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Abstract: Objectives: In July 2024, the Dongting Lake basin experienced severe flooding following
a levee breach at Tuanzhou Polder due to persistent extreme precipitation. This study systematically

analyzed the spatiotemporal evolution of the event by integrating GRACE-FO satellite gravity data,
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GLDAS soil moisture data, high-resolution remote sensing imagery, meteorological and hydrological
observations, and Three Gorges Reservoir operation information. Results indicate that persistent heavy
rainfall from late June to early July rapidly saturated basin soils, leading to significant accumulation
of Total Water Storage Anomaly (TWSA) with a peak increase of 144.15 mm compared to the
beginning of the month. The flood index (WT) constructed based on TWSA provided advance warning
signals four days prior to flooding, demonstrating effective early flood warning capability. Remote
sensing monitoring precisely delineated the inundation extent of Tuanzhou Polder, with the breach
affecting approximately 46.16 square kilometers, including 4.21 square kilometers of built-up areas.
MODIS NDVI quantified the severe damage to agricultural vegetation in the region, with the NDVI
mean value plummeting from 0.510 in June to 0.165 in July. The Three Gorges Reservoir's operation
effectively mitigated the backwater effect of the Yangtze River mainstem on Dongting Lake,
accelerating flood recession in the lake basin. This study validates the application value of multi-source
data integration in flood process inversion and early warning, providing scientific basis for composite
flood risk prevention and control in the middle Yangtze River region.
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1 e ARSI T w2 [0 4 P 5 KIE v I RE S04 &, BB TE RS R VP puisi gk
HORTE BB 20 V5 I 0 2 SR (1175 45, 2020) 0 2RI, 38 I8 PR SR LE KRR 31 5 ThI T A AE



G EEAS R I R, HLSZ SR TR I [8) 3 22, Mk DA 56 Bl S vt /K S A i) shas T A 72, il
2 FLAE SR 9 5 N e B R o SRR BN, ik T R 22 R B R A
MFBL,  SEIU K 5 AT PRl -

A KE 7R H E R E 55 %525 (GRACE) &K HJE4:T4% (GRACE-FO) 7=,
I R HLER FE 3 AR S R 1S B A ER B K G B R (TWSAD Bdls, i 7t X dskik K
RS T R0 A3 116 e W B (Bai et al., 2025; J. Chen et al., 2024; Chen et al., 2010; Li
etal., 2022; Zou et al., 2023; Sen et al., 2024; Rateb et al., 2024). Rodell and Li (2023)F]H GRACE
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Kurtenbach et al. (2012) 1 X R Fi$e I L0E T FIH R /R 2P 43 . GRACE JE 450 - $2 Y
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Figure 1. Geographic location, topographic features, and distribution of key stations in the Dongting Lake Basin.
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Figure 2. Daily and Cumulative Precipitation in the Dongting Lake Basin from June 1 to July 31, 2024 (CLDAS-
V2.0 Data)
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Figure 3. Spatial Distribution of Daily Precipitation in the Dongting Lake Basin from June 24 to July 2, 2024

(CLDAS-V2.0 Data)
3.2 TWSA BJZ835 4k,

A TR ) CSR RLO6 Mascon 7= it JFUUA 75 18] 73 #2610 1°, M LU 22k 221 i 1) B 7
R RZK ST o FAVE I RIBE T L A T TWSA 28 (Al 90 #5628 0.5°%0.5°, DAFE 4T
Hi DT E /NI K SO SURFAE o« 50 IE AR TS, TWSA s A 7K STt
B L [ J S KA B AT AR DR 0T, Il 4. S5 SRR, BT HMI SR RECH 0.928,
Nash-Sutcliffe X8 2% (NSE) A4 0.861, 3 HE a504 B A B I mT S A sk i



= ] | 1 | I | [ | | ]

T Tesa r=0.928
150 = |— I BBl AK Aok NSE = 0.861] 435

TWSA  (mm)
T

20244
42024 SE R TWSA 53R LK S5 7KL 5] 7 510 Ee
Figure 4. Time series comparison of TWSA in the Dongting Lake Basin and water level at the Chenglingji

hydrological station in 2024
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Figure 5. Comparison of time series for SSMA and TWSA in the Dongting Lake Basin from January to October
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Figure 6. Spatial Distribution of TWSA in the Dongting Lake Basin at 10-Day Intervals from June 4 to July 24, 2024
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Figure 7. Spatial Distribution of SSMA in the Dongting Lake Basin at 10-Day Intervals from June 4 to July 24, 2024

3.3 HKEHRIR A

57 Jaggi et al. (2019)1 Xiao et al. (2023)FIWF 7T, KA IA DT s 51 i 43 B/ Ak
IKPUE BRI, K WL I 95%1) 70 Ar BB O T I, R HLK S0k (1 B 77 & oK AL
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W F0UE B 3 AT B2 ) 4 R R ) TWSA 8, AW S KA ) GRACE-
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X IR SR K Bh A o BRI, W [PV RE R I 2 28 1 28 18] S 0k 78 I /K STl o5
AL ) JFL U Y 0t 3R AR v T A ) 3 A AT R A 3R S S Bl AR 7 (Liu et al., 2025).
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Figure 8. Time series comparison and correlation analysis of WI and water levels at Chenglingji Hydrological Station

in 2024. The red shaded area indicates the period when WI exceeds the 95th percentile threshold.
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2024 E 7 7 5 H 17 W, AT BEIAUE BTG — IR RV E T AR T, 2T H 6
H 9w, REOBEEEIAR] 226m. ~FEI/KEE 10m, J@%F KA (Lu et al., 2025).

