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Abstract: Paleocurrent analysis plays an important role in the fields of sedimentary
petrology and paleogeographic reconstruction. Traditional methods of field
measurement for paleocurrent data are plagued by low work efficiency and blind spots
in data acquisition. With the advancement of unmanned aerial vehicle (UAV)
technology and geographic information systems, real-scene digital outcrop 3D models
have provided a new method for the measurement and analysis of paleocurrents. This
research is based on 3D models constructed using UAV oblique photography, which
provide high-resolution texture information that allows geologists to accurately identify
sedimentary structures which indicate paleocurrent directions. Utilizing the precise
spatial information from 3D models, a platform for real-scene 3D models of digital
outcrops is built for the visualization of the models. Paleocurrent measurements of
commonly observed cross-bedding in the field are quantitatively carried out through a
spatial three-point method. Computer correction of paleocurrent data is conducted
based on azimuthal equidistant projection and spatial geometric relationship correction
algorithms to eliminate the effects of stratigraphic structural changes. The processed
paleocurrent data are subjected to statistical analysis and visual presentation. Interactive
methods are used to draw regional rose diagrams, providing an intuitive display of the
distribution and dominant directions of paleocurrent data within the region.
Furthermore, this paper uses the Guanjiaya outcrops in the Ordos Basin as examples to
implement sedimentary paleocurrent analysis based on real-scene digital outcrop 3D
models. Through the aforementioned methods, the analysis of paleocurrents effectively
replaces paleocurrent data field measurement and reduces the fieldwork burden.
Additionally, It provides data support for interpreting source directions and inferring
ancient slopes.

Keywords: Paleocurrent Analysis; Oblique Photogrammetry; Digital Outcrops;
Cesium; Ordos Basin
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Fig.5 Geometric schematic diagram of paleocurrent direction correction principle

BEIA) B Ny S8l No BEFE 13 2] — AN RIHE, SRS M & Ny Gafl No g rHETI A
b IR TZ:

N[N,

m“m:DNﬂDMD (13)
B No ANy AL &, AT it .
cos(b)=N,N, (14)

JE A O Fa ) AR R O A& N 00, OO NYSE No 7, KEHN
o) B Ny 76 No _F AR5

O0'= N, cos(b) (15)
MJETH B0 O 1] N A N E A2 7] & Ry :
R,=N, — N, cos(b) (16)
METH B0 O 7] No A N EA2 ) 7] & Ro:
R,=N, —N, cos(b) (17)
[ & Ry £E Ry J7 [A) EAHREE O'A MEEE T Ry J7 ) 70 & AB 4:
R, =0'A= - Ei - (R, Ocos(a) = R, cos(a) (18)
R, =AB=(R,xN,)sin(a) (19)
LA & R2 9 O'A Jill AB:
R,=R, +R,, =R, cos(a)+(R, xN,)sin(a) (20)
B (17D 530 (200 MSEHERR Ry, BT HE N2 4
N,=(N,[N,)N,(L—cos(a))+N, cos(a)+(N, x N,)sin(a) (21)

FETH SN IEH 5 B U R o, 250 DR BT i A MBS 4T RO A v

10



| 2 Ao AU ) AT A AR LA 5 s SGYE L, I HAR AR vH S0 R A N S 7 2 T
ARBTG5 5 Can 47 £ P2 BGHE HE 360° M A3 D o 7SI B AR I vy i 1) 2504
HTt R, e A — A EER A N B — A ATARSUZ BR 4R, R TEIA 4
FRIXARA BRI St , (AR G0 R PR AR BB It e R IR 25
PR IERCE

2.2 HREST T

TR A G AT TR AR 2 S AESE 18] 73 M s O LI B F o O AU
FEEEAC K BT BRI B fEE BT, TR T e AR R Y
s RETENECLUSED: (REMEE, 2015) o BORACEE —F T R 7 A%
PR L RAIE Gt B, EH =M EEIE. BE . XA A2 a BUORAE R . 7R
TR BCRAEE R, AN R ECERAE B BT AN [F] ) R m R

