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Abstract: Mars preserves a rich record of multiple geological processes since its formation, providing a unique window into the long-
term evolution of planetary habitability. However, the understanding of Martian recent geological processes (since the Amazonian) and
habitable environmental evolution is still relatively weak, which constrains a comprehensive view of the overall trajectory of
habitability on Mars and makes it difficult to clarify the mechanisms behind key transitions and the causes of its current environment
state. Recent geological processes, such as volcanic activity, impact events, aqueous & glacial activity, and aeolian processes, not only
directly shaped Mars’ present-day surface environment, but also recorded the recent history of its climatic and geological changes.
These processes thus constitute crucial evidence for revealing the characteristics and driving mechanisms of habitability evolution
during the later stages of Mars. In this paper, we systematically summarize recent research progress on major geological processes

since the Amazonian, discusses the key factors controlling the evolution of habitable environments, preliminary constructs an index
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system for habitability assessment on Mars, and proposes prospects for the main directions of future exploration and research.
Geological processes since the Amazonian have had a significant impact on Mars' habitable environment. Future Mars exploration
should prioritize focus on the evolutionary history of volcanic activity, the composition of impact crater materials, the distribution of

water ice, and the origin and evolution of wind-eroded landforms.
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AT I B R IR TR ZR A A iy DA PP Al N SRRK R B A% BR 1 7T B 1 #8 %8 OC B (Cockell
etal.,2016; Ehlmannetal., 2016). ‘K2J& KH RN SHERE AT E . BT RdiE B 53
TRARAR, L E TR CLR ) 2 35 4 F BE 98 550 s AR AT T 5K (Carr and Head, 2010). K2 X —4HFE N
WFTAT B BRI A AR A TR B 1. BRIk, A O R BRI R AL — B M RTAT R T A
MAEE A, R KRR SR 1 R ) (Michalski et al., 2013; B F245%%, 20205 Liuetal., 2022a;
Xiao, 2023).

R EIT R — R KEFNES, RET FHRKEBEKIER KB A qr, KT RESBEEIK
WM SRR YE, KR BRI B E T RS R (Masursky, 1973; Carr and Clow, 1981; Kargel et
al., 1995; Baker,2001; Christensen, 2003; Ojhaetal.,2015; Oroseietal.,2018). & E &K ERMES “K
i) —5 7 F 2020 45 7 A I RES, FERFE HArERE KRIEHS TG R . RIERIE S /KK A6, &
YR 4545 (Jia et al., 2018; BK=4%, 2018; Zouetal., 2021). A S MHRALS KB F1E KR SILFLF
R ORI T i 2 AR AE A RS E WAS K TE S PAEHE (Liu et al., 2022b;  Lin et al., 2023; Qin et al., 2023;
Wang etal., 2023; Xiaoetal.,2023a; Lietal.,2025), #—2FF 7 HRAS KE B EHEE AR “Rin=
G ARS KT R KR RFEIR B AR, HE R B2 R T KR AR, H S5 I A DA S 5T A A
i FE(Hou et al., 2024, 2025), A IR HAT 2 B R PEEAGHE AL _L S 550 .
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Fig.1 Distribution of Martian landforms. The base map is global color image of Mars from TW-1 Moderate Resolution Imaging Camera (Liu et al., 2024a),

overlay on the MOLA DEM



KEWZ NSNS UL AR G 1O B 2R (B D, ARkl B K KB UK
S Z R (Carr, 2007: H o, 2013), HIEARHMEMY) PSS BE 7 K BRI /E R, Wids 7 KE
S A BT AR L )45 B (Di Achille and Hynek, 2010; Xiao et al., 2012; Dengetal., 2020; EiT%%, 2021; #X{d
iﬁﬁ% 2021; Grau Galofre et al., 2022). AHFTHFIHM L RE, KBTI el (2930 LFERTES) LRI

W BARHL B R, BT BRI S il 2 T R I R - DR SUAH AR FE R 4 3 A4 ) BURE A % (Diniega et al.,
2021). PRk, Sof KA BACH BT AR AIAH SC RO SR A BIE 7T, ] 48708 AR b5 50 PR e 3 A A4 B AU PR
AR, STERI KR B RN, FIRIEE AN A Ay A0 R SR KR AR B B 2 S (Ehlmann et al., 2016; Sasselov
etal., 2020; Bosak etal., 2021; E %, 2022).

KRG T KBRS PRI KLiES) . EEER L K &UK )RS AR E S AR pT i 7
AT T MK R BRI, T KR BRIV TR AR R, R RS BRI i TR
H,

1 KM AL AT S

RIS R = G, B ARG A FF a1 ORBH R B FEERAE . KB RTE BOd FERR 4L
T JLHE Ji“E(Kleine et al., 2004; Foley et al., 2005; Dauphas and Pourmand, 2011), [ J5ME 46 T 12K ) 5R
AL T 52 o KR PR 5T A AR 4 3 5T B TG IR AE N 2 e DA R i s b0 FE ORI 8 IR 43 9 D0 A I 9 (Tanaka,
1986; Hartmann and Neukum, 2001) (& 2). MFE-FI# 552 BIiEIEL (Pre-Noachian, #] 4.6 ~4.1 Ga)-.
P 4e (Noachian, £)4.1~3.7Ga) Pi/74 (Hesperian, #]3.7~3.0Ga) .54 (Amazonian, %] 3.0
Ga~Hl5). Hrf, WIhidhad & LA K BRI VZAFAE ) TS BN AR 355 -1 S5 B0y 3 AR Ik 1 3 5 I
W, IR LA Eadh sy 44 .

