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Geomechanical Characteristics and Development

Significance of Natural Fractures in Carbonate Reservoirs
of the F117 Strike-Slip Fault Zone, Fuman Oilfield

LIU Zedong!, WU Kongyou', WANG Bifeng', XU Ke?, ZHANG Hui?

1. School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China
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Abstract: Geomechanical research in the ultra-deep carbonate rock domain of the Tarim Basin has achieved a series of results,
effectively supporting the exploration, development, and engineering practices of ultra-deep oil and gas resources. To facilitate
further exploitation of the fracture-fragmented reservoir in the F117 fault zone of the Fuman Oilfield, this paper integrates rock
mechanics tests, single-well in-situ stress interpretation, and three-dimensional in-situ stress field simulations to clarify the
geomechanical characteristics of the fault-controlled reservoirs in the Fi17 fault zone. Based on this, it analyzes the geomechanical
responses of natural fractures associated with the Fi17 fault zone. The study reveals the following: (] The reservoir's Young's
modulus ranges from 32-47 GPa, and Poisson's ratio ranges from 0.23-0.26. Elastic parameters exhibit vertical heterogeneity and
planar differences between faults and surrounding rocks. Near fault development areas, a decrease in Young's modulus
(approximately 20%) and an increase in Poisson's ratio (approximately 10%) are observed; [J The current minimum horizontal
principal stress of the reservoir ranges from 110-170 MPa, and the maximum horizontal principal stress ranges from 145-205 MPa.
The orientation of the maximum horizontal principal stress intersects the fault strike at a small angle, with significant stress drops
(exceeding 15% locally) observed in the fault zone compared to the surrounding rocks; [J The effective normal stress on large-scale
natural fracture surfaces ranges from 30-105 MPa, and shear stress ranges from 5-35 MPa, influenced by in-situ stress, fracture
orientation, and formation pore pressure; [ Through stress calculations, the ratio of shear stress to effective normal stress of natural
fractures primarily ranges from 0.1-0.55, the critical injection pressure ranges from 92-204 MPa, and the fracture geomechanical
activity index (FGAI) ranges from 0.2-0.8, with an average of 0.48. High-angle fractures exhibit higher activity and are activated first
after fluid injection; [1 When the formation pressure reaches the fracture closure pressure, the fractures will alter the connectivity
state between fracture-cavity reservoir bodies. To avoid stress sensitivity damage after fracture closure, cyclic injection and

production can be implemented..

Keywords: Tarim Basin; Fuman Oilfield; Fi17 Fault Zone; Rock Mechanics Parameters; In-Situ Stress; Natural Fractures
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Fig.7 Single-Well in-Situ Stress Profile - A Case Study of Well W2

FEJE 7KV 8 7077 1a) B A] DUE B g Rk ske (8 8a) , i iRmIFFEERI S . B IE 5 S48 nT
PAFB /R ERL 3771 CEMSHESE, 2018) , JHJEEEN] DLMSIRZ JPIRE K AT, 1E&R/NE R8I 75 W)
by UIMIERL I R, GBS 5y 7= A2 R i S T BRI R, X P A RO IR RE iV, R R IR A A
Faon i /AN RN A1 TT 1) FERCRKF =R A5 b, VIRIEN J18h, 4485 FUE R, 5% 07
W _E IR R S AR N F, B s S eE, HoE R KRN J1 07 s shAh T
JIVRE RO A RT RE ™ AL — M A) 5 B KK £ 8 77 1) — B35 48 (RTRIERSEE) o Fil7 Widdat b
2 11 E RGN S 1 PR A mT LB R R TR B RIS S AR IS 1 W4 7625-7660m. W5
7920-7955m REMLER 2 BH & (1) e 5 7 R HL RS AR (RIS 4% (B 8b) , AR A8 NW-SE, frid
FHZ NS H/NKEERN 17T WS04 H7E 7788-7791m Z 4745155 Si% (B 8c) , HikE M N NNE-
SSW, 5 W5 HiESasfrm b —wEE£R, 46 Fl7 Wi Daidteesk, HER R EZWRnim,
FEUR A ML, SRS KR E R T M S W EGE AR T8, ARSI A NERIEE,

o, KEBAERT | 70rs ]

A SE

FEIZ B T WA K W507 2756 1R 5 X308 A5 75 T BE O, LN NE-SW .

7788 -

R

S W N §
0 90" 1800 270" 360 \
| ’ K
O

WS5043Hi5 S8 E MBRTEE

- 1 / |
SF 7650 18 - | * WS#tKBEEF-a&HIEB
= ' il %
S S 7]’_: e | ™ ; v
il ] |
v} - ~ ;
o . > 2 B e
5 B B = SR e WS0THIEBSERRREE
(a) WAHFHE % wssssmz (b) W5043i5 S48 (¢)

& 8 pfGMFIRANHEKFEER 7 EREE
Fig8 Logging Image for Identifying the Direction of Horizontal Principal Stress Around Boreholes

222 MESHN Sz E 5T

i A A TR RR AR TR OGIERT Fil7 Wiy fBLA 32 B 28 (Bl o A AT B, S5 R EoR: K
P/ FERLJILE 110-170MPa 18] /K-FioR F 8 JI7E 145-205MPa 2 (8] IR b, 328 B FERS N2
HHTRR, — 6] 2 30 0 L 2 34 3 R0 /8 N 10MPa; A1) b, 32 Fi17 Wil mishsh, W2y
) RIAESE, K ERMEAFERDNESR; NS E] B ER R A 32 B AR X, A BB
JIBEILG, Hob Fi17 Wi R B TR R, HZ R, N NN, RN R R
AliE 15%LL F.



™ 130 > :
. 115 . 155
9 F117 Wi N SR IEE R

Fig. 9 Simulation results of the in situ stress field in F117 Fault Zone
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Fig.13 Development model diagram of reservoir bodies in different mechanical sub-segments
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