活动等方面选取了 15 个滑

坡评价因子，包括高程、坡度、坡向、平面曲率、剖面曲率、归一化植被指数(NDVI)、地形湿度指数(TWI)、

水流强度指数(SPI)、年均降雨量、土地利用、地层岩性、距道路距离、距断层距离、距水系距离、高程变异系

数，其数据来源见表 1。利用方差膨胀系数(VIF)，对所选特征因子进行多重共线性检验,结果显示,所选特征因子

的 VIF 值均小于 10，说明各特征因子间具有较好的独立性,可作为滑坡易发性评价的试验数据。由于不同数据

集的分辨率不同，收集到的滑坡灾害因子具有不同的尺度。为了简化后续的特征提取，所有的因子都被均匀地

重采样至 30m 的分辨率。研究区共 6773035 个栅格单元，将研究区栅格转点，通过多值提取至点，为每个栅格

点分配各因子值。地层岩性和土地利用为两个分类变量，其他因子为连续变量。地层岩性考虑用黏聚力 C 和内

摩擦角 φ 来量化表征各个岩性类型，土地利用则进行独热编码将各土地类型以 0/1 提取至各栅格点。 

第一类因子为地形地貌因子，包括高程、坡度、坡向、曲率及高程变异系数等。高程在滑坡发生中起着重要

作用，不同的高程区域存在显著的气候垂直分布差异，尤其是气温、降水量和植被覆盖的变化，这些都对滑坡的

发生风险产生影响。坡度是影响斜坡稳定性的关键因素之一。坡度越大，坡体的稳定性越差，滑坡发生的风险越

高。较大的坡度往往伴随着水土流失的现象，更加剧了滑坡的可能性。坡向通过影响斜坡的日照、温度和水流分

布来间接影响土壤的稳定性。阳坡通常较为干燥，土壤容易失水，可能导致土壤的强度下降，容易发生滑坡。而

阴坡则积水较多，湿润的土壤也可能增加滑坡发生的风险。平面曲率与剖面曲率反映地表形态的凹凸性，进而控

制坡面水流汇聚或分散状况，影响滑坡发生的概率。高程变异系数描述地形起伏复杂度，地形越破碎，越可能发

生滑坡。 
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图 2  研究区概况及滑坡编录 

Fig.2  Overview of the Study Area and landslides inventory 

表 1  滑坡因子数据来源 

Table 1  Data Sources for Landslide Factors 

分类 特征因子 分辨率 数据源 

地形地貌 

高程、坡度、坡向、平面曲

率、剖面曲率、高程变异系

数 

30m 

https://www.gscloud.cn/ 

地理空间数据云 

地质因子 

地层岩性 

距断层距离 

土地利用 

1：50 000 

1：50 000 

http://www.activefault-datacenter.cn/ 

水文环境 

SPI 

TWI 

NDVI 

年均降雨量 

距水系距离 

30m 

30m 

1:50 000  

30m 

https://earthexplorer.usgs.gov/ 

https://www.resdc.cn/ 

https://www.openstreetmap.org/ 

http://www.globallandcover.com/ 

人类工程 距道路距离 1:50 000  https://www.openstreetmap.org/ 

第二类因子为水文因子，包括 NDVI、TWI、SPI 以及年均降雨量。NDVI 反映植被覆盖状况，高的 NDVI

（归一化植被指数）表示较好的植被覆盖，能够有效增强土壤的稳定性，降低滑坡发生的可能性。反之，低 NDVI

值代表植被稀疏，土壤易于受侵蚀，增加了滑坡的风险。TWI 与 SPI 反映地表水分积聚与水流强度，影响土体

含水率和抗剪强度，是降雨型滑坡的重要控制因子。本文主要对平武县由降雨诱发的滑坡进行研究，故降水量对

https://www.gscloud.cn/
http://www.globallandcover.com/


 