VU7 480 By i 20 03 S RIS IR A5 32 AR i it K/h— I 0 A (CSFD) g 4Rl 2 « (HARIH
FARE R (1 Tvanov, 2001; Hartmann and Neukum, 2001; Hartmann, 2005 2% DL 38 o7 50 25 B AL 4k (40 Tanaka,
1986; Werner and Tanaka 2011 55) 3 ZA R LA BAFER . R, BT KEBEYULBER AT E
P, PO 20- 0 S 20 F2R ) A8 1T B A7 IE 850K 1% 22 (Hartmann and Neukum, 2001; Carr and Head, 2010). [#l
I, PUTT AL B AL ) 4y SR H AT A — M RE AR RSE, HOREERIZE 2.9 ~ 3.3 Ga (Hartmann and
Neukum, 2001; Werner and Tanaka 2011; Tanaka et al., 2014). AR H #7575 8- b 28 S 2R F % “~3.0
Ga” B MATER&EMSHEME (Flan: Carr and Head, 2010; Grady, 2020; Wordsworth et al., 2021; Du et al.,
2023 %),
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Fig.2 Timeline of major events on the Martian surface (modified from Ehlmann et al., 2011; Wordsworth et al., 2021; Du et al., 2023; Kite and Conway,

2024)

TV L7 4 R 2 A b R B0, 4 42 P b R i R O B B2/ (Carr and Head, 2010). R Hsk,
FUEE BB BANEY], KRR A LR AW 2R E G, B db = PR AT REFE B BOE ik
(Nimmo and Tanaka, 2005; Nimmo et al., 2008; Carr and Head, 2010). [Fi, 75 AR, BIiETLH
KR BA AERYEREA (Acuna et al., 1999; Mittelholz et al., 2020). i 3K [ Ak 2 B 19 1R 7 28 TE48 ) SRR
Bk A R F ) K LS Bl (Hu et al., 2019).

W28 DAL 37 2 Hb I T BN IS J (Carr and Head, 2010), SRS ARG 2N, fEdh S04 K& sh b
KoK AEMBAEHSEME RE . MIHEZRE (£4.1 ~ 3.8 Ga, Lowe and Byerly, 2018) i kK ERMHILK | £
AR G o SRR K LS Bl sk 15 A 0K LA R ORER 43 XIS, [ IS KRR A I A Ik S 8] K T AR 23 AT
(Fassett and Head, 2008). fEMGEEAL, fiddi. KALAUR BROREE SUR NI, [RIRIE R 1 2 b 1A =
Mo

P75 i TS ST IHRRSE, JFERRZ) 30 %) K B HIR K E H B (Head et al., 2002). P45 LAFAEE
TR PER K HE /K (Carr and Head, 2010), 7KEtiSi CanghytiniE . A S 7RI B K & JE Ali(Grant and
Wilson, 2011; Goudge et al., 2017). K2 [ 1E A5 AR M 175 I 22 f% 74 7 42t U4 {E (Andrews-Hanna and
Broquet, 2023), 5 NASHZ SRR,

WA S8 T KR PR, BAEAEAE KL MK IS B (Neukum et al., 20105 Zhang et al., 2023), H
KLE BN AR ISR FE AR LU 58, iy S 0 — ELRF LR T4, T E S adh 40 AR B 0K ) AT AR R TE K
B RIMICN 2.3 (Carr and Head, 20105 XIVESE, 2021a), Xf B Hb 544 ) 508 B 2

2 KEE b LK A 5 1 H

b I R R FCY I AE S SR AN P AT AR K B B . TR KRS EME D o W Lok
TR, AAE KOTSRS AR KD NNES) B RIS ER .
21 KUWGEDD

KERPKILTESIAAAE T &, HRE 17 RER K ILH#3E(Carr, 1973; Xiao et al., 2023b;  Michalski



etal., 2024). 55757 (Tharsis) AR ETE & (Elysium) H#1 X (1) K 15 s #3117 B 5 320 (Werner, 2009;
Robbins et al., 2011; Xiao et al., 2012).

TER KRB RATF B 58 17 (1 K Ll 43¢5 B G (Hauber et al., 2009), B4 1 K L4 RESETGER T 37 12
4 (Werner, 2009; Zhong, 2009; Krishnan and Kumar, 2023). 1) k1% 2048 45 5% A 30 A4 5 1 SR A 40

(Olympus)~ Bif/REL (Alba) 25 RIUJER KL BAK 1100 454~/ k1li 1 (Richardson et al., 2021; Pieterek et

al., 2022), BRIV Z0 R K LE S LG A5 7 K L8 E A A2, JCH AR KJE IR O I B 9 9] 2 (Bleacher
etal., 2007; Hauber et al., 2011; Pieterek et al., 2022; Krishnan and Kumar, 2025) (& 3a). &7& & EoR
(Hauber et al., 2011; Krishnan and Kumar, 2023), 575 #7658 H0E S G sh 22 500 Ma LY, HAFTESE
W4 10 Ma IR P71 KALNE HO BRI R I SRR A (8] 0 A B, B 2R B2 2K 7 ) BEAFLE
AT IR Bl KR BRI S D AU 5E T 5 R4 (Krishnan and Kumar, 2023), HAERE L i 40 (7] F L
¥, I RGIA W0 2 kLl -Hais 5 S 1S

VA & KO BB TG sh G T b4t (<350 Ma) (Broquet and Andrews-Hanna, 2023), 2k T E K
HIZLRR 2wt A A = I AR AR B K L DA By #E (Voigt and Hamilton, 2018).  [FIES Hu B WA K B, B4
V8 E5 K 2R FE ) 2 EAR I BT B B (Cerberus Fossae) f77E—/MEW 2 53 ~210ka 1K LB iAW) (H
3d) (Horvathetal.,, 2021; Moitraetal.,2021), R 1 KE FEFRI—IKILBTIK . HBERY) IR S
T ZNHAAYE WA B K L B (Stahler et al., 20225 Broquet and Andrews-Hanna, 2023), FHA VIRV & )
KUEBN AT RE 2 H— N ELARZ) 3600 ~ 4000 km [F)7E ERHIBSAEDRA 1Y), 12 HEWT 2 AR A S 5 15 2 ) S A Ta
AR IMEE R o teAh, BAERVE B BRI S IR AR ARG B 7R (Voigt et al., 2023), FEMG S 2257 7E K
TR 5 IR A o



40°N

30°N

20°N

-10°N

-20°N

1000 km

-140°E -130°E -120°E -110°E -100°E -90°E
B3 (A A KL WA L S ATER AT o &IOS R RS AR T AR, R T S 28 SR KR K& i

AR K B Pieterek et al., 2022; Krishnan and Kumar, 2023,2025; (B) A1 (C) BEAHi LA W FTALERRI K LESRHE, Horh B AT /R FIE
(Arsia) IH—/PEJEAR KL CRERLD LURAHBIE AR, 04 89.7 Ma, C A BUMMAMT L B IT i — bl A LA T AR (tube-fed lava
flow) CREEL), FHH 35 Ma. POAFE B: -120.83° E, -9.66° N, C: -117.88° E, 24.68° N; (D) { T-#H:78 B2 H A S B8 i B 4R
KILTE, 4F#A 53 ~210ka, BERLER T HRBGEHE, F0MA4r 165757 E, 7.93° No i, [ A Jy THEMIS H AR & IN7E MOLA #(7
FREAE |, [ B-D ¥y CTX AR K

