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摘 要：复杂地质结构建模在资源勘查、地下工程设计与地质灾害预测等领域具有重要意义. 生成对抗网络（GAN）在地质建

模中展现出较强的非线性建模能力和模式迁移能力，但在处理复杂地质约束及精细结构重建时，其在建模精度、结构连通性

及建模效率方面仍面临一些挑战. 针对上述问题，本文提出一种基于多尺度特征融合和深度可分离卷积的生成对抗网络地质

建模方法，通过设计多尺度特征融合模块强化地质结构的细节表达与整体一致性，并引入深度可分离卷积以降低模型参数量

和计算成本，提升建模效率. 同时，结合条件特征融合与渐进式分辨率生成策略，增强模型对条件数据的感知能力. 为验证方

法有效性，选取二维河流相、多属性冰楔和三维褶皱构造等典型数据，从空间变异性、连通性、属性一致性与条件点重建准确

率等方面进行系统评估，并与多点统计方法（QS）和改进型生成对抗网络（CWGAN-GP）进行对比分析. 结果表明，在 64×64
和 64×64×64 的分辨率下，二维和三维四个数据集生成的模型 MS-SWD 指标分别为 0.016、0.025、0.0079、0.0087，均显著低

于对比方法；同时所生成模型的平均连通区域大小最接近参考模型（二维河流数据为 300.59 像素，三维褶皱数据为 17814.17
像素）；在整体准确度方面，本文方法的准确率和 MSE 指标均优于对比方法（分别为 73.24%、69.48%和 0.024、0.047），并

通过效率分析和消融实验证明了该方法在效率和参数量方面的优势. 实验表明所提方法在保证合理与高保真性的同时，显着

提升了建模效率，适用于复杂非平稳地质体的高效建模任务，具有广阔的工程应用前景. 
关键词  地质建模；生成对抗网络；多尺度特征融合；深度可分离卷积 

中图分类号：P628                         收稿日期：2025-08-09 

Geological Modeling Method of Generative Adversarial Networks Based on Multi-Scale 
Feature Fusion and Depthwise Separable Convolutions 

 
Liu Xiaobo1, 2, 3*，He Lianyi1, 2，Huang Huaijin1, 2 ，Xiang Hongbo1, 2，Cai Zhihua4，Li Changhe5 

1. School of Automation, China University of Geosciences, Wuhan 430074, China 
2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China 
3. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China 
4. School of Computer Science, China University of Geosciences, Wuhan, 430074, China 
5. School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China 

Abstract  Complex geological structure modeling holds significant importance in fields such as resource exploration, underground 
engineering design, and geological hazard prediction. Generative adversarial networks (GANs) have demonstrated strong nonlinear 
modeling capabilities and pattern transfer abilities in geological modeling. However, when dealing with complex geological constraints 
and the reconstruction of fine structures, they still face challenges in modeling accuracy, structural connectivity, and modeling efficiency. 
To address these issues, this paper proposes a GAN-based geological modeling method incorporating multi-scale feature fusion and deep 
separable convolutions. A multi-scale feature fusion module enhances the expression of geological structure details and overall 
consistency, while deep separable convolutions reduce model parameters and computational costs, improving modeling efficiency. 
Additionally, a conditional feature adaptive fusion and progressive resolution generation strategy enhances the model's sensitivity to 
conditional data. To validate the method's effectiveness, typical models including two-dimensional river phases, multi-attribute ice 
wedges, and three-dimensional fold structures were selected. Systematic evaluations were conducted across spatial variability, 
connectivity, attribute consistency, and conditional point reconstruction accuracy. Comparative analyses were performed against multi-
point statistical methods (QS) and an improved generative adversarial network (CWGAN-GP). The results show that at resolutions of 
64×64 and 64×64×64, the MS-SWD indicators of the generated models for the two-dimensional and three-dimensional datasets are 
0.016, 0.025, 0.0079, and 0.0087 respectively, which are significantly lower than those of the comparison methods. At the same time, 
the average connected region size of the generated models is closest to that of the reference model (300.59 pixels for the two-dimensional 
river data and 17814.17 pixels for the three-dimensional fold data). In terms of overall accuracy, the accuracy rate and MSE indicators 
of the proposed method are superior to those of the comparison method (73.24%, 69.48% and 0.024, 0.047 respectively), and the 
advantages in efficiency and parameter quantity are proved through efficiency analysis and ablation experiments. The experiments show 
that the proposed method significantly improves the modeling efficiency while ensuring reasonable and high fidelity, and is suitable for 
efficient modeling tasks of complex non-stationary geological bodies, with broad engineering application prospects. 
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0 引言 