9 

滑坡发生具有极其重要影响。较高的降水量会导致土壤的含水量增加，进而降低土壤的稳定性，增加滑坡发生的

风险。 

第三类因子为地质与人类活动相关因子，包括地层岩性、土地利用、距道路距离、距水系距离和距断层距离。

地层岩性直接影响岩土体的强度与变形特性，不同岩性区域的斜坡稳定性差异较大，软岩层更易发生滑坡。土地

利用类型通过改变植被与土体扰动状况影响斜坡稳定性。道路、水系与断层的邻近性反映了人类扰动、卸荷作用

或结构弱带，对滑坡发展具有显著诱发作用。各滑坡评价因子如图 3 所示。 

2.3 特征因子分级 

开展频率比（FR）分析，需要将部分连续因子进行离散化处理，以构建各分级下滑坡发生频度的统计关系。

依据已有的滑坡易发性研究(李文彬等, 2021;贾卓等, 2025)，自然断点法（Jenks）与等间隔法两种分级法的应用较

为广泛。自然断点法能够依据数据本身的分布特性自动识别最佳分段点，被广泛用于高程、坡度、曲率等连续因

子的分级；而等间隔法则常用于距道路、距水系等距离类因子的分级，具有实现简便和可比性较强的特点。因此，

本研究对高程、坡度、曲率、NDVI 等因子采用自然断点法进行分级，对距道路、距断层及距水系距离采用等间

隔方式进行分级，并据此计算各分级区间的频率比值。需要说明的是，本文的 FR-K-means 流程中，因子分级仅

用于 FR 统计阶段，而非直接作为建模输入。在 K-means 聚类过程中，因子及 FR 值均以连续形式参与聚类，

并在聚类前进行统一标准化处理。因此，因子分级可能带来的边界偏差在聚类阶段被进一步减弱，最终易发性分

区主要取决于因子在高维特征空间中的聚类结构，而非分级的精细程度。这一点在一定程度上减弱了因子分级处

理对最终结果的影响。同时，我们未来在工作中也将尝试引入更具机理约束的分级方案，以进一步提高因子分级

的物理合理性和解释力。 

 

（a）高程                       （b）坡度                        （c）坡向 
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（d）平面曲率                  （e）剖面曲率                  （f）高程变异系数 

 

（g）距水系距离                （h）距道路距离                 （i）距断层距离 

 

（j）土地利用                  （k）地层岩性                    （l）年均降雨量 

 

（m）NDVI                       （n）TWI                       （o）SPI 

图 3  滑坡因子分级图 

Fig.3  Landslide factors classification diagrams 
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3 结果分析与讨论 

为验证本文提出的无需显式采样非滑坡数据的易发性评价方法的可行性，本文依托平武县地质数据，依次对

频率比建模结果、FR-K-means 分区结果及最终的 FR-K-means 易发性区划结果进行可视化与统计分析，并与传统

易发性模型随机森林(RF)进行效果对比。 

3.1 FR 结果分析 

为了方便 FR 的计算，通过自然断点法将连续因子划分为 5-9 类。基于上述所选择的因子及研究区滑坡数据

计算 FR 值，进而求取滑坡易发指数，并将其归一化后得到各栅格单元的初步滑坡易发性值。该值可视为一种反

映历史滑坡响应特征的经验性先验因子：一方面，它综合了已有滑坡在多环境因子维度上的联合敏感性；另一方

面，相当于在多维因子空间中引入了一个以滑坡发生频度为核心的概率维度，使不同因子组合在“是否有利于滑

坡发生”这一意义上得以区分。因此，该因子本身具有较强的灾害空间分异能力。 

FR 概率值的空间分布如图 4 所示。由图可知，高概率区域与历史滑坡点具有较好重合性，尤其在河谷附近

表现突出，说明单纯 FR 模型已能够在宏观上合理刻画研究区滑坡易发性格局，也验证了 FR 结果作为基线易发

性图的有效性。在此基础上，本文进一步将 FR 概率作为先验因子引入 K-means 聚类，有助于在保持整体易发性

分布合理的前提下，将“滑坡频发的环境类型”在多因子空间中凸显出来，引导后续 FR-K-means 模型与滑坡先

验产生直接关联。 

3.2 FR-K-means 分区结果分析 

仅依赖 FR 模型，滑坡易发性评价主要基于各单因子分级与滑坡发生之间的一维相关性，难以充分反映多因

子组合下的环境差异；而若只使用 15 项环境因子进行 K-means 聚类，则聚类结果本质上是一种“环境类型分区”，

聚类过程并未与滑坡直接联系起来。为同时兼顾多因子环境差异与滑坡发生的先验信息，本文在 FR 模型的基

础上构建 FR-K-means 模型。 

具体而言，在对所有环境因子进行标准化处理后，将 FR 概率值与 15 项地形、地貌、地质及人类活动因子

共同构建多维因子集，作为 K-means 聚类的输入特征空间。FR 值的引入相当于在环境因子空间中增加了一个由

滑坡数据主导的因子，促使 K-means 在进行环境相似性划分时，优先将“环境条件相近且历史滑坡较为集中的

栅格单元”归为同一聚类分区，从而使聚类结果不仅区分环境类型，而且对滑坡易发性的空间聚集特征更加敏感。 

基于上述设置进行聚类分区，得到的分区结果如图 5 所示。在上述设置下对研究区进行 K-means 聚类，得

到的环境分区结果如图 5 所示。结果表明，K-means 能够有效识别出一系列在因子空间中相对一致的地貌单元，

聚类分区在空间上具有良好的完整性和连贯性。河流、河谷侧坡以及高海拔积雪区等典型地貌单元在聚类图中呈

现出清晰边界（图 5 中 A、B、C 所示），滑坡点明显聚集在特定聚类单元内，尤其是在东南部河谷和西部山
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区，聚类结果与历史滑坡点空间分布高度重合，表明该分区在孕灾环境表达方面具有较好的合理性。基于此类环

