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Abstract: The Cenozoic uplift of the Tibetan Plateau has profoundly reshaped the tectonic geomorphology of Asia and deeply influenced the
Cenozoic monsoon circulation and climatic evolution of East Asia and globally. The Qaidam Basin, located in the northern Tibetan Plateau,
serves a window into studying Cenozoic climatic and environmental evolution. Lacustrine sediments, as continuous and high-resolution
environmental records, sensitively record regional environmental fluctuations. Among these, the authigenic carbonates preserved within the

sediments provide key records for reconstructing paleoclimatic histories of ancient lakes. This study focuses on lacustrine marlstones from the
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Shangganchaigou Formation in the Dahonggou Section, northern Qaidam Basin. The mineral composition of these marlstones is determined by
XRD, SEM and EDS analysis methods, which mainly includes quartz, calcite, illite, plagioclase and chlorite. By examining the correlation
between 8°C and 6O values of the marlstones (*=0.04) and comparing them with regional and global authigenic carbonates from modern
lacustrine sediments, this research reveals that the paleo-Qaidam Lake remains an open freshwater lake during the Early Oligocene (~30.8 Ma).
Based on this, the oxygen isotopic composition of summer atmospheric precipitation in the paleo-Qaidam Lake during the Early Oligocene
(~30.8 May) is reconstructed by using the oxygen isotopic composition of the marlstone(~-6.2 £ 0.7%o). This value is approximately 2.2%o higher
than the modern summer atmospheric precipitation and river water 60 water-sMow) Values in the Qaidam Basin, indicating the Qaidam Basin has
undergone significant cooling since the Early Oligocene (~30.8 Ma), with a magnitude of approximately 6.5 °C. It is proposed that global cooling
and the uplift of the Tibetan Plateau cooperate to drive the significant cooling in the Qaidam Basin since the early Oligocene, with global cooling

playing a dominant role.
Key Words: Qaidam Basin; Early Oligocene; Lacustrine-authigenic carbonates; Carbon and oxygen isotopes; Paleoclimate
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B EE AR RS BRI AR R PR LS B J 7 e B T T B R 7 58 s B T 42 — (Molnar and
Tapponnier, 1975; ¥ AZEATT MK, 1996; Zhangetal., 2010; Dingetal., 2022). T EuHrAA QS &R
FEAM A X BRI R AR R R A T B R, T ELXB AR AR AR DX 3 R ARy A PR AT
A RERFN (Raymo and Ruddiman, 1992; ZE#35A177/ME, 1998; TS, 1999: An er al, 2001;
Guoetal., 2002; K}57E%%, 2006; Dupont-Nivetetal, 2007; Fangetal, 2020, 2022; Dingetal, 2022).
SSRGS TR JEALES, BT P BT, R AR R SE R T R AR
JFEATRHO X IR E B D7 SRS IAEE AR5 . (Fangetal., 20075 Miaoetal., 2011; Songetal., 2013, 2018;
Jietal, 2017; Wangetal., 2017, 2022; Nieetal, 2020; Sunetal., 2020; Chengetal., 2021; Luetal,
2022; Liu et al., 2023). ERFRGSEAR I HAEACCORMIERETH 5 R ARG X R, G
BRI AN XIBRIVITASI AL, WATES V2 e s2 JE SRR X P pes t Rl , 3 B SR s
DU AR AR A I 8] Y S O B IOV TR 2. (TE AR SR AXIMERE, 1993, 3L, 2009; 4275, 2011),
MNTAEAFIELE . 2R AR TR DA R R, T AR B A R h i 5 v ihin
SIS S 3 SR oy R R A R B AR (XL, 19985 Dettmanetal., 20035 S2EBINEE, 2007;
A5, 2007; Kent-Corson ef al., 20095 WVLIH%, 2013; Hanetal, 2014; KEGESE, 2016; REfbie
4%, 2018; Yangeral, 2022; Zhangetal, 2024).
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1.1 XigthERER
LEIEAR I T s AR, ARz X B RRIFEAR TR Gt (B 1a) . HTAEAR LIS AZ BN EE B 5 R A
HRERE (P AR RN, SR AR T ) 2 = K3 WiZar BRI R S, R W R e 1 -5 b2 b



FHEH N RAERED, 82 7 BEERHARUTR, B-E RN 173 (Yineral., 2008; Chengeral.,
2021; Zhangetal., 2025) o BIATISEEARTEIE I A it X i FIX 2 —, HAEFE0R A4 °C,
KR M X B BN T 100 mm (Zeng et al., 2024) .

