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Abstract: With the advancement of big data and artificial intelligence technologies, mineralization
prediction is undergoing a series of technological innovations, transitioning from data-sparse to
data-intensive approaches. This shift is expected to become a new “technology engine” for
breakthroughs in mineral exploration and discovery. Despite the substantial accumulation of
heterogeneous multisource geological, geophysical, geochemical, and remote sensing data, as well
as rich geological reports and literature, effectively integrating and deeply mining these valuable
data resources to further optimize mineralization prediction indicator systems and construct high-
quality mineralization prediction datasets remains a critical research challenge. To address these
challenges, this paper proposes integrating multilayered and multidimensional mineralization
prediction knowledge across the Earth system, metallogenic system, exploration system, and
prediction—evaluation system through large models and knowledge graph technologies. A
multilayered, multi-system-coupled mineralization prediction knowledge graph will be constructed,
and intelligent construction of mineralization prediction indicator systems will be achieved through
knowledge graph mining. Based on big data and artificial intelligence technologies, a multilayered
method system for intelligent construction of mineralization prediction data will be developed. This
system will focus on intelligent mining of geological exploration data, automated scientific data
extraction and spatiotemporal analysis, and intelligent data inversion and simulation. Such
advancements are expected to strengthen the deep coupling between prediction data and indicators,
enhancing the accuracy and reliability of prediction results, and providing more robust technical

support for mineral exploration and discovery breakthroughs.
Key words: Mineralization prediction; big data; artificial intelligence; mineralization prediction
models; mineralization prediction data construction
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Fig. 1. Automated workflow for mineral prospectivity modeling based on knowledge graphs.
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Fig. 2. Multi-level intelligent data construction method for mineral prospectivity prediction based

on artificial intelligence and big data.
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system—exploration system—prediction and evaluation system”.

LU I — D RGN R SE O RE (B 3), Wi IR RS- Rg-Hh A
RGE-TNV RG” 2 MR HRE GRIRASE, 2021 BB = ol & 2e Mot T-5F X
B CHIER RGBT RA” RN T I TR RE IS MRE, IRl TR
R BN, BED R IE BRI RS /) 2208 5 SN B 0 A, AT AR PR R A A
TEMLEEA b, 256 By BT SE S0 PRIEAL I TT, AR AR AR, i <A
RG” @A IRE SRR (R HAD, JF8at-aB3 e BRI IE R R, ™
T LR S M A BER 50Tk 2, il “TNPENY RE” @ESIH - WAL, BIhLR

5



E RIS 530 R AR AR E L R OC R, AR O RO ECERA, DU T
WP RIRR T PP SRR, BT, TP RGBT R e AR R R
(IR FEATI, A O TE T I AL 35 2% o0 45 S HEBOR SR U 4 piuh 23 2% 1R e R RS AIEA5 5L, BA
S T BORE B SRR

SR, AESE IR P PR B 3E & AR T8 Z0 — s AN SR PR I T A 4 . X e
AU A A E SRR RIS, 8 H = TR Sl R G 25 D 3 R A s, 1 2
T R AL DR PR I R R R ) AR DI A L £ o Sk o R SR T O 1) &
PEFEYEA L, PR B2 52 BRG] Rt 7R REIR IR R A BRI T N, TE
P “ MR R GE- I R G- B R G- T PP R 407 R & B0 BE TR Y. (LG HR b 5 it
PRZRD, ARt 7= T 4 R
2 FPETRITR bRk R RE 2

WP TIIR A RTE “ TN /G e B REEME, IR .
ORI PR K G5 BAC IR K R R, R TGS SRR o e . HAZ AT 2
W HUER R RS- E ARG WA, M@ AR B 1R (e s AR
R X IR ERE, NMURTIUEE NI, R TELE0 T EdE Gl .
HhERPPERSE) WS AbFRRVRRMESR I SCBERT I . SR, AR GARbRIE RIVM BT &
FIERFLR, X7 78 5 2 B R ANEN IR, S0 HE bR 1) A T P AR P o

SRR BB Sy — R GURT I AN B T, B =Jed CGRes- X R-B ) fAfg KR
MFLAER, TERGM IR L AR, 20210, B, & PRATRE SRR R K
PIAEla) B TE) . AIE T st RIRERAY, TR WY B A S 2 4ERHIE LU EA T A R Rt
ITRBE (K2, 2021a; Zhang 2%, 2025; Zhao &%, 2025; LS, 2025). KIRERE
AL RS FR AT AR ) R G 55 ] R, 3 N T e MBS RS R 1 A 0 7 i R R 41t
TEIILG GERRSE, 2023). HHRBMEL FKEMEGTIEMLEL,  FiR B Re g DL 45 K
WA RGN IR, 18 LR A SN R, ATA B IRE K4
EAAEIH R IR (Ma, 2022).

TER P TR I A b, TG % Gt TR b 2 S50 BB B 3R FLUZ A RE D JE 55 ), A
e “HIBR R G- R R GE-H & R G-I P RS0 B0 W kR B BAS OO 2. 4
PRI RV P £ S SRR R S AR B A b BT R A R RS 23R, o0 R AR SRR Le B 3 2 [A] )35
SO BRI R RN R, TT DA DA AR A SRR R A ORI (B 4D, SR

A B TR PER R, I AW FC R IR T 28 98 A il 4 B I Bl & R IRER AL 1 G4
6

I



SCFFo WEFCRMT, RR B (0 BT RS 2 25 SR T TR bn I HERR PEANRL 2, Dm0 7 J 52

PEE AT R A ES A (JRKESE, 2021a; TS, 2024; Zhang %, 2025).

W& 7= I
: e
i
(rE— 1 7K A
| — X —
Y o
. — . LRI N
B4 A 1 =1 | kR
A A ‘ £ =
Y3k
FENAET I S (K )
5
‘ . e
WrmE  Owpgp --pRo X TE KR || bR

B 4. 77 T R P o 5

Fig. 4. Schematic diagram of the knowledge graph for mineral prospectivity prediction.
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Fig. 5. Workflow for constructing the knowledge graph of mineral prospectivity prediction.
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Fig. 8. Simulation of structural stress, strain, thermal, and fluid fields for the Fankou Pb—Zn

deposit, northern Guangdong.

(a) Exploration profile; (b) von Mises stress; (c) first principal stress; (d) second principal stress;
(e) third principal stress; (f) fluid flux simulation; (g) volumetric strain; (h) first principal strain;
(i) second principal strain; (j) third principal strain; (k) thermal field simulation; (1) random forest
prediction results for Pb—Zn mineralization.
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