境相似性分区计算各类滑坡密度，能够为后续相对滑坡易发性指数的构建提供稳定的空间单元。需要指出的是，

尽管传统聚类分析中多采用肘部法或轮廓系数等方法来选择最优聚类数，但在滑坡易发性评价中，模型效果更依

赖于能否实现对空间差异的充分识别。鉴于本研究不采样非滑坡样本且以高风险带的空间聚焦为优化目标，我们

以滑坡密度响应与面积效率作为选择 K 的主准则：在 K=10、15、20、25、30、35 等多种设置下，比较各等级

区（尤其极高/高区）对应滑坡密度与面积占比，优先选择“更高密度、较小面积”的分区方案。结果表明，K=30

时，高、极高易发区在面积保持适中的同时具有更高的单位面积滑坡密度，且空间结构最为合理，因此选取 K = 

30 作为后续 FR-K-means 模型的聚类数。 

   

        图 4 FR 概率图                                    图 5 FR-K-means 聚类分区结果 

       Fig.4 FR Probability Map                            Fig.5 FR-K-means Clustering Results 

3.3 FR-K-means 模型易发性结果 

本文将 494 个历史滑坡点空间叠加至聚类结果图中，统计每一聚类分区内实际发生的滑坡数量 Li 与该分区

包含的栅格总数 Ni，计算其滑坡密度 Di，作为该区域滑坡风险的初步度量指标。为使不同分区的滑坡密度具有

可比性，并提升其在空间建模中的解释能力，本文对所有分区的滑坡密度值进行归一化处理，得到统一量纲下的

相对滑坡易发性指数。易发性指数值范围为[0,1]，其数值越大表示该分区滑坡发生的相对频度越高，地貌环境越

敏感。基于归一化后的相对滑坡易发性指数值，本文进一步采用自然断点法（Natural Breaks）(Singh et al., 2021)

对指数进行分级划分，将研究区划分为五个滑坡易发性等级：极高、高、中、低、极低。区划结果如图 6（a），

其各分区面积占比如饼图 6（e1）所示。 

3.4 RF 模型易发性结果 
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为全面评估本文提出的 FR-K-means 模型的预测性能与适用价值，本节选用监督式学习模型—随机森林

（Random Forest,RF）作为对比方法。随机森林是一种典型的机器学习方法，具有较强的非线性建模能力和高泛

化性能，在滑坡易发性研究中被广泛应用。其基本原理是：通过 Bootstrap 重采样技术从原始样本中构建多个训

练子集，分别训练若干决策树，并对所有树的预测结果进行投票融合，得到最终分类结果。模型训练过程中，每

棵树的分裂节点均从所有特征中随机抽取部分变量进行最优划分，从而有效缓解过拟合问题并提升模型鲁棒性

(Fu et al., 2025)。为确保两种方法的可比性，RF 模型与 FR-K-means 模型方法使用完全相同的滑坡因子集及历史

滑坡点。非滑坡样本则采用缓冲区排除策略(Ke et al., 2025)，在距滑坡点 1000 米以外区域随机采样，数量与滑坡

点保持 1:1 配比。利用训练好的 RF 模型对研究区进行预测，模型输出结果同样经自然断点法划分为五个滑坡易

发性等级，与 FR-K-means 方法区划标准保持一致，便于后续各易发性分区结果的对比分析，其结果如图 6(b)，

各分区面积占比如饼图 6（e2）所示。 

  

(a) 平武县 FR-K-means 易发性结果                   (b) 平武县 RF 易发性结果 

(a1) A 典型区域细节图  (a2) B 典型区域细节图      (b1) A 典型区域细节图   (b2) B 典型区域细节图      
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(c) 通江县 FR-K-means 易发性结果                        (d) 通江县 RF 易发性结果 

(c1) C 典型区域细节图  (c2) D 典型区域细节图       (d1) C 典型区域细节图  (d2) D 典型区域细节图 

 