AR Z A R, HAEMMAAS . 2SR E, SRR B2 5 2
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] (NPsy) PiFEE (NPsh) FIEANRA (Quag) CEEEHUFTN 725, 1991; Fangetal, 2007,
2019; Yinetal., 2008; Luand Xiong, 2009; Zhangetal, 2010; Zhuangetal, 201la; Changetal.,
2015; Jietal, 2017; Chengetal, 2021). FREARHINIE, UL RAFFTE DN SR G L ETT e
R LRI Z AT AT, R SR 2 TR AR IR R PR E 7E~30 Ma B#~20.5 Ma (Wang et al., 2017,
2022; Nieetal, 2020) , X152 Hi{~52 Ma [FIANRAHZEELR, MITIERL | SOEAR I AAHZ “fLaa
PATRIN” 55 it {143 (Chengetal, 2021; Luetal,2022; Wangetal., 2022; {HE%E,
2025; REOCEE, 2025) o s EA T RRIBKIREL S U-Pb 58 445 RO SR R AR A Z A
BUKIBAEAEATFRAR (Geetal., 2025; Zengetal., 2025) . HFEZIEKRMAYIETIRERMER “t64
TR SiEi R BORE, A K R AR AR SRR A5 3 1) S A AR g S B (Cheng et
al., 2021) , [FIERLLVRITIACTEEA A AR 2 U2 5 SR KAV A T R (1 sk PR M 2
RS AR5 (Xing etal., 2023) , FERB0IA S E fESEER AL LIV THI % AR T 2H 2 RS
T 45.0 £ 2.8 Ma FIKIIBEK R ID A ECERE AR (Zeng et al., 2025) , AHFFUAKIHRFHSSEAR G HH A
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Fig.1

Dahonggou section
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KAVHIHE HBFRAAFR: 37°29'11"N, 95°12'42"E) hiFLEEARZHILHS, K4l
AN S B B QY N ] A E R N - I e T A £ I N1 N2 W 1 U N e 1 e P
o BT A LUK S — R A A R E RS N, &
DA T WAPATZEE . BOIR RBRIRACH 23 IR E, s RImiE R /KT ZE (K 2),
ST RIHIE = S IM-IRIARY TR (Songeral., 2013; Jietal, 2017). BbAh, SeRifE RLLE I ET-5e/4

a. Geographical location of the Qaidam Basin (modified after Ji et al., 2017); b. The simplified geologic map of the study area and
location of the Dahonggou section (modified after Ji et al., 2017); c. Field outcrop of the stratum in the lower member of the

B 135 AR E AR TR ERAT S AR AT (Song et al., 2020).
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K2 SERAREHRLIIAR B2 N BAFAM ZHEAE SAUCRAEALE. (B2 Song eral., 2020)
Fig2 Chronostratigraphic framework of the lower member of the Shangganchaigou Formation of the Dahonggou section, Qaidam Basin,
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showing the location of those study samples (modified after Song e al., 2020)
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AT H SR T RELVARITHTWIAHRE TR T s R Z 20T A, B T Sa b E AR
SEETEE—r I R (34.2~19.5Ma) (ietal, 2017); JEFWIRE, BHEYI LA HEAL, BIA
A FE I ICE L it RAE ZAL 5 A RRR 2 9~30.8Ma (&2, Songeral., 2020).

2 FEACREMZEN T

ARV T IR EFE SRR RLLYAIT el 135 2P A 20 (B 2). BFAMREERT %
PERTEE. RERIIE AR, 350123 £
2.1 X §4758F (XRD) FiEEEEE (SEM) 24

PR, 2 RTANFE Y 58 AT 2% X Pert PRODY2198 %Y X SHEMHAATHMGHEATIEI, ¥ & Ni
e, X G CuKo ST HLE . B BN KV 40, mA40. FTIEZR 0.02°20/s, R E N 0.02°20,
1E 3°~65°20 YU N T Ak, IEIERIVRERAG, [EHECS EDAX BERECEIEX (EDS) R4 FEI
Apero S FHHT-EMES (SEMD HHTIEFZMT. SEM EUEAE 20k HIIMEH L. 10 RN 4135
wA RS HURT 10mm (19 TAEREE N 3k1F. XRD 2341 SEM 23 Hrisire R B RS GRVO T #
5 R T 4 E s s = T
22 WERILESH