地质建模是指在区域地质调查中，根据收集的各

种地质数据，将某一地质对象的空间形态、地质边界和

属性特征进行可视化，以构建出定量或定性的地质模

型(Hua et al., 2024; Wang et al., 2024). 地质建模不仅有

助于研究人员更清晰地理解地下地质结构，还能用于

预测资源分布、模拟地质演化过程，并为矿产开发、地

下水管理和地质灾害预测等提供科学支撑(Abedi et al., 
2012). 由于地质体在空间分布上普遍存在各向异性与

非均质性，且孔隙结构复杂，在观测数据有限、专家经

验不完备的条件下，准确建模面临较大的不确定性

(Mohaghegh et al., 2013). 因此，如何在复杂地质背景

中有效刻画地质结构的空间模式，成为当前地质建模

领域的关键研究问题之一. 
目前常用的地质建模方法主要包括传统的地质统

计学方法和基于深度学习的建模方法(Cui et al., 2024; 
Feng et al., 2024). 传统方法中，基于对象的建模方法

通过几何插值和专家推断生成模型，尽管操作直观，

但在处理非均质结构和隐含复杂关系时能力有限. 为
应对这一问题，基于随机函数理论的建模方法被提出，

其中尤以多点统计方法（Multiple-Point Statistics, MPS）
最具代表性 (Strebelle et al., 2002; Tang et al., 2024). 
MPS 通过扫描训练图像获取空间模式，再现地质结构

的空间变异性，典型方法包括 DS、HOSIM、Extended-
GOSIM 与 QS 等(Mariethoz et al., 2010; Mustapha et al., 
2011; Hou et al., 2022; Gravey et al., 2020). 尽管 MPS
在某些场景下能较好地保留空间结构特征，但其仍存

在信息提取局部性、模式表达不全、计算开销大和难

以适应非平稳复杂地质体等局限  (Liu et al., 2022; 
Zhang et al., 2022). 

为突破上述传统方法在复杂地质结构模拟中的局

限性，近年来，研究者逐步引入深度生成模型以提升

建模效率与表达能力. 该类方法主要将地质建模视为

生成式学习问题，通过训练网络从样本数据中学习地

质体的空间结构分布. 目前应用较为广泛的模型包括

深度置信网络、自回归模型、变分自编码器以及生成

对抗网络（GAN）等. 相较而言，GAN 具备更强的图

像生成与分布拟合能力，在二维岩相建模、多孔介质

模拟以及三维地质体重建中应用最为广泛(Karras et 
al., 2018; Song et al., 2022; Zhou et al., 2023).  