(e1) 平武县-FR-K-means     (e2) 平武县-RF      (e3) 通江县-FR-K-means       (e4) 通江县-RF 

(e) 各易发性结果分区面积占比 

图 6 滑坡易发性图 

Fig.6 Landslide Susceptibility Mapping Results 

3.5 结果对比 

本文将 144 个独立验证滑坡点分别叠加至两种方法的易发性区划结果上，开展对比分析。结果显示，两种

方法的评价结果具有一定的相似性：极高区都主要位于平武县的东南部和中部。该区域地质条件复杂，河流密布，

加上降雨充沛以及日益频繁的人类工程活动，给滑坡灾害提供有利的孕灾环境。 

在此基础上，FR-K-means 方法在高风险区的滑坡聚集能力表现出一定的优势。以极高易发区为例，FR-K-

means 方法的滑坡点密度为 0.124 个/km²，高于随机森林（RF）模型的 0.112 个/km²。该结果表明，FR-K-means

方法能够在较小的面积内捕捉更多的滑坡事件，呈现出较强的风险聚焦能力（图 7、图 8）。此外，如上图 6（e）

所示，饼状图分别展示了 FR-K-means 方法和随机森林方法经自然断点法得到的各易发性分级的面积占比。从面
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积利用效率角度看，FR-K-means 方法能够以较小的面积划定高风险区域，避免过度扩展高易发区面积。如图 6(e) 

所示，FR-K-means 的高、极高易发区面积分别约为 10% 和 7%（图 6e1），均小于 RF 模型对应的 13% 和 13%

（图 6e2）。这表明，FR-K-means 更加精准地聚焦于滑坡发生概率较高的区域。 

另一方面，基于易发性指数排序构建的面积-滑坡累积分布曲线表明（图 9），在相同的面积占比条件下，

FR-K-means 曲线整体略高于 RF 曲线，其 AUCSR 指标也相对更大，说明在滑坡易发性高的前若干面积（如前 

10%-20%）中，FR-K-means 能够覆盖更多的滑坡事件，并具有更强的空间聚焦性。这一结果与基于面积占比和

滑坡密度的分析相互印证，进一步为 FR-K-means 方法的有效性提供了支撑。 

从空间分布结构来看，FR-K-means 在流域两岸及河谷边缘的表现更为突出（图 6a1、图 6a2）。该方法在长

期侵蚀作用显著的河谷边缘区域划定了连续的高、极高易发带，这些区域往往具有较大的坡度、较为破碎的岩性

及较弱的植被覆盖，是典型的高风险地貌单元；而流域中心及其他整体稳定区域通常被划分为低至极低易发区，

避免了大面积零散高易发性值的出现。相比之下，RF 结果在部分区域存在一定程度的空间“过预测”现象（图

6b1、图 6b2），即局部环境条件相对稳定的区域被划入中高易发等级，使得风险区划的空间边界略显宽泛。 

 

图 7 研究区结果对比图              图 8 验证区结果对比图            图 9 面积-滑坡累积分布曲线 

  Fig.7 Comparison of Landslide Susceptibility   Fig.8 Comparison of Landslide Susceptibility      Fig.9 Area-Cumulative  

Mapping Results in the Study Area        Mapping Results in the Validation Area     Landslide Distribution Curve 

综上所述，FR-K-means 方法在滑坡易发性评估中表现出较强的空间聚焦能力和较好的面积利用效率，尤其

是在高易发区的滑坡捕捉能力方面具有一定的优势。虽然RF模型在传统监督式框架下依然是一个强有力的模型，

但在非滑坡样本难以高质量采样的情况下，FR-K-means 提供了一种具有实践潜力的互补方法，尤其在高风险区

域的划定上展现了其精准性和有效性。 

最后，为进一步验证 FR-K-means 的适用性和稳健性，本文将通江县作为独立验证区，沿用平武县相同的因

子选择、聚类方法与样本处理流程开展实验。结果如图所示（图 6c、图 6d），在通江县的极高易发区，FR-K-

means 方法的滑坡密度达 0.098 个/km²，依然优于 RF 方法的 0.092 个/km²（图 8），并能够准确区分流域两岸

与内部区域的滑坡风险差异（图 6c1、图 6c2），表现出良好的滑坡敏感性区划能力，验证了该方法在不同地质区

域的迁移性和实用性。 

3.6 讨论 
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在不显式采样非滑坡样本集的前提下，FR-K-means 方法通过引入 FR 值并在多因子空间内进行环境相似性