454 2024 27 A 5 HYURSEARRTG 208 DRIERGAE, AR Sentinel-1 LA
& MRALE IR (SAR) FAAZFI GF-1 T 38 BAE, KA SCREmENL (SVMD 4338777,
PEEL T PRIE 5 eGPtk o 5 I s (] Y6 Bl 5 3 a2 e o AR 7 ABE 25 S S
I Sentinel-1 SAR 5245 (7 H 4 HD {Eyoc i dek; EEIIR G E AN R R L1 GF-1 %
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H 6 BB ARG RIS X TR .

Bl 10 (b) JER T KB 22550, AT GEERTAD v 46.164km?, HE 7
IR 47.64km? HAEL, AHXHEZE A 3.1%. 7E ENVI HR O IGIEREA (3L 50607 MEER)
HEATHEBEVRNY, S5 RN 2, IRVEHERE TR SR R BE A 99.88%, Kappa 240 0.9976,
TR R B WSV B 5P 8RB R R 20 e RE, R B R
SRR 0.12%. fHH 2024 4 10 KEHOR R, 2B @SE, THEERERmA,
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Figure 9. Satellite images of Tuanzhou Polder before and after the levee breach: (a) Sentinel-1 SAR image on July
4, 2024; (b) GF-1 multispectral image on July 6, 2024.

zqnzzl'n"dt 29°21'0“J[: 29°26'0" 1k

29°20'0" L

(a)
&5
HER X 1

0051

2

3 4

T
112°46'0" 3

T
112°480" i

L
1127500 %3

T i T
112°48'0" %% 112°50'0" %

K 10 #T Sentinel-1 F1 GF-1 §44% SVM 432845 1, (a) NI SRR RER, (b) JyBIIMEEH X /K

oL R

Figure 10. SVM classification results based on Sentinel-1 and GF-1 imagery: (a) inundated built-up areas in

Tuanzhou Polder; (b) water—land classification map for the Tuanzhou Polder region.
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Table 2. Accuracy assessment of land/water classification

/5y ek R it HAZ T A2 KRG TEAN HEFEE R PR
il 1t 27491 29 99.88% 99.89%
KA 32 23055 99.87% 99.86%




oSn 27523 23084

4. 1ip

4.1 FANELRINHI S

RIERTSCAHT (B2 B 3D, 6 H27 HE 7 A 1 HRREEHEF K S B0 BB iR 2847
B /K BN, BRI O X KA ek, A 338 B IR BN (B 5D, JE SRR KA LK T
BTN, AR5 B K A N R AR, I T#IX K& 2. 7H 1 HETH
8 H, MEHIKA AL ERETEE MK 2 b (B 8), XFIRBI TR T KBS IE 1) s e, TRtk
“CHET BB, BEBY BRI TS G 8 KD SR A EO IR ki . SRR, KT
WMAEFRF FKALIZ AT, R B2 L AR TR RS, FRENHIKAMERE ), SEORE KB ELE
TAEEW), WK T Sk SRR RIS E], &b 7 H 5 Hikdg Sk, OB, EX
KR ZEAE L AT isndiit i, 7 AR SR LRI DT AR B 24 /N N e 1108
200 K.

FTHNEE SR B A 3 2 ok i - R AP 50 2R R, 325 BLD i 08 3 (Lu et al., 2025).
TP R I BT 25 A A R kA, GBS KRR, o KAEE TR BIRER .
AR, XA BT S BRI A T AR A s 5 &5 b e 0 R R, DL SR BE 7 4P it 2 A 1 4
BRIt I el 7 32 7 AR B A o

4.2 NAEE AR SN

K R IR Bz 2 B AR S5 A T R 2 o PRI = I8k P T BRI
KO SLFRISZ I, ASHIE FERT =g oK & PR ALK AL . TR EEMI A TWSA 3T & i (&
1D WEBRRERES, ZWoKEE 4 AWZERIEAT 330 Nk, LN FEE =58, 78
9 HIEFFIEE K, BDWEKEERERE ). —Wa@ M art kK ARG &K, BRCFEEAF
F5 /K fif & 4> Fii(Zhang et al., 2024b; 7 HE LS, 2014). MZRTH FME— 2R LR T KT
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Figure 11. Time series of Three Gorges Dam (TGD) reservoir storage, basin-wide TWSA, and Chenglingji water
level in 2024: (a) comparison between TGD storage and TWSA; (b) comparison between TGD storage and

Chenglingji water level.
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Figure 12. Spatial distribution of NDVI in Tuanzhou Polder in June and July 2024.
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