根据是否引入外部约束信息，基于 GAN 的地质

建模方法可分为无条件与有条件生成两类. 其中，传

统生成方法多以无条件对抗网络为基础，不依赖具体

勘探数据，主要用于模拟地质体的整体空间结构与分

布特征，适用于构建典型地质背景模型. 例如，Chen et 
al.(2022)提出结合改进 DCGAN 与蒙特卡罗模拟生成

水文结构的方法，用于研究多尺度结构的空间分布特

征，但由于缺乏外部约束，其生成结果在局部结构一

致性上表现不佳. 为弥补无条件建模方法在响应观测

数据方面的不足，研究者逐步将有条件生成对抗网络

（Conditional GAN, CGAN）引入地质建模任务中. 有
条件生成方法通过引入钻井、测井、地震剖面和地质

解释图像等观测数据，为建模提供先验约束，从而生

成更具针对性和精度的地质模型，在刻画复杂地质环

境和提高资源预测准确性方面具有更高实用价值

(Marano et al., 2024). 在此过程中，井相数据（如钻井

柱状图、测井曲线和井间解释信息）作为高精度、强约

束的信息载体，能够有效反映地质环境的真实状态，

是构建高可信度地质模型的关键依据，常被用作条件

输入，用以约束生成模型，提高模型的地质一致性与

空间准确性.  
鉴于条件 GAN 中观测数据对生成精度的关键影

响，Song et al.(2021)提出了一个三维 CGAN 建模框架，

将钻井数据作为空间约束信息引入模型训练过程，实

现了更符合实测地质结构的建模结果. 随后，Hu et 
al.(2024)在该框架基础上进一步引入ALLUVSIM沉积

模拟算法，并结合马尔科夫链蒙特卡罗（Markov-Chain-
Monte-Carlo, MCMC）采样策略引导潜在空间搜索，使

得模型能够融合井点观测与动态压力数据进行细化生

成，增强了实际适用性. 这一方向虽显著提升了条件

响应能力，但多数方法依赖于后处理式的潜向量搜索

策略. Mosser et al.(2020)与 Zhang et al.(2019)分别通过

MCMC 与梯度下降优化潜在向量，以获得与观测数据

一致的建模结果，然而该类方法生成效率低、计算成

本高，难以适应大规模建模需求. 为提升生成效率，

Chan et al.(2019)进一步提出在原有生成器基础上增加

推理网络，将条件数据映射至潜在空间分布，避免了

逐次向量搜索，但也带来了模型结构复杂与训练代价

增加的问题. 在此基础上，研究者不断探索更具表达

能力和效率平衡的建模策略，例如 Hu et al.(2023)引入

风格码控制河道方向，实现二维沉积相的可控生成，

而 Fan et al.(2023)则利用带梯度惩罚的 Wasserstein-
CGAN 改善了生成分布的拟合效果与训练稳定性. 进
一步地，Cui et al.(2024)提出了一种融合注意力机制的

两阶段 CGAN 建模框架，将建模过程拆分为结构建模

与属性建模两部分，同时利用属性观测数据对生成过

程进行有效约束，提升了对连续地质属性（如孔隙度、

渗透率）的建模能力.  
尽管上述研究取得了一定进展，但现有方法在准

确捕捉不同尺度的地质特征方面依然存在明显不足. 
地质体在空间结构上表现出明显的尺度差异性，宏观

尺度下表现为复杂的构造特征，如褶皱、断层和岩层

起伏；微观尺度则体现为岩石孔隙结构、矿物颗粒分

布等细节特征. 目前的大部分生成对抗网络方法在建



 

模过程中，通常仅关注整体尺度或单一尺度的特征提

取，忽略了不同尺度之间特征的关联与相互作用，导

致生成模型难以有效刻画地质体多尺度特征之间的精

细结构关系. 此外，现有深度学习方法在特征提取与

建模过程中普遍存在计算成本高、资源消耗大的问题，

限制了其在大规模复杂地质建模任务中的实际应用. 
如何在兼顾建模精度与效率的同时，有效响应条件约

束，仍是当前地质建模领域面临的重要挑战.  
因此本文针对地质结构的多尺度特征表达及现有

生成模型训练效率低下的问题，提出了一种基于多尺

度特征融合和深度可分离卷积的生成对抗网络地质建

模方法（MSFF-CPGAN）. 该方法采用渐进式生成结

构，实现从粗到细的多尺度地质结构建模，并引入多

尺度特征融合模块（Multi-Scale Feature Fusion, MSFF）
以提升模型的建模精度. 在生成器和判别器中关键卷

积模块处引入深度可分离卷积（Depthwise Separable 
Convolution, DSC），以减少模型参数量并加快训练与

推理过程，提高整体建模效率. 