划分，实现了滑坡孕灾环境表达。结果表明，该方法在研究区及独立验证区均取得了较好的滑坡易发性结果，高、

极高易发等级对滑坡事件具有显著的空间聚焦能力，在非滑坡样本难以精确获取的情形下，提供了一种具有实际

可行性的滑坡易发性评价思路。 

与此同时，该方法仍需要进一步完善。首先，K-means 本质上假设各簇在特征空间中近似球形分布，并采用

欧氏距离度量相似性，在某些高度非线性或非凸形的环境类型中可能难以充分刻画其内部结构；其次，聚类数 K

对结果具有较强敏感性，受地形地貌、因子维度及目标尺度等多重因素影响，尚难给出统一的选取准则，本研究

选取高和极高易发区对应更高滑坡密度的分区数作为最优 K 值，虽然提升了高风险的区域划分精度，但此会影

响模型的自动化与迁移效率。再者，FR 先验依赖于现有滑坡清单，若滑坡清单存在漏报或时效性问题，可能导

致部分潜在高风险环境类型在建模阶段未被充分表达，从而影响局部结果的精度。故未来可在获取更完备的滑坡

数据库条件下，来对本方法进行进一步对比和检验也是十分必要的。 

从方法拓展的角度看，FR-K-means 也为后续融合非滑坡样本的研究提供了一个相对稳健的起点。一方面，

历史滑坡点与 FR-K-means 所划定的极低或低易发区的重合度较低，可被视为候选“相对稳定区域”。在此基础

上，未来可以尝试在这些区域内构建高置信度的非滑坡样本集，并与 RF、XGBoost 等监督学习模型联合使用，

在统一的评价框架下系统量化比较“无需非滑坡样本”的 FR-K-means 思路与传统监督学习方法之间的性能差

异，从而更全面地刻画不同非滑坡构建方法对易发性预测结果的影响。另一方面，FR-K-means 输出的聚类单元

本身也可作为一种分区基础：在每一分区内部引入半监督学习、主动学习或迭代式样本修正等策略，根据模型在

不同聚类环境中的分类置信度，逐步优化非滑坡样本的空间分布，有望在保持方法可解释性的同时，进一步提升

整体预测精度和稳健性。 

综上，FR-K-means 是建立在传统 FR 与监督学习方法基础上的一种尝试：一方面，FR、RF 等依赖显式正

负样本构建的监督式方法仍然是滑坡易发性评价的重要技术路线；另一方面，在非滑坡样本构建存在不确定性的

背景下，FR-K-means 结果表明，在仅依赖滑坡清单和环境因子信息的条件下，有获得具有较准确易发性区划结

果的可能。未来若能在本方法划定的稳定区基础上进一步构建高置信度非滑坡样本，并与多种监督学习及时序建

模方法相结合，将有望在“无非滑坡样本”和“高质量非滑坡样本”两类思路之间搭建起更紧密的联系，推动滑

坡易发性评价方法体系的整体完善与发展。 

4 结论 

本文针对传统滑坡易发性评价方法中非滑坡样本选取不确定性对结果的影响，提出了一种创新的滑坡易发

性建模方法，旨在实现无非滑坡样本的滑坡易发性评估。通过结合因子概率响应与空间聚类特征，构建了一种

基于频率比（FR）模型与 K-means 聚类算法的滑坡易发性评估方法。 
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主要结论如下： 

①核心创新与方法优势：本文提出的方法以基于已有滑坡及其因子进行频率比（FR）得到的初次概率值为

先验，结合 K-means 聚类实现环境因子的空间分区，并通过分区滑坡密度构建相对易发性指数。在无需显式采

样非滑坡点的前提下，该方法实现了滑坡风险的定量化与精细区划，一定程度上避免了传统模型中非滑坡样本

选取不确定性的问题。与依赖非滑坡样本的随机森林（RF）方法相比，本方法在高风险区划定上更为聚焦，以

更小面积锁定更高密度的滑坡点，表现出科学性与实用性。 

②流域尺度的区划价值：该方法能够有效凸显滑坡在流域空间上的差异性，精准识别并锁定河流两岸的高

风险带，同时合理剔除流域内部的稳定区域，避免了高易发性区域的过度扩展。其结果与实际孕灾环境高度一

致，展现出良好的空间解释力与工程应用价值。 

③区域适应性与稳定性：通过在通江县的验证，本文方法在不同地貌背景下仍保持较高的适应性和稳定性。

尽管地形、气候等因子存在差异，FR-K-means 方法依然能够有效适应这些变化，并对不同区域的滑坡易发性

进行准确划分。这表明该方法具有较强的区域尺度适用性，为滑坡易发性评估提供了可靠的技术支持。 
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