HAETCT R RS RT3 B 5 MR 4y, URERL 0.2~05 g, A3
WA EE 22 /NT 80 Ho HEHL 200~400 pg HrAFEME T 10 mL (T N, 35 5ies, E T 72°CE
T N . B Gasbench HBITERUINER. CO, A% MEFERESPIE. ot CO, SN Gasbench
[I—MAT253 Feg RN = RSSO TR ARSI ZME » WS LA VPDB JbsitE, #3FF v GBW04416
1 GBW04417, MHRZER 613C IRZERT0.1%0, 080 RZEMRTH0.2%0. HEEFEE RN Z A ATHE A EHLF K
=GR T S 4 B S0 % S8 A
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3.1 XRD #1SEM 9%

WEE 1 AN 3 frR, XRD 70 IR ZLVARI T b2 2H e ACE N A BN A 9E(36.14%~19.26%)
Ti A (36.82%~7.06% ) tHAI (33.04%~15.01%) FIRHC A (28.36%~9.33%), HX NEkef (13.45%~6.41%)
A (16.48%~0%)« HHBRIRERN V) VPN ffA, AFE 1 AMFERY (135-17) Wl R A=A .
AR AT P BFERERHAR, UE 2 MRS (135-7. 135-22) FERIAMCES B4 1. TS
BN, AKRN—MRLE Y, fhla, fR0R00 (8 4a), kBRI A N PR E S A
FBlAKRE (Bl4o). RN X SZREERE DT (EDS) SonVERARE T flA 1) Mg & = 1RMK, ke
Jifffa (El4b, d-D.

R SEFARFHRLYAHIT T ESALIEIET W (%) XRD 734k

Table.1 Mineral composition (%) of the study marlstone in the Shangganchaigou Formation, Dahonggou section, Qaidam Basin

Fhdh VYrEE (%)
i (SES Gl A Jifie Hz&f LRl Cigilzs] Ak
*135-10 2145 2.54 1829 25.01 — 943 2327 —
1352 2821 228 28.63 1091 — 9.10 20.88 —

135-3 24.68 — 17.00 2891 — 8.89 2043 —



B TYEE (%)

G PR A EaRE) Jififa Hzf e (Gazilve £
1354 36.14 — 20.12 10.61 — 1041 2271
*135-50 29.07 10.20 12.45 20.74 — 839 19.15
135-6 23.80 — 15.30 27.37 — 1045 23.08
135-7 30.46 2.90 2437 10.13 — 10.30 20.98 0.86
*135-80 25.51 — 18.16 24.01 — 8.70 23.62
1359 28.88 — 2532 7.75 — 12.62 2543
135-10 29.44 3.55 1631 21.70 — 10.18 18.82
135-11 23.06 245 20.94 7.06 — 1345 33.04
*135-12 2243 1.81 1343 3424 — 8.06 20.03
135-13 2493 423 12.53 22.73 — 943 26.16
135-14 20.50 4.74 16.30 26.05 — 10.55 21.87
*135-15 19.26 — 17.37 26.99 — 9.18 27.20
135-16 31.75 2.80 16.68 12.13 — 11.01 25.63
*135-17 2540 372 9.33 1931 2.54 10.95 28.75
135-18 2842 3.06 26.52 10.78 — 9.52 2171
135-19 33.59 1648 17.75 795 — 6.41 17.82
*135-20 3035 — 13.85 20.46 — 12.98 2237
135-21 25.55 — 19.78 2422 — 9.38 21.07
135-22 2795 — 26.68 18.84 — 7.75 16.87 1.92
*135-23 2348 3.75 13.07 36.82 — 7.88 15.01
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Fig3 XRD pattern of typical marlstone samples in the Shangganchaigou Formation, Dahonggou section, Qaidam Basin
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4 SEEARGHKRAV AR TSGR e AR TR (SEMD FAHFIRERS (EDS) 4304
(@) W IRGIFRIA I EDS KR, FES 1357, FiisE: (b) FEMIMRA &I EDS EIff, FEMS 135-7, FHtidis:
(e-d) FEIGEEA SR ALK BB TT i L EDS B, FRhS 135-20, $3trEEE: (e-D FEIETTIRA S EDS
fift, FEAS 135-20, FffrEER.
Fig4 SEM (Scanning Electron Microscopy) imaging and EDS (Energy Dispersive Spectroscopy) analysis of typical marlstone samples
in the Shangganchaigou Formation, Dahonggou section, Qaidam Basin
(a) Flaky clay minerals and EDS diagram, illite, sample 135-7, SEM; (b) Semi-idiomorphic calcite and EDS diagram, calcite, sample 135-
7, SEM; (c-d) Semi-idiomorphic calcite growing around quartz and EDS diagram, sample 135-20, SEM; (e-f) Semi-idiomorphic calcite
and EDS diagram, sample 135-20, SEM