Fig.3 (A) Spatial and age distribution of lava flows within the Tharsis volcanic province. Different color dots represent different age ranges, demonstrating
long-term volcanic activity since the Amazonian. The age data of lava flows from Pieterek et al., 2022; Krishnan and Kumar, 2023, 2025. (B) and (C) illustrate

two young volcanic activity features within the Tharsis volcanic province, where B shows a small shield volcano (black dashed line) and corresponding lava

flow emanating from the small shield volcano along the caldera of Arsia Mons, with an age of 89.7 Ma, and C shows a tube-fed lava flow (black dashed line)

near the Olympus Mons, with an age of 35 Ma. Central coordinates of B: -120.83°E, -9.66°N, C: -117.88°E, 24.68°N. (D) Young volcanic unit located in the

Cerberus Fossae of Elysium, with an age of 53~210 ka, and the black dashed line shows its approximate range, central coordinates 38.83°E, 45.59°N. Among

them, Fig. A is THEMIS Day image overlaid on the MOLA DEM, Fig. B-D are all CTX Mosaic

22 EHIEAR

KERH AAA RN, AR 7K & F . AR 5 U ] DO 30 2 A ] s e e
oG MEZ T A . KERMAR XM EG S EAEEEER, XK KA R FEE T
5 £ 1R K (Ehlmann et al., 2016). R4 K, KELEL M0 40 {2FEFZ 2 13 JiAE TR



i (Hartmann and Neukum, 2001), JERK 71T 38 /i M E A KT 1 km f# i 5T(Robbins and Hynek, 2012), ¥
L 3gb et LR i o AR SR 30, (HEATAE 2 5000 NE ST (BEAEKT 6 km) 7RI R &
(Morbidelli et al., 2018; Cox et al., 2022).

KB EA—REA SRR R R R T T, e L — B R SUIR I E RS . e
JUFR N EE 224 5T (Rampart crater) (K] 4a), KZ T WL (A BESE, 2021). TRSTEERIL T
BRI, BN KERTE K. IKKES 5 1458 (Wohletz and Sheridan, 1983), [FIt, A2 T
AR R KUK Z B RAE— 2 (Reiss etal., 2005; Maetal,, 2023). b4k, A7 FKRIEERIIZR (Lyot) f#
Hht (Bl 4b), FHEMBE R (BARZ 225 km) FREAHXER . A TALRMRH SR 2L, O T T2 K0E
I FERT R NIRRT IR 5 IE 1 KR ISR T 7K El/7K % Pl (Russell and Head Tii, 2002; Weiss et al.,
2017), FFRH R KBTREE T TN ES, R IRIINRZ 1R /K R b A
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4 (W) PFAEEEE (sidis Planitia) (0822485550, SER4) 30 Ma (27845, 2021), H0A4KkR 83.75° E, 12.66° N; (B) JEHTH i
LM RS, oL AAR 29.35° E, 50.51° N; (OO HiEES WIM B MR A 7E 2021 4F 12 A 24 Rt ('S S1094b), Be a1
—ANERL 150 m fEdST, H0MAAKR-170.17° B, 35.11° No (D) 1977 ~ 2022 4F[A K2 _EAE SRSt Ai B G4, 3K 1 Daubar et
al., 2022 (HIEJE#R); Bickel etal., 2025 (H=MABER), LERSHARHSER S, NEMGESREE ARG EAEE. Kb, &
AN CTX 84k, & By THEMIS HIRIZIAMEAR, B C oy CTX EE (EZ ID: U05_073077_2154_XI_35N170W), 7o FAHI/MEN K
HiRISE K% (&% ID: ESP_073077_2155), & D Jy MOLA 43RF (0[] 5 5
Fig4 (A) Rampart crater located on Isidis Planitia, approximately 30 Ma old (Gou et al., 2021), central coordinates 83.75°E, 12.66°N. (B) Lyot crater, formed
in the Early Amazonian, central coordinates 29.35°E, 50.51°N. (C) The impact event (S1094b) observed by the InSight on December 24, 2021, which formed a

crater approximately 150 m in diameter, central coordinates -170.17°E, 35.11°N. (D) Distribution of new impact craters formed on Mars from 1977 ~ 2022



(partial). Data from Daubar et al., 2022 (represented by circles); Bickel et al., 2025 (represented by triangles). The red asterisk represents the landing site of the
Insight mission, and different color dots represent different diameter ranges. Figure A is the CTX Mosaic, Figure B is the THEMIS DayIR Mosaic, Figure C is
the CTX image (image ID: U05 073077 2154 XI 35N170W), the small box in the lower left corner is the HiRISE image (image ID: ESP 073077 2155), and

Figure D is the MOLA Global Color Shaded Relief

KO FRE T AR T4 . 1977 4R 2021 AE(A], KERETEK T 1200 METST (Daubar
etal, 2022, Kl 4d); H 2018 4 12 ALK, (EBhRASS SR 179 E o & AR HAA R SN (Bickel
etal, 2025, Kl 4d), o, HEE— UG MG E AR m N, e
BHARKZHAE 100m LR BN, 7RIS SATS I, W] —ME P RE 2 1 B 52080 48 o A 3 i) B
#2974 1.5 m [ diyi(Daubar et al., 2020), B /NS R o WLIIINIR 1 AATTR /N2 4 o 72 w000 44 ) 281
fifto BEAN, KEBIIEIE KT (MROD WL EIT 2021 4 R FFER AP BLAE>130 m (I T30 (S1094b
+5.S1000a, Kl 4c, Posiolova et al., 2022), Jeig% M 1EAE K B K DU EE R 1) e R B P g % U 7
LT R b R 00 A B R AE A 78 R ) b e S R AL T URR ML 23 (Kim et al., 2022).