1 基于多尺度特征融合和深度可分离卷积

的生成对抗网络地质建模框架 

1.1  总体框架 
本文提出的基于多尺度特征融合和深度可分离卷

积的生成对抗网络地质建模框架如图 1 所示，这里以

三维情况为例，二维情况下将相应框架和模块中的三

维卷积核替换为二维卷积核即可. 该框架通过渐进式

生成机制、多尺度特征融合模块（MSFF）与条件特征

融合策略（Conditioning Data Feature Fusion，CDFF）
的协同设计，实现复杂地质结构的高精度、高效率建

模.  
在生成器设计中，引入渐进式生成结构，以潜在向

量为初始输入，使用了多层卷积神经网络，通过由低分

辨率到高分辨率的逐步细化，使模型能够更稳定地学

习不同尺度下的地质特征，从而增强对结构复杂性和

尺度变化的适应能力. 随着分辨率的提升，模型逐层捕

捉更精细的空间结构，提升了生成图像的层次性与一

致性. 同时在生成器中增加了一条条件数据输入通道，

将测井数据经 CDFF 模块处理后，在各分辨率阶段与

潜在向量导出的特征图进行通道维度拼接，使得生成 
图 1 基于多尺度特征融合和深度可分离卷积的生成对抗网络地质建模方法总体框架设计 

Fig. 1 Overall framework design of geological modeling method based on multi-scale features and depthwise separable convolution
器能学习条件数据和复杂地质模式之间的映射关系.
最后通过 MSFF 模块将各分支提取的特征在通道维度

进行拼接融合，输出融合多尺度信息的特征图，有效

弥补单一尺度特征提取的局限性. 
在渐进式生成过程中，为了在不同分辨率阶段之

间平滑衔接并保持模型训练的稳定性，借鉴 Karras et 
al.(2018) 提出的渐进式生成思路，本文引入一种混合

机制处理分辨率转换过程中的数据冲突. 该机制通过

对高分辨率数据进行 3D 平均池化降采样和最近邻插

值上采样，结合混合因子 α ∈ [0,1]实现新旧分辨率数

据的加权融合：𝐼௠௜௫௘ௗ ൌ 𝛼 ൈ 𝐼௟௢௪ ൅ ሺ1 െ 𝛼ሻ ൈ 𝐼௛௜௚௛，其
中𝐼௠௜௫௘ௗ为混合后的输出图像，𝐼௟௢௪为经过降采样-上采

样处理的低分辨率图像，𝐼௛௜௚௛为原始高分辨率图像. α
值采用线性递减调度策略，从 1.0 逐步递减至 0.0，根



 

据训练迭代次数动态更新，确保平滑过渡. 这种自适

应机制有效避免了分辨率突变导致的训练不稳定性，

保障了渐进式生成过程中的数据连续性和一致性. 
在判别器设计中，采用多层卷积与逐级下采样策

略对输入图像进行多尺度特征提取与判别. 首先，通

过 1×1×1 卷积将输入地质图像转换为多通道特征图，

随后依次经过多层 3DDSC 与平均池化操作，使得判别

器能逐步学习真实数据和生成数据的特征，最后通过

全连接层输出样本真实性得分. 为增加所生成结果的

多样性，引入小批量标准差策略，将输入到判别器的

数据分成不同的小批次，计算每个小批次的标准差并

计算均值，最后和原始输入在通道维度拼接，从而引

入更多输入数据的统计信息，帮助判别器更好地捕捉

小批量内样本的特征，促使生成器生成更加多样化的

样本. 该判别器仅学习真实与非真实样本之间的差

异，引导生成真实性高的样本，而生成结果对条件约

束的满足则由损失函数进行指导.  
在损失函数方面，为了正确引导生成器生成既符

合地质模式又符合条件数据约束的地质模型，本文设

计了一个结合先验损失函数和条件损失函数的联合损

失函数，其中，先验损失函数用来指导生成器正确学

习训练数据中的地质模型，而条件损失确保生成的模

型与条件数据之间的一致性. 