AR BERAC W E D Gt JBaRTTiEsh, ikt T =4ER Y E
NIRRT AN DI RE, =8 FH s A BRbR A R b (R e N B, AR BT
=4 &k o DR BB R | = 4E 8 Sk il /KR 7 1n), A R0t v ik
ARG IR AR R R R R R, 9 2 KR T TR T BRI, 4RI
AP REEOE RN AN AL BB IR R TTA. AEHE T Cesium B =4EF 55
R P AT DLSE i e e R 4 Tt BRI ) E b A A SR AL, AN
SRSk, DL TH SRR BT W8P 1 1) b i s B o

2.3 H BRI

UL 1) TR AR AR T L AL 1) BT R X 3 AT P AT B b, R4
Er o DA AR G Bk AR BB B R it 1l B E o o S DO P UGk
AR R R A R — A BB RIKI T FAFAE s SRS 7K i =X J A
FHR R AT s AUARE LA AR IR ABE SR 2 PR AN KT I I /T 180°
1M 22 W KA A FRORAFE 2 A EZ AR T H (Tucker, 2011)

3 ER=HHFELHRADHTILA

3.1 XEHFEE R

SRR Z W AR GRS PR PR L P P4, R R PR . X X
FEREYIE S, 20 Be 1S8R 2 B dd 5 i v W [ 2 18] (A B - 3 F i O

11



BB, 2007) . FiHREEALT B WLk v M, EEAREIbREAm, KEZ
400km, F&FEAE 30 & 60km 2 7], 7EH B G AR, BFFE X AL AN FEERES, 16
g S T . LR, B R SR XA TR BkE 4K

W, XTSRS 0 B K, BONSER 2 i B AR AR IL 2%

#eiliza)

JATR], 2 pH RSB RIS, SN RERE S, IEESEC I mALER

>Sis] HH . N %2
PR I GLERR, 2009) (K 6)
106°E 107°E 108°E 109°E 110°E 111°E 112°E
1 1 1 L 1 L
3 = N ———
N | & P Hh
Z Z
& re
¥ ¥
Z Z
o Y Y S =
(an] (an]
Z Z
81 5
(o] (28]
Z. Z
= M
o o
Z Z
ol e
o o
Z NCHL\ el i T Hiy Z
aQ ) ]}},‘: [+]
- 1 e “
0 40km
- . (I
1 IR
106°E 107°E  108°E 109°E 110°E 111°E 112°E
o b — MR - HE YT

Ko SR/RZHEMMmERCE (JEEFERE, 2024)

CIET R 2 7R AR ST it 1] 23 A

I FH P SR 5% e Sk T AL B —— Bk VU4 B BT O B U OGS A
Fig.6 A structural unit map of the Ordos Basin (Gui et al., 2024)(the location of the Guanjiaya

outcrops applied in the paleocurrent analysis of this study, as indicated by the red box in the

figure, is Guanjiaya Village, Weifen Town, Xing County, Lvliang City, Shaanxi Province, China)

3.2 BT =48 B LW RN T

AR TSR 2 W EI Y ok SR = 4E T 6 A T AL = e AN 3L
AR AEEE, If bA% TSR 2 AR GNP G R A R AR

12



27 6 ESCBLE TR AT £ 8 Oy Bk INEC S d R RS A R Ee Sk
BRI PUREN SHRZEN &, ttE SRS IE. B eH] . B
RS AT AN HE R A

(1) B Ina8 5 i A FE s & IR i)

FESR R Z I B ARG RSB XA EANLRER 1 4 Ak Sk Bl g HLak
1T 7SR =R (1 AR 3 AN e S YD, Herp e S AR i Sk
HRRBAR, M =4S EE F ki A, AN E Sk R, T AE AR
RURRRIE (R 1D o INBORK AT A, JEI R R e M4, 45 5 A K
JRBURE, o RS B AR AL TR R ) DO IE BEAT SR, B T X LIS
MR RBCIRAZ HEE . MRS HE R B B 2B (D)