2.3 KEIKNIESD

WEBL LK, KEEF T RERKBEK, AT KER—NTEAT BRI EERR, HRMTGIEFE
FREWAK, KEBDAKMEAERRAH T, K& KERE(Martinez and Renno, 2013; Brown et al., 2016;
XIPESE, 2021b; BAERESE, 2024a; Xuetal,2025). 7EH E&BEHLIX, 7K 3522 DLFLBR UK B o vk i 2 20 R
FIERALZ P UIEZESE, 2024). TTHLA 13T /K 2 il #h 767K & 4F FHAEAETED P (Scheller et al., 2021;
Du et al., 2023), A WABEHEBRAAAEIRZH T K44 1) AT e 14 (Kurokawa et al., 2014; Orosei et al., 2018;
Abotalib and Heggy, 2019). T}, & TIH% 5 ERM AP HU R B EGE, A it KB R RefAE B
ROKAA B 5 (Wright et al., 2024) . 1% A — PR R KB RK BRI 5] 17717, (B4 75 56 2 (0 A
SRS L o

PR 7E L S SR PRI i 78 K R I AR TG B3R T 2% . BRI X IR B4 R L0,
NHZIREEMI(L et al., 2022)F5 74 W 78 77 20 BNV S adb 20 R B 17 R) ot R K TR, (RIS 3T 80 SK I ANAF
TEWAS/K, BTIEHER AR SRR R T BetE . 00 H b 22 32 T 0 5 VR Bl 3145 2% (Zhang et al., 2024),
R AT BB A TE = 00 A I TR, DA LE R PG 7 - 3. T 3dh 20 K R IR K TG B AR T 35 A8k o i AT T AR B
PR H & KT A e b B 45 52 35 B (Liu et al., 2022b;  Qin et al., 2023; Zhao et al., 2023a), V. T8 20 )k
BKIG S L MR DO I BTG ER, MRS 2 fl o (B T REFAE B BARK . 35 il DX A 1) XU 26 THT
(1) 22 T TEARFE A 2 K S B AR - R 7K A8 3 (1) 72 #)(Wang et al., 2023).

KRNI VIK, UK)NFESIEARE, BT — RINWKTTRY . FVERZNRHE (B SA~D) Ak
MK OKTHEHI SR TEZESE, 2024). UK )ITE BN — AN B EL R B )0 KR B e S A i R PR 4L, S
BOK BRI AR SFHE KR R B A0 R A 02, AT SR /K UK B A 5E M A 43 A (Head et al., 2003). 7E3d 25/ 20 Ma
B, KEMBUAHLE 15~45°2 [A)484L, M7E 100 Ma~ 1 Ga 2 [7], HA#iffn] G4 #8id 60°(Laskar etal., 2004).
TE A T 3, AR bR s 26 b X IR 7K DK 2 1) FRAIR 43 B 3 A% (Forget et al., 20065 Byrne, 2009). i 7EAW M £ B
HH, KUK 22 2ERR I K e A b X BT AR B o 1 A A A 1) R SR M AR A A 7K UK A DAAE OB 3R T AN I 237 70 AT
Frig RRE RS, e (B SE). Zih R4S (Dickson et al., 2009; Fassett et al., 2010; Zhang et al.,
2024). VKBS BhIE I Z R 5 AR BOK,  ANIE R 1 JOR IS 5 T A & AR



Ak, fEEEH Wi R KIES) . PGP R B2 g R YU 8], b IR AN R E T RE
TS, FHZS DLERPIRITIE 4 = (Harrison et al., 2010; Weiss et al., 2017) (& 5F). RTE L b 28 0] i
EﬁéﬁEﬁﬂ}EEATfﬂllﬂiﬁﬁfﬁfFFﬁ ﬁﬁﬁ?fﬁmﬂiﬁﬂﬂﬁéaki?%zﬁiﬂﬁ1<ﬂ( B A5 T 42 5 7K DT T ST 2 DR 45

K5 KR SBAAKFIKER. (A UK PERBFAE T RO B d s, oA 87.91° E, 36.11° Ny (B) A1 (C) KBS MERSIH;
HEP A IR R FBIT IR (A &Sk, hOAKE B: 29.56° B, 41.28° N, C: 35.06° E, 39.65° N: (D) UK I AIRFE H (0 m-IRE 5 3¢
(EAE@Ek, 044 38.83° B, 45.59° N (E) Mk JIRMETERERTS (EEFR), EFLIR KRR EI,  fO484s 30.92°
E, 49.19° N; (F) SZfdifEHEMMIE KL SR Om A Mg (AtFL), UPRRIIERE, by 26.51° B, 57.23° No EPprE R &858
CTX SR R
Fig.5 Water and glacial landforms on Amazonian Mars. (A) Concentric crater fill (CFF) in the viscous flow features (VFFs) of glaciers, central coordinates
87.91°E, 36.11°N. (B) and (C) Lineated valley fill (LVF, white arrows) in the VFFs, central coordinates of B: 29.56°E, 41.28°N, C: 35.06°E, 39.65°N. (D)
Lobate debris aprons (LDA, white arrows) in the VFFs, central coordinates 38.83°E, 45.59°N. (E) The fluvial valley formed by ice melting (white arrow), and
the red arrow indicates LDA of the glacier landform, central coordinates 30.92°E, 49.19°N. (F) The Amazonian fluvial networks (white arrow) formed by

impact effect being dominated by braided channels, central coordinates 26.51°E, 57.23°N. All the images are CTX Mosaic

24 RS{ER

KEFREKRKHRNGEHER 2 ShE— T B X E  (Aeolian strata) HIRAR, HFHHERIKKEEIM KR
R R Ge 283 7 MR ) D 31853 (Grotzinger et al., 2005; Banham etal., 2018; #Xf@ 45, 2024b). M EIR,
KRR TANVEBCR ZE ATk 100°C B E, BRI 22 51 R I RS AR SRR ZY A K R IR RO B s AT IE 50
~100m/s, HJX A% A5 (Badescu, 2009; Savijarvi etal., 2020; Piqueux etal., 2024; X {EH§45, 2024b). 7EiX
FRRSN ST, KEMRREDNHE BEWZETE: ERHEE 0°~ 180°KI ARV AZET, 1 180°
~360° A RIS BN, JERTRE AR B R ERVE AR (A S, 2024).

