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Abstract: The western Junggar Basin (WJB) has undergone multi-stage tectonic evolution. However, there are still
uncertainties regarding the deformation timing, reactivation dynamics, and reservoir-controlling effect of complex
faults within the WJB, which restricts oil and gas evaluation and exploration efforts. In this paper, we clarified the
development characteristics and reservoir-controlling mechanisms of faults at different stages through integrated
structural analysis of intra-basin seismic data and basin-margin field outcrops. The research shows that the WJB has
mainly undergone four stages of deformation, each controlled by differential dynamic settings. During the Hercynian,
multi-directional plate collisions and compressions generated multi-episode thrust-nappe faults, including N-striking
brittle-ductile, NW-striking ductile-brittle, and NE-striking brittle faults. During the Indosinian, thrust-
transpressional faults developed in the WIB, driven by the counterclockwise rotation of the Junggar Block and EW-
directed compression, with basin-margin dextral transpressional faults and near EW-striking conjugate shear faults
formed. During the Yanshanian, the NNE-directed subduction of the Bangong-Nujiang Ocean and the subsequent
Lhasa Block collision drove left-lateral strike-slip shearing of the Darbut Fault Zone, and its Riedel shears derived
NW-striking and E-striking dextral secondary strike-slip faults. During the Himalayan, the rapid uplift of the North
Tianshan Mountains, driven by the India-Eurasia continental collision, triggered the rapid southward tilting of the
WIB, generating extensional normal faults within the WJB. In terms of hydrocarbon geological significance,
Hercynian thrust-nappe faults were later intensely filled with hydrothermal fluids, forming boundaries that seal oil
and gas in deep formations, and basic traps such as faulted anticlines and fault blocks developed concurrently. The
Indosinian "fault-fault" migration system transported oil and gas from source rock areas to the Carboniferous,
forming two types of paleo-oil reservoirs in the Carboniferous, namely weathered crust reservoirs and interior
reservoirs, and developing composite traps concurrently. Yanshanian reticular faults dominated ultra-long-distance
westward oil and gas migration, and differential strike-slip movement promoted the migration and accumulation of
some oil and gas into the overlying Jurassic-Cretaceous strata. Himalayan normal faults channeled deep oil and gas
upward to adjust and accumulate in the Neogene, with the concurrent formation of structural-stratigraphic traps.
Multi-stage faults regulated differential hydrocarbon accumulation through reservoir modification, vertical-
horizontal migration, and paleo-reservoir adjustment. The vertically ordered superimposition of multiple oil-bearing
intervals forms a stereoscopic exploration framework, providing theoretical support for hydrocarbon exploration
breakthroughs in the WJB.
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Fig. 1 Tectonic unit division of the Junggar Basin and tectonic sketch map of the western Junggar

Basin
2 HEVEHLIX R R B REAE
2.1 MR FRAIERRAT
o 7% VORI AR R IR, FEHE R R X IR Z R WK B R IEAETE
HXES, RRPRASEE (B2 o WEARRNBAFETRSKE, L& LR

S

>

4



MRy T, R T I (R ) S A W B A W) R T T, B DIRIR S A BE
MRE s, BT R BRMIE R TE . FRk & N-S [, NW [aH1 NE [ o W 2485 85 B 45 b 17
IR Z T, FeEh] TR R Z PR R 2 R o AT AT I 1R 2 IS TR L R R
KA RGN, SRECHERAGTHFEZ BRI, ERCER. SERMERE PR
MEFERE RG] “V” R, ZRHIE NW B E-W [ B2 1) S 77 8 551 17 -5k 2
URAEHIAEIR I3, T NE [0 N-S [ 2 e EEEREAKE “V7 BIDRIER . iR “v”

TR IRBESL, HAE s LE AR R NW R TR K 15°~30°, 5 E-W [ Wi 20 f A

SRR IE Ry, RERT W IEAIRIGIE B SR TR T — RITKMEIER R, H
73 IE WA ) S 2 A B 2 AR e AL, IE TR SO AR, BIBURPIR A O

e 00 S e ) T SR8 B8 B I /L, AR R B ARG (& 2)

) o s 1okm .

0.5 0.5

1.0
=15 15 &
= i)
3= =
® o
%20 20 %

25 2.5

‘ FER —HZE —UYE BE — LKA
e Cgwrn Hern Heen Hein EHuda T

) G -E & el
wk K wms . i ame

2 AEVEHB DX IR A S bt R T 1 R o2 L 1D

Fig. 2 Seismic profile of the fault system in the western Junggar Basin
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Fig. 3 Jurassic distribution and connecting-well section of reservoir development characteristics in

the Chepaizi Uplift, western Junggar Basin
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Fig. 4 Fault-stratigraphy coupling profiles of multi-strike faults in the northwestern Junggar Basin
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Fig. 6 Field deformation characteristics of the Carboniferous in the western Junggar
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