32 RERNIESH

ARUCK B RKLLEF T S8/ H R ICE R AR e RN 2 e 45 Rk 2 iR, 61°C {EN-
3.20%0~-6.27%0, “F-HHEN-4.57+0.8%0; 0'30 1HN-7.28%0~ -10.42%0, “F-4HE N-8.56+0.7%0.

2 BEEARBRLLVET_ET -SRI 55 0ca 1 03 Coat PWHALE H
Table.2  6'®0cat and 33 Cean values of marlstone in the Shangganchaigou Formation, Dahonggou section, Qaidam Basin



Fibg SBCvrpg (%) 6"Oveps (%0)

135-1 -4.95 -8.34
1352 -3.87 -9.64
135-3 -4.70 -8.32
1354 -3.81 -8.95
135-5 -5.16 -8.74
135-6 -5.24 -8.64
135-7 -4.03 -10.42
135-8 -5.17 -8.50
1359 -4.38 -8.97
135-10 -5.80 -8.79
135-11 -4.19 -8.71
135-12 -5.96 -9.13
135-13 -4.70 -8.14
135-14 -4.33 -7.83
135-15 -5.26 -8.36
135-16 -3.28 -7.28
135-17 -5.07 =197
135-18 -3.52 -1.74
135-19 -3.20 -9.06
135-20 -4.26 -7.81
135-21 -4.15 -8.26
135-22 372 -192
135-23 -6.27 -9.40
SEHHE -4.57+0.8%o -8.56£0.7%o

4 HHg
4.1 TGRS P IRERERHIKIR

TIAGRAI R FRRRR - BALE A RRER S S (UMD BRERERPS A BB R W@ TEAL
DUGE AENES) CRAEAYIE R EFERSED 1E MR IZUTIE T U TR 5 s 3 iR £k ) e
TIBA IR A SR Rih, FHiE i AhRER. K& B NPT CES SR
R, 19935 2EBOCEE, 2022). FEHFIBRIR H TR 22 B 57 I SE S Ui, B TR iRk
T RANZA R 0], A BAA SRR, R T AR E R GEVLHISE, 2013); 1fiH
B TR I FAERRER S A B SR s

ARYHR SR _E T CE R IR SR O FERBEARE, HER: D Tk
ERER R B R B ACE R, DIRASEANRRE IR KIAES, KE 1SS, -+ AR B AR S
if#fD BIUTE (Lengand Marshall, 2004; =805, 2022); 2) HIRICEFEmBIBREARIN 2= S5
XRISEEAR G R G LA R IR B a3 s ORERATE) FIEFIN KA ST (Han ef al, 2014;
Song et al., 2018), B REAINBARNMRARZEREE (K 5, KW RRKAFEHP BRI O
D) FERBEBE, JUTEAZENRX IR A FEE B IR 3) Seiis i I SEA R g
AR Z I IR A PR ZE R R 2 9 3 B SR 2o A= AUTTRR Fh BB BR 6™ ) 3 o B A AR