AHEC I Al TS AR, DA R KB SR T A S0 B AR S, 32 BRI X KR R T AA B TR
(s AT . R RRE D) KSR M T, KIS ERE KRRk, HAE KR i ad



DA A o Liu et al., 2023).

b

B, AWM R RS BAE SR 7 B 25 ¥ (Diniega et al., 2021;

L1 :’.nlv?ih '\ B 'l C a7

-180° -150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180°
K6 (A MT/RBmGbimsthsR, Faskis 137.52° E, -4.80° N; (B) (L TRFRRPAGERI T, 004K 30.13° E, -47.60° N; (C)

TESE T B I REL, Ak bR-41.35° E, 26.02° N; (D) K2R LA S ME, KhEa2apARD L, SeLily
REHEST . ¥ EHHEAK B Hayward etal., 2014; Fenton, 2020, FEPHEHE K A Liu et al., 2020, Hrft, [ A-C #109 CTX SR BRI, 1§ D 5 MOLA-
HRSE it &y mi i f 2
Fig.6  (A) Yardang landform in the Gale Crater, central coordinates 137.52°E, -4.80°N; (B) Dunes in the mid-latitudes of the Southern Hemisphere, central
coordinates 30.13°E, -47.60°N; (C) Widespread distributed of wind streaks on the Chryse Planitia, central coordinates -41.35°E, 26.02°N; (D) Global
distribution map of dunes and yardangs on Mars, with yellow polygons representing dunes and green polygons representing yardangs. Dunes data from

Hayward et al., 2014; Fenton, 2020, and yardangs data from Liu et al., 2020. Figures A-C are CTX Mosaic, and Figure D is MOLA-HRSE blended DEM

RIPAE A K BRI T HEPE . YD oy RS S WA ABRIT . 8 ) JRURE 451 22 IR S (]
6) (FHEMERE, 2016; FILFE, 2021). H, WEMPELHE KR Bz 04, HAEIRZRITA
Wi JE B T BT PG LA T R Yo, HL At DX 3 A A AR T T A S5 TR [V B A (Tsoar et al,
1979; Bridges et al., 2012; Li and Dong, 2022). ¥> e RIVDPSEIL A K BB FKIRIGER, B, #fd /R
YT (Herschel Crater) WHIVD EEREEE LN 0.2 miyr, DI SFEENEEZIN 0.3 m/yr(Cardinale et al.,
2016); T4 m R EARIR (Endeavour) $iibiyd BP9 304 B =14 9 m/yr(Chojnacki et al., 2011).
BEAN, Vb Er RS Sl R H g B I 7R G ARFAE (Diniega et al., 2021). 5t e v i [X 384 P 7E KV W
(Syrtis Major). #f#ir#% 111k (Hellespontus Montes) FIIb#k7P# X (The North Polar Erg) (Chojnacki et
al,, 2019).

Wb 2 LAk, KU R AE KR R I T o A A SR A R b R4 T AR . KSR T AN [F] XI5



BRI o 26 B 22 e, AV B P R ISP R TR MU 2 102 ~ 107 m/Myr(Sweeney et al., 2018), 1
TR B4R, 2IHEEA 1~ 10 m/Myr(Golombek et al., 2014). K& F 1 XU 35 3 ZA PRI
WA, MEPFH S B A AEAREE FEHIX, T XU AR KR BT 2 AR (R AR Z M EIR S, 2016; Liu
etal.,2020; LVL5%E, 2021). BhAh, Wit EIXIER (b4 60° Ui L) "2 afmEERMERYNE, &
AT e I . Bln, FE RO 70 A k4 (Chasmae), JERFEER T AT KR THATEE R
(Howard, 2000; Koutnik et al., 2005; Smith et al., 2015).

3 KEEHREEALEL

3.1 FWEEMHEE

KNS AR UK)ITESD . KA EAER (s R ECA 1) . RGBS B2 R, X
BT AR BB PR A S AR B S
3.1 KWGER KUES S A R AGE A E B VI REE . MBRA AT, KL AT RE R
A= i d S iy (Djokic et al., 2017), iAo B8y B AR o PR 55 N AR WO R R R AR M TR A
FER B, SRR KA AT RE 2 SR IR AR A% & 4 i (Ramirez et al., 2014; Pan et al., 2017), J¥
FGR 2P 5 [RIIN, Kl 55 7K P Bk Bl A B A T AT 51K Jy ARG 31, 3R fHE A RS /K AL 27 BE (Schulze-
Makuch et al., 2007).

KRN i 22 K LS B 5 R AR5, AH R AR B R T i B AT AN o] A . K& 3 S
KEGE RIS A0, TR B RS AR i 204 25453 B RESE(Scanlon et al., 2015; Moreras-Marti et al.,
2021). SRV & Hh X ORI 5 G 3h I8 R (Horvath et al., 2021)iE 5K W], ILA KEHLF ol ReI474E
PRI ET . R, AEAL5 4T % W (Sholes etal., 2017), fEIV b4, K il ST TR AL AN — B AL AR 25
FER AT BEALAE K R I BB S R A, XX arid B B AT E R . BeAh, WS 28 K L& ST L
fR 4 5 (Bleacher et al., 2007)%5 45 A I He Bl B2 AS € 1E SRS DT 47 B8 0, & R A7 A2 i RO 1 BEAR YA By
(Hadland et al., 2024; £ 2HEE, 2024).

FENSG3b e, KUEshieEE 277 NS5 KERYIBER . —J7H, KIULESR AR K LKL
A T R RN R SUZ (Jakosky, 2021), Z 55 FIZEFPEIEIR, 10 BT S a2 k2 G kK B
LR, MRk 2 RT (B 7 —J71, s EAEBET i) A RIS 3 T e 2 KB R Pk
I BE SRS, AT BEVE T Kl B S BRI, AT Re il it 20 A6 SR AR B (Formisano et al., 2004;
Atreya et al., 2007; Fonti and Marzo, 2010).
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Fig.7 Schematic illustration of volatile escape on Mars (modified from Hu et al., 2024). Volatile are released by volcanic degassing on Mars, which together
with other processes induced volatile escape
3.1.2 EEHEEH  fEhFEESKERMAE A E RN, AR KR BRI R S .
W FAERT KB RRZ . M FE S5 S E A SR 18 0™ B A A (MacKinnon and Tanaka, 1989; Lillis et al.,

2008; Pan etal., 2023), EAREEIT 500 km Fr 4 & DA R IR 5k 26 420 1) A2 47 2% A4 (Sleep and Zahnle, 1998).
{H R, i T2 GER] T A AR RIS, tn] 58y K B A7 KA WL F(Lin et al., 2014; Steele et al., 2016).
filtn, Tissint B5AT U I 20 A ALK 5 A7 7E T = AR PR S P s Rl b, PC B iR
FnTRE NI RA , {H Tissint £77E 1 4% nI A MU -5 b ot BB RS A A B 6 AR AL A6 2 AR AL 2=
YR, REAHAA TR [ /M7 B 4 B % (Lin et al,, 20145 Schmitt-Kopplin et al., 2023).