R ORFEHRRLR SRR R 5 XA

Table 1 Resolutions and regional area of the Guanjiaya outcrop real-scene 3D models
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Fig.10 Batch correction results of paleocurrent directions
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Table 2 Post-correction paleocurrent direction attitude statistics of Guanjiaya outcrop 1
75 HUZ IR JE A E s R RAEJE IR
1 55.47°/11.22° 286.76°/38.56° 277.8°/46.3°
2 285.88°,31.28< 274.6°/39.3°
3 283.23°/35.55° 273.9°/43.8°
4 284.56°/33.75° 274.5°/41.9°
5 285.73°,31.37° 274.6°/39.4°
6 281.31°/27.62° 269.7°/36.3°
7 304.53°/35.50° 291.7°/40.7°
8 292.23°/34.00° 280.8°/41.1°
9 286.19°,33.04° 275.5°/41.0°
10 297.76°/31.54° 284.3°/37.9°
11 343.73°,23.32° 316.8°/22.3°
12 318.98°,29.68< 301.0°£32.7°
13 291.15°/28.63° 277.7°/36.1°
14 294.98°/36.40° 284.0°£43.0°
15 281.71°/31.24° 271.3°/39.7°
16 290.14°/26.64° 276.0°£34.3°
17 316.90°,27.79° 297.9°/31.3°
18 303.59°,26.35° 286.2°/32.1°
19 304.41°,33.23° 290.6°/38.5°
20 284.35°/32.40° 273.8°/40.6°
21 308.09°,18.81° 283.3°/24.5°
22 261.93°,31.31° 255.9°/41.6°
23 271.22°/32.96° 263.5°/42.5°
24 288.46°/34.53° 277.9°/42.1°
25 285.67°,37.61° 276.6°/45.5°
26 276.08°,30.59° 266.7°/39.7°
27 344.26°,22.51° 316.3°/21.5°
28 308.15°,29.22° 291.6°/34.1°
29 339.99°,23.48< 313.7°/£23.2°
26 276.08°,30.59< 266.7°/39.7°
27 344.26°,22.51° 316.3°/21.5°
28 308.15°,29.22° 291.6°/34.1°
29 339.99°,23.48° 313.7°/£23.2°

X R Tk 2 BURAZHE R BEHEAT EIRFRERIIN R, ROIE S R E R A gt

B 3.

®3ORFERRK 2 KRIEFR SR IRG T

Table 3 Post-correction paleocurrent direction attitude statistics of Guanjiaya outcrop 2
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FF5 HuE PR LR C TR SETIRN
1 316.29°.20.32° 264.07°£22.66° 208.3°£18.7<
2 239.04°.24.88° 197.2</28.0°
3 258.05°£30.16° 219.3°9£25.5°
4 271.22°,29.38° 230.0°£20.4<
5 269.06°£24.24° 215.9°/17.8<
6 267.94°.26.62° 221.0°£19.6°
7 268.69°,25.18° 218.1°/18.5°
8 246.35°£23.95° 200.2°£25.1<
9 223.33°£18.76° 179.3°£28.1°
10 222.56°,25.81° 188.39433.4°
11 296.49°,24.52° 246.0°48.6°
12 269.14<,23.13° 212.8°/17.2°
13 251.83°£23.04° 201.7°£22.8<
14 272.88<.,20.30° 205.7°£14.8<
15 247.64°,23.92° 200.9<£24.7<
16 230.65°£28.65° 196.8°/33.3°
17 269.72°,25.81° 214.7°/21.0<
18 265.79°,21.78° 206.8°£17.7<
19 251.76°£21.73° 198.9°,22.1<
20 233.69°,31.39° 202.0°£34.5<
21 240.39°£23.54° 195.99.26.7°
22 233.96°,18.86° 184.3°./25.5°
23 286.14<,21.55° 218.5°/10.7<
24 260.42°,24.52° 210.4<£20.9<
25 264.75°,27.95° 221.1°/21.6°
26 259.36°£22.21° 204.3°£20.0<°
27 287.93°.29.40° 250.0°£14.8<
28 289.45°,29.99° 253.8°/£14.7<

(5) BB e 5 KRS T e

BEXTAN A A Y, 0k 5 R B O AE B ORI Jm IR, 2]
AN BRAE I, QB 11 Pran. i A BORAE R R e A0 T 1
ARSI, K 360°70 74 36 1, Gritvs P rbR 4, BIREABORAE
AR 2 J7 170 [X o] R AR o
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