(Hanetal., 2014; Zhangetal., 2024), H3ZJHARCA/ERISZIN5ES (Kent-Corson et al., 2009; Zhuang
etal, 2011b; Songetal, 2018),
Zi A, RLLVARIE_ELasRe ACERE S TR IIBRIR L. T FEONEARE, B2 Ees
YRR, HB AR RN R R B2 45 T HOR AR AR DT IS S A WK (B RIS 3 2E e, AT
TRAF 1 BB SR RS K ) SR aa i R A 2R A B
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Fig.5 Carbon and oxygen isotope composition of lacustrine marlstone from the Shangganchaigou Formation, Dahonggou section, and its

regional and global comparison

e AR R BRI AR SO FEWRETAR (Talbot, 1990; Talbotand Kelts, 19900 ; THEHIMBLACHII
DU (P, 2017) 5 TGN, TREIAGEIADTR (Liveral, 2018) ; SEAARGHELE iR E A A (Haneral.,
2014; Songetal, 2018)
42 FREREREX M TRE KRR

FEA WA, B A HTa TR B AR SR DA AL R R, BRI AT 2 RO
PE, RIS PARRRE . WK EREE SR — N EZETF-B (Talbot, 1990; Hortoneral., 2016). JA
U TR A FE S R SR 2 A R DX 38T 2 A B HAR AN [F)7K SO A R A TR B A AL 3= 20
BITEXTEAIT T (B3, oR: 1) REVAFIE EFSEGATICE R 6PC A 6'°0 18 AR
85 (7=0.04) (5), KU EEIAR W — KRR ARSSHOERR 7K A BRI TRV PR A
(Talbot, 1990; Leng and Marshall, 2004; Horton et al., 2016), X5 FiRifid XRD MR E KA FE
P ZERERIY) (AAFAED) SEMIKMZAR 86 2) RAERR §°C EA 50 ERIHSHTEN
FHRAGHIAX A (E]5), 54BRHARMX 1 SR BOKIERAERITER (Talbot, 1990) Al PG [X 4
RUSAIIARTRL R EEAAREN, D57, 2017; Livetal, 2018) MBRKGAFRN KUK 2E R %
(B 5, [FREFR I FBE I HISSA A WA — I SRS 5 R TR KIS . Keith F1 Weber
(1964) &t T FIFHBRIRER A 0'%0 F1 6VC AAX 0 BUKBRIR th i R AKBRIR Eh E A IR A 7=2.048%
(6BC+50) +0.498x (5'0+50), 4 Z {EKT 120 I, NBUKBRIZERA: Z (H/NT 120 B, SHBoKERIRE:
Fo ¥ ETLVRHIRICEFETIT) 0180 Al 6BC THIHE (6'30=-8.56%0, 6°C=-4.57%0) 7 HNCNZAT, T



(1) Z 528 113.68, [RIFERRS A ISR IROK IR, . eabh, 5 ANBIFFCERBRIBIE B AT iR Mg 1
B AR SV KA ER P B BB, AIRBE T A 8 8 7 Y TR EE A K & (Mliiller ez al.
1972; Mischkeetal., 2008; 5KZEHSE, 2011). W EAAR, JAKEFES EDS HAfred RS nH i 3 407
HEENREE A (B4, #5303 I SSE A I R 0 -

g5 b, SOEAREIITER BT (~30.8 Ma) A/ y— i ST 5t N IRTFRER AT . X 5260131 [H
RO R A A S B I S AAR T T AT SRR B X — o S E 5 A —38 (Song et al.,
2020; Haneral., 2020; Houetal, 2024). IAh, Hi NFESSEARGHIALERLOMVAR I R AOREAIM: Frbf o
AR 32H) B R H SR RGBT 5 R 7% (Wuetal,, 2021), X
5 SRR G PG S P 22 VA T TSR R S A i~ I E TSV A i BB i A & CRAERI
25, 20100 HTHEAaHH-FArE A E PRI AR L BT IR S SRR L ik e AR B T+ S A (14 e P
(Botsyun et al., 2019), PERGHATIERRT LIAE K H BIRHR AR KB APUE RIS AR ZH (Caves er
al., 2015; Bougeoisetal., 2019) FILEAARZM (Songeral, 20200, MM eI AR HALAE R ATEIE
{57
43 RRESRIIRARIERIEENX
43.1 SR RRIFIMER