WIRGSCATIA, KR ERE S AR RR SRR TS R T S dh et LA SR 10 48 o A 3 ARSI 25 PR AIG, (LTS
BEAzEETER (B 8). B4 REY, BERKT 7 km MEEVIATLITEKE ARG RS, MER
30 km 38 T 5T TR B FAG R 4 mT 4RI 6 5 4 (Abramov and Kring, 2005 ; Schwenzer and Kring, 2013).
SRy, 5 4di b b i e A L GE I 450 T IR AR IS B AR fRIEE (Cockell et al., 2024), iR 5
RIS AR R, XK G - BB IS . jeAh, 0 Eadh 40 % AR it /K 34 2 TR i ) AT 3 (Rodriguez
etal.,2015), 5 F4EVIMIC: il EUERZ KA LT /KA H, A AR BOK I B 42 I(Wang et
al., 2005; Jones etal., 2011; Weiss et al., 2017). Rk, FEHFEAMMGEKEFYHEERE L —, &0]
REIEIT 51 R PRGN« 7KIE Bl B 308 A ok B3 R I AR ) B FE A B8 A
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Fig.8 The formation process of complex impact craters. (a) Impact schematic diagram, (b) Formation of complex impact craters filled with impact melt and
forming a fractures network, (c) hydrothermal system induced by impact, lakes that can be formed under sufficient conditions, and generate multiple habitable
environments. Among them, fig. (b) and (c) are referenced from Osinski et al., 2020
3.1.3 KI)IESN FEHLER b, UK FIOK 535 3% A0 A V0B V& 1) — 35 73 (Anesio and Laybourn-Parry, 2012), H
T AR RUE Y B, ISR RE B TR SRR B AR . A KR B RUK B A e e R
1175 R UK 30 % 76 o 46 B Hb 7 (Ullrich et al., 20125 XIIESESE, 2024). WX A E4 0 E &2 0
DURRHBJZ A 2 H0K, AR AT REFE A E BB X FEOR B 1 AR A I 28 (Jakosky et al., 2003; Cordoba-Jabonero
etal., 2005; Mellonetal.,2024). 2R, KEEMHBUKE R oI A b T 9K A% 5E 47 7E(Mellon et al., 2004),
XN K BRI BLJE R oR 1 Bk ABH AR S B 2R (Khuller et al., 2024), A KRR HE 32 (5 4b
AR U R T YR A, B K R A ER UK )E T R REAAAE RS R IX o TR R UK AT DA AR
DB RK, IX AT BEAEASAG BE E FR ISR Y Can ™ F e oy B D 7E Herb A2 47 (Williams et al., 2008; Ulrich et al., 2012).
T K R B R AR AR A SR B K )1 e A% 5 Rl A A X R 2 T R S 4 R R 85 (Mellon et al.,

2024), HIE RV Z IR R KB A iR T J5 1) o UK )12 Zh388 3 R R AT P SR i A AT TSR 9 U3k T
KA, AR bl 1) B JE VR A R B AR A
314 KERME KILBERRHE d AR 27 £ KR Hyw CHa 1 COx(Sholes et al., 2017; Haberle et al.,
2019), HEETE RCTIR R IA 5 IR K RIAFAE SR AL T A RIS, ROR K E M AR ISR Bt SE LA, R (e fi
HARAENE A . 1 RLIZE B (Ehlmann etal., 2013; Duetal.,2023), KER] 2 /5% LS KL,
PR A AR E R BORORE £ (&1 90 ZRERR L™ MR AR TR, AT REFEA:
RCVF R SR LS BAG ED R,  IE L& RAE A WL R A AR B RE F, R R KOR BRI R AR
(Ehlmann et al., 2011; Gainey et al., 2017; Bristow et al., 2018; Du et al., 2023).
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Fig.9 Distribution of clay minerals on the surface of Mars. Blue represents Fe/Mg phyllosilicate clay, including smectite, vermiculite and chlorite groups, etc.
While red represents hydrous aluminosilicates (including Al-smectites, kaolinites, etc.) and hydrated silica. The mineral data is from Carter et al., 2023, with the
MOLA-HRSE blended DEM as the base map

HHIRFEAL, KR ACFERTE ) T PO JEI G B A IR EL ) 4 BRI AL J5 7% 48 (Liu et al., 2021a).
Wb 2e DAk, KR AR5 AR R ISR L RN IR 5 T 9 XUk (Hurowitz and McLennan, 2007)
WFNT IR, 75— Db 0 4 o o i 48 o s A ok U 21 19 AE (1) B A2 RS (Sun and Milliken, 2015),
XRWIEMEET Gadb e, J5AFAE R L I B L . A, /2 IR VG 77 28 I S AR R SR T AR v
FH /R RGP0 00X 20 ) 4 27 A B (Liu et al., 2024b), T I R 7E W B b & A5 A ml Rk Ae

ANE I Ak 22 XA 2 0 R KR T 2 F2 B (Scheller et al., 2021). 7EMER I, ARBAEILIE T KIGIR,
T A KA AE FBE B9 )53 P 1R 7K B & 2 ad it K LR RS TR R R (Lammer et al., 2009). 17 K& K
ZHOKEH WL 2R R W (Ehlmann et al,, 2011), ZRULRIKIGIE KB IFRFREEAFE . FIKEZ 1
2 A B K EER, 7K1 347 T ¥ h(Scheller et al., 2021), THAENE B4, X —RN K
fsi K B IKAIEFRHE— IR 55 o

o2 RAAE KR I IR I R I 25 55, 12519 1~ 50 Myr o, K EAL 2 AL 28 L b BRI 18
A CRERR) IEEAG | ~ 4 ANHEES(Schroder et al., 2016). SR,  FAE R ST - (K45 S0 F T 5 b
FosK A B I U R W) IR, 1T R R T AR BRI AL .
3.1.5 HeANMBRERS  WwSCA A ONEN ISR RO A E S A E A SKESERAIER, R
T Ho FIEREE o e S0Cf Ak s B AE 3 K OR AT -+ 4923 (Schulte et al., 2006;  Tutolo and Tosca, 2023), g &
rer L b B P 5 i S AR S B ) AR T B AIEYE (Ehlmann et al., 2010;  Amador et al., 2018). £
AAEH N KA R, K1LiE3)(Schulze-Makuch et al., 2007; Skok et al., 2010) ## 5 2 £(Turner et al., 2016;
Carrozzo et al., 2017). ¥ 8Cf14k < V. (Lowell and Rona, 2002; Schulte et al., 2006; Chassefiére et al., 2016)F/1
TR P #(Ojha et al., 2021)55 K Z B A BRSO EIFGRIEIR, TR RS-

RGN S VIR, KEARE KT, KAFFELRR, HIX— AR AR S S0A A S R AR 3 o



W AR, AR T Db 28 f s T A O LR BT Y AT RS . Sl B AR S S RGOS
BRI S0 A 2 S AE 56 BT 4 (Turner et al., 2016; Bro% et al., 2017). [&I %}k & Nakhla B 15047 8 oR
HURATEKR BE T Wi S5, 12 633 Ma IR (i o 7= AR ARG B, (B Rk A TR (150
~200 °C) 7KhAF i FE(Borg and Drake, 2005; Bridges and Schwenzer, 2012; Daly et al., 2019). Bt4b, U
P AR AT AR TE 5 AR R 261 R KA IR Bh Bl R G 4k RF BB PR 5% (Ojha et al., 2021), XA A EAE KR T
b 203 BIRESE

PR RGN KRR F R LER, KA AN ERREE . fesmii DL ACE & A dr e 5 0 3 7K
W A EAF AT A i B2 (Prebiotic) #&(E 1i& B ¥ 45 (Martin et al., 2008; Ojha etal., 2021; Z'#i
B &5 mﬁ)%ﬁﬂ FRRGYERT ) (P TE 23 5ENA K R I H S R PR SRR AE (Shau et al., 1993 Lillis et al., 2008).
Az i AT BEE A BGBOE B K S SOV AE K B IRAL AT CLYERR,  JRAE KB R A IR A AE R AR £ (Ojha et
al., 2020). UTIATE KBB4 ALH 84001 HR I | 51 MBI ARG SCH AL S BAHKR AN, F88 T KE
BB ¥ BI7K 5 AH AR F RIE (Steele et al., 2022).
3.1.6 KSED IR)Z R A REAE R 5 U Pk it 77 1 & 4455 B 224 H (Heavens et al., 2018; Yigit, 2021;
Yigit et al., 2021) (& 10D, i B2 ) K 723 (1 #k I 2 OB KHAZKIR R I ZENLHI, 2 KRB M A 21
R (Jakosky et al., 2018; Yigit, 2021).

Wb LA, A IS BN KR KB ) AR 25 3, HL s e Y0 R M M 2 S el 22 R E A e
B JE(Wuetal.,, 2020). 2018 4 6 JI ML B ) 3R PEAD B KR AR FR A A5, ARIAME, KEDRAE
%Eﬂﬁﬁﬂﬁmmwﬂﬂﬂwm,ﬁ%i%iﬁﬁﬁ@ﬁmﬂ,%EEﬁﬁﬁ@ﬁ%MMmmwaaa
2020; Yigit et al., 2021). ExoMars (Exobiology on Mars) [JMMZE R EIR, BRGNS /KIGHBERE
SR FU IR AR B KR AIRE R AR A, Mﬁaﬁkammiﬂ,vﬁm?kaﬁﬂnm0$Fﬂm,ﬁﬁ
oM 15 2 /KUK = (Liuzzi et al., 20205 Neary et al., 2020).

CRBRA, lliIIWFJiT II&."’!’JU{'UT $)

L\ / J_)
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B 10 KEMIRE RS ARG, BARBKSE Yigt, 2021, LRGSR E BS KEERSHANL (2005 E7 ), HKE:
NASA/JPL-Caltech/Texas A&M/Cornell
Fig.10 Martian lower atmospheric processes affect the thermal escape of hydrogen. Schema diagram modified from Yigit, 2021. The dust storm image was

taken by Spirit's navigation camera (July 2005). Credit: NASA/JPL-Caltech/Texas A&M/Cornell

AL, R RIEShIE S kR ER 2 AP B AT (Mao et al., 2022, 2023). filin, ZRRIESh TR RE



F R 3 R AT kR R R CO, A R R 2 (Mao et al., 2023), T HTREA L SRR 2TESD, H CO,
H1E 7 & 1A )~ 0.56 mbar.

KA IR R R R MAT B KRB E Z A BRI . BT KR = SRR,
G2 RKBARGEE, KBAK . @A B0 5625 8 ORS8N 5 KRR . B AR Z A BAER, T
KBRS, SHEKEKHK(Dong et al., 2014; Mayyasi et al., 2018;  Yigit, 2023).

3.2 KREEEMTMNIER

Mg KR BRI AR R R, X FHRAE MR RARIEXE FRE T ARG EER L. BEFEER
PR B E AT 77, Cockell(2014) 2 H BB 347 22 /b—Fh AR YIS B A B B, g g1
AL AR YRR AR KBTS UG 3 BB RPN R bR IR 5 75 225 8 A i T ORI 20 [ A% 0 52 DR 3
FRAEEIN T, K OE B MY REERIIC R AT A H R M 1 ¢ U 2 3% (Hoehler, 2007; Cockell etal.,
2016).

XFF KR, HRMAFEAE I REVERAIS, BONAER . HRd DL ROR BH RS A 206 KO 3 Bl
2R ] BEAEAE B0 A= W30 55 3 1 R 35 B3R (Mancinelli and Klovstad, 2000; Hassler et al., 2014). )z, ‘K2
TR FRAR ) BB I3 T (Cockell et al., 2016; Michalskietal., 2018; XI¥ES%, 2021a; SiEHI%%E, 2025), E
AT 3R T (St RIS A TR, FT DA TE AR Ar SR AL B AR, KR SR AT RRAEAE IR AIK
VKZE I R IR R AL AUR, 1 K 1L Bl AN TR P AR B A PR IR SR 4 R S 7K (Westall et al., 2013). 1 #H
O AR A A, S AR T ASE B & PR o MR, 9 s I ARTE S IR iR R A S (I I AR, 20225
FEFERSE, 2022), EANIAAEERT N, AFESGZINAE R BRI 7 AR S,
AR AT DATE R N A A, IS B KR R S ARAE T AE M) 22 R A1) (Changela et al., 2021; Sauterey et al., 2022).
H KR P BB A, ENRESRE AR . A S0 T8 BURA Al Re A RAEE Y
T (Westall et al., 2015; ZHEIZE, 2025).