TEIAH B AR R AR A 3R 2 R 2 32 4% Tl AR 2R H AL R AR DG I PR KR (Leng and
Marshall, 2004): /KRN RS KK NI FAL AL /K 28 R A E FH A5 B
HHE CEREOCER, 2022); SWKIRFE SIIAH B AERREREL 0'%0 (R b, BERTS 1°C, HAmREE o'%0 (4
ZJF#(I% 0.24%0 (Craigand Gordon, 1965). W1 FICHTAR, AT ESEAHIe AR B E R A 24 %
Farn T SE A I N — ORI, RS =R, 28R VER XS RIN R A MR- 43
55; NI BRI ZE 20 20185 FRIRER N SR K RN R e, RIS/ A R 2 4 et deini
A KSR AR LR (Leng and Marshall, 2004). [Ait, 7EMTSHR, SekAdsid B4 mmLhm
o180 {H B2 T I RS FE/KIY o180 (EANHKIR X AN ZR

WAL, T R X R E AN R KECRIE IR K A RN = A AE B 22 7 (Tian et al., 2007;
Yaoetal., 2013; Liand Garzione, 2017), i&757% S FLX RISEIAA T AT R A S HLA- 1K CRIE 2
TAEZE FIX—HZ . T AR D4 B GRS AR T H R A Bt DGR AR A R AR KR = 22k
PU T RHI% (Caves etal., 2015), 1X-558IEAR G HWIN AT AR5 T 26 BTG XA 2 — 201 (Yao et al.,
2013; Chenetal, 2019,
432 ETERIENHSIEER

JeHl CAIE T RLLVAFI ET-2a 20 = = H Y R A A B 1 S8R R Frhr i (~30.8 Ma)
IHAEELSE (MAAT) A~11.6°C (Song et al., 2020). Hren 1 Sheldon (2012) i@idZii4Ek 88 MNAR
AR EARICS, @7 TIAIEZE T R E/KIE S I (MAAT) (AR g, %R EOy R
TV B A BRI ST RS P 20 A R J5 Sl i St A2 (4t 17772 (Huntington ez al., 2015; Xiong et
al., 20200, X, BEZE (6-8 7)) WARE/KIR SR TR

MAAT=-0.0055*Tyater+1.476* Tyaa—18.915; ’=0.90 (MAAT<12~15°C) (1)

FHEAT (D, SRR FHH I ISR (~11.6°C) RAAR (1D, Mg 17 98EAKRE

TR HIN E Z R BRI N~22.57°C. B IERISeaT 5 R 7t C AR WA B A kIR #h - 22



HEHZFEREBK TP IUEE (Hrenetal., 2013; Huntington eral, 2015; Hortonetal, 2016), HEHIET
TeIRE R SRR ZR A RN SE A T M R T T 5 2R AR RS, T DU 2 M S A i K 4]
P

KM Kimand 0" Neil (1997) #EHMEREGHRE AR

10000t (catcite-water =18.03 (10°T ") -32.42, Horht T NZARHRFE (T =T ucrt273.15) (2)

THEAR H~22.57°C&A R T A FKIR I8 2550 1.02896.

HRHE 71 R HoE LA

O ccalcitewaten = (100040 0¢aiciie) / (100040 O0waer) (3)

W EIRIREE A I R TR R BRe ICEFE R 60 wveps) FHME (-8.5620.7%0) 73 AR AT
(3), THHEAER22.57°CoHM FAEEARETHINK 650 waerveps) H9-36.47+0.7%0-

)5, FIFH SMOW F1 VPDB A5k 2 [ AT 50 smow» =1.03091%5™0 vepe) +30.91 (4) #3314
TIEAHT AT S K 610 qwatersmow» T -6.67+0.7%o.

F R H R DR BRI 010 HASSEAR AR LA, I FRRZ BRSSO AT IE. B
TABRBERAURFS VKRG TR A BRI i K R AR S 21 (EAH E AR N 17 ~0.5%0 (Zachos et
al, 1994); i NMIBHT R RGEAAR R B A DRI 3A KA B4 2) (Halimeral., 2003;
Yuetal, 2014), X55ERHTHT HadCM3L BB 7015 H SRR B B et L 4 R 8 (37.47°
N) —5{ (Songetal., 2020), KIMAHEFHREIRTHERIE. S RIEZ JGRA&HFA T RHHtLeA
ARZEH T TS BRI RI 2 N~-6.240.7%00 P I SFAFHISSEAR G A E FE SR 60 5
AR IR E RS K AIK 680 {H-8.442.2%0 CRERESE, 2015; KiERK, 2015; Songetal, 2018)
BEATRTEE (B 6), RoRSEAARZ FHTHH E TR AEK 60 aersmows (8 HIZZEHIINAE S 37K
7K 6"0 qater-smow T F~2.2%0 (1 6).
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Fig.6 Modern summer atmospheric precipitation and river water hydrogen and oxygen isotope composition in the Qaidam Basin and their

comparison with the reconstructed Early Oligocene summer atmospheric precipitation oxygen isotope values