AR IS EREY), AFHEEEE S ERIOBE. 1, MAEY R AN E N b
77, VAR F IR AR ARA . KPR g SRS, (et g s Hik, KEA
B EMUTEICER (Co Ho O. Ny P. S, Cockell etal., 2016) ZFHFFLT “I0HR” X —EAERKNME
oo R, ZKRIRE R M 290N BB RS AR AE M (1 R R T

IKAE A AT, TR 2 Be AR I T o LIS Bl T TR B b R85 DA R Ji o5 FH B R T )
T FABE 5 T K UKAE S5 R SRS I R Ge,  [FIRRESCH S K A M AR = A #viE . BTRL, FIHL T E
JE IS OB AE AR W) B AR DRI L 32K, AR, FAR I 5o 2 3R K R Z AR (Cockell, 2014) . TERLTS
N, BRAVE KNP R R R IA, HIRAERES, FREEN AR RAZ OB S E . TR FC KR
S FIKIAFE RSB T 3, B KRR EBEYE . 77 20 ACE M ELAE A LA K TG 3 5 1 R 7K iE 3h
MR REE, Mok JOR R W R DGR, AR AR A2 RN ) 3 S5 RF 9 N 25 (Xiiao, 2023)

KOBRAFAE MRS, 4032 20 A (K i 35 (Liu et al., 2021b;  Zhao et al., 2021; Shi et al., 2022).
AR RS E 2, 20165 Zhao et al., 2020). /KAEH Y)(Du et al., 2023; Juetal,, 2024). w325 (Di
Achille and Hynek, 2010; Xiao etal., 2023a; Wu etal., 2024; Li et al., 2025)5535)3 B K 2 [ st FLWITEE A K
BB K EXFEI T, B K EAFET A a4 . 10 B8 3% 78 < (Mittelholz et al., 2020),
ORI PRS2 1) R SRS K B KU (Ygit, 2023), A BRT AR, A dir iR v] B S 7 28 S IR 2 1 R BA
FIIBE 2 T T o HL 3k A AR (Westall et al., 2013; Michalski et al., 2018). kB 2 B 36 i 4= i o] REFE



AR R, AR IS SR P RE S ORAT TR, B ANAE HR s WIVA B 13 55 TR IR 5% (Westall et al.,
2015). [k, JOREFREVENFEAR A RAML T H REXTHE A LI 77, R B A ar (R RE TN EL
it FIRIGIR, AR T KR BBV A R (GR 1, MOKIEZNSRE . AEE AL AR
A A T B 1 A S A i AR AT RE 1 IX IO AN T TSR EF A VT . Forb, KIS 2l FE 3 255 /K B IR AP A R R4
I [A]
®1: NEERMETMN R

Tablel The index of habitability assessment on Mars

WA bR
AN S . Hdr A R A 2R
7K HE &= .
TERE  ARAE
PR AT E LR K, AR b )
. . . (Martin et al., 2008;
AT o [ B AT R R SR I A I SR AR _
. Ojha et al., 2020;
IR R G G G G P R AmiE B TR AR R, Bk AL SR )
B N Ojhaetal., 2021; %
A b FRIoE, AN E MRS Al A
_ . HREASE, 2025)
ELEMRR S R AT O ST AR AERE JT 58
Kl R I FRA RO R A E R, B RF
(Schulze-Makuch et
SEBEARE I IR . KL A kKT o
. . ‘ al., 2007; Djokic et
WIS R G, BRSNS
al., 2017; Moreras-
rerire )y, AEamTE g ik, KIS _
. o Marti et al., 2021;
A E (RREREME. WEpivee
Sanchez-Garcia et al.,
K& HaE G G g 710 BERIL GREIFURIRIEE) i
2023; Tanetal.,
o, RAAFAEMRTREES AT, ko, /
NN 2023; Xu et al.,
AR IR BT BT ) P e i 78 0 AT R A2 AR
= o 2024; Hadland et al.,
YIbR G, AR R I R T R AR i e iR A il
N B . 2024; RXEPHSE,
RIS, (1A YIbs E R A RS 2024)
Ak, DA A fRAERE ST h A
ISR RN Ho FlRE &, TR R4 SeNT (Lowell and Rona,
WA KAEERAEFIFREL, FEIRSI IR RS, 2002; Kelley et al.,
REFRE, MeSUA 0 SOV AEE S b 28 BRI 2005; Schulte et al.,
559, XK A R G EEESKN  2006; Chassefiere et
(LA 55 55 G G EREA R, dwarh R M g FERk  al, 2016; Amador et
GRS = AR (R BRI A T £ it al., 2017; Bosak et
PH BAEE, AEAnEMil ook, Mok, HiE4r  al,2021: Steele et
T R R B B R £ 5 RG A IUTIE AT al., 20225 Schwander
AR ARG, R A fr TR A e 773 etal., 2023)
VKNS SNAETE S 20 B vE R, HomT A 250 (Williams et al.,
HOKBHE N, JOERE A K 2008; Pavlov et al,
5. MET KA , PHEIKZETRES 2012; Ulrich et al.,
KEZ) s L e g WEB. MATKEFKMT, hAEIKZE s richeta

PR EROK, BRER VKR A BT REAEAE AR ST
HEX, IFEEEIRME IR A .
(RIS R KUK AR SR A s N F i, I

2012; Khuller et al.,
2024; Mellon et al.,
2024; Sizemore et
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S PR R RIS, R
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AKER, JEINRIT R, (HI S bl
KR RAHE AR, XTSRS . HEX
A ankt LA AT SR AR LR AR 5 ROV
Frim, FERTAERREARR, XA A A fl St id AR
HRME RS RS, R
hEE, BEAh, KA IR R sER B, I
Pt RAE AN, A ORAERE D5
R, ARRISOR SR S InAVIRZ
KA, IR A w2 R AR, &
IR, RIS AR 24 KD Bl 12
e BORRRIE BRI, BT REAFAER)
AR, WA R AT A R A
A
KEBGRZ EEREY, KBRS H 295
SRR E R AN AT R IE R, M RE
KAFWAR T, HREETSBLL) T
RIS, H R R kg 2 /b
WEERE . RERL T HR AT SRR R R ) 45
WSHEID T, EEEENEAEL, X e
J5 ORAT A FCESL i U o

al., 2026)

(Abramov and Kring,
2005; Schwenzer
and Kring, 2013;
Montgomery et al.,
2016; Steele et al.,

2016; Panetal.,

2023; Cockell et al.,

2024)

(Hazen et al., 2010;
Ehlmann et al.,
2011; Schroder et al.,
2016; Gainey et al.,
2017; Scheller et al.,
2021; Duetal.,
2023; Zhao etal.,
2023b)

(Jakosky et al.,
2018; Yigit, 2021,
2023)

(Mayyasi et al.,
2018; Tarnas et al.,
2018; Yigit, 2023)
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