FIHSIE AU UL KRNI 010 °H Bk F: ARREESF (2015), Rk (2015) A Songeral. (2018 4
BRRABEIKER 010 PH BHEKH: Craig (1961) .

RS BRI T AT 57K 22 TR EUR 22 B Z0-0.24%0/ P CHIZMERUN Ah (Craig and Gordon, 1965), K
KK 610 SRR [k 2 535 TEAHK (~0.58%0/°C) (Rozanskieral., 1993). [, #&AE
AL SHHIR AR LR 0'30 (IR E A ~0.34%0/°C. [RlIL, LSSk ARFHBE Z RS KA K 6'%0
B R A ~2.2%o I S s 1 LT B A S AR I E 2R T B R, BRRIEREA~6.5°C, X 53T
RELVGHITH TSR 207 H I A A SR I SA R Ak 5 FATE i (~30.8 Ma) R4 FEIRIREE

(~7.5C) FA—F (Songetal., 2020). H=TIRHFIEMA FLH5TIAR Mg/Ca HURIAAU R 3 B A BRIGE IR
SRR ICSR R, H 5 (30.8 Ma) LRAIRIKZH /KRS 7' ~6.2°C (Learetal., 2000;
Hansenetal., 2008). Tij[RIFEIE TR A FL IR Ao AR R B BT IR IO oR, B RWErt:

(30.8 Ma) PAKAFRTFHHREEIAIK T ~7.5°C (Westerhold ez al., 2020). MAb, [ VR EARICS, [
FH LR BIEFEAR R T (Ay) RN, 5SSEREHALTAHIUTE LS5 E PE S X 5 it
DRI BRI [FIFF L 6-8°C (Fanetal., 2014). HBLRTAT, AURARHISSAA B R BT H DR E 2110 12
2 Bl S HER B FLAET tH DAOR 10 PR IR B B A DR — B TR AT R RN 8] FRUBEA 27 AR I SR
T 7K ST FE A R SEA AR Z 1 FLAE B tH DLSR I Ui A8 = B2 45 T2 B8k (Song et al., 2013;
Guoetal., 2018; Fangetal., 2019; Yeetal, 2020). SRR, FRERIFHERERARIGHHNLLLORED T
ZWIRERE TS (Lietal, 2014; Miaoetal., 2022), SIELIRAANSES F2 b, HRERET
SETAARZ LT DRI 2 BRI R L . 27 b, ARRAARE S R L FIRE) T R
BT DORSEE AR G E R R R, Horh 2 RRA i3] 7 - 2EH.

5 ZEig

(1) SERARBIK LTI TSGR A R IR O EENEAERN, A7 15
e SU NNV Y e R Ve S

(2) B P ACE A RN R A AR R E 0T BA S5 DX A BRI GHIAT TR B AERIR sh B AU RIS 212
TP AL AL, B HSAA I IE SRt (~30.8 Ma) 478K —IiE S5 5t T ISR /KIS o

(3) FTPeCE AR R R [ OGAARF I F AT (~30.8Ma) BZ KUK AA R
A HLSEAR GBI TR RAKANIK 60 (B 5~2.2%0, fi7s F RIErit B ASSEAARFIE TR T
REMER, WEEEE~6.5C . BRI RS R FSRE 7 FATH i DORSGA AR R 2= 5 22 B
Hrh e RRAR e EE T ESEH.

BEAh, RERESRERE, REARIERA “Greritbiie” i H T2 S SaiAR Gt A A
JERIMIRAAERR AL, WHES AT RN RGUHT T AR

it FRELA. KA. T A ESE A T MU RS B RE T, TAEBXH LM s TR T E
LA HIA LG KA B, BTEE T L IR R R A LB S HIZIAT T A A 093H8; RBELFFERF A
BT ZISBE, AER—F BRI E,
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