1.2 条件特征融合模块 
条件数据方面，引入测井数据作为辅助信息，并

设计双通道编码机制，将井位空间位置与相属性分别

编码，将井相编码为双通道图像：一个通道标记井的

空间位置，另一个通道表示这些位置处的相属性. 为
了适应渐进式训练过程中的不同分辨率等级，条件数

据需要被下采样成不同的分辨率，同时为了使生成器

能正确学习条件数据的特征，本文设计了条件数据特

征融合（CDFF）模块来处理条件数据，以确保在不同

分辨率等级下都能有效捕捉条件信息，如图 2 所示. 
条件数据特征融合包含两个步骤，第一个步骤为

下采样，第二个步骤为特征提取. 在下采样过程中为

了最大程度地保留条件数据的空间和相属性信息，针

对条件数据的两个通道采用不同的下采样策略将其采

样至和渐进式生成过程相同的分辨率，对于空间位置

通道，构建一个二值掩码矩阵 M，其初始值设为 0，当

某位置存在测井点时对应位置赋值为 1，用以指示井

位的空间分布；对于相属性通道，构建矩阵 F，并通过

逐元素乘积 M⊙F 提取井点属性值，以屏蔽非井位位

置，从而获得代表井点平均属性值的加权特征. 这种 
策略既保留了测井的空间分布，又保留了相属性的综

合特征 .下采样后的输入通过卷积层转换为特征

图.CDFF 模块生成的特征图会在通道维度上与从潜在

向量导出的特征图连接起来. 融合后的特征图经过多

个卷积层和上采样层的处理，以提取不同尺度下复杂

地质模式和条件数据的特征，最终通过一个卷积核为

1×1×1 的卷积层将多通道的特征图压缩成单通道的地

质图像，以实现由观测点引导的结构生成.  
图 2 条件数据特征融合网络结构图 

Fig. 2 Structure diagram of conditional data feature fusion 
network 

1.3 多尺度特征融合模块 
地质数据因其形成与演化过程受多种地质作用

（如沉积、构造、侵蚀等）共同驱动，在空间结构上普

遍呈现出高度非线性和复杂的多尺度变化特征. 这种

特性在生成建模任务中带来了显著挑战，尤其是在高

分辨率阶段，模型生成的结构常出现地层接触面不完

整、裂缝不连续以及细节纹理缺失等问题. 为此，本文

提出了一种多尺度特征融合模块（MSFF），旨在通过

多尺度卷积机制增强生成器对不同尺度地质结构的建

模能力，从而提升模型在高分辨率阶段对局部复杂地

质特征的表达精度.  
单一大小的卷积核对提取局部细节比较有利，但

是针对多尺度的地质特征存在短板，导致生成地质模

型细节部分有所缺失或者出现断裂痕迹，不能有效复

现复杂地质环境. 因此，通过使用不同大小的卷积核

在高分辨率生成阶段同时提取多个尺度的地质特征信

息. 较小尺寸的卷积核可以准确捕获地层局部细节，

同时较大尺寸的卷积核提取宏观结构信息，有效提高

生成模型中细节层次的丰富性和连续性. 多尺度特征

融合模块的结构如图 3 所示.  
多尺度特征融合模块包括四个分支，分别使用不

同大小的卷积核，其中三个分支包含[1×1×1，3×3×3，
1×1×1]，[1×1×1，5×5×5，1×1×1]和[1×1×1，7×7×7，
1×1×1]卷积运算，第四个分支仅包含一个卷积核为

1×1×1 的卷积. 多尺度特征融合模块可以用以下公式

描述： 

3 3 3 1 1 1 1 1 1

1 1 1 3 3 3 1 1 1

1 1 1 5 5 5 1 1 1

1 1 1 7 7 7 1 1 1

Conv (Conv (Cat(Conv ( ),
Conv (Conv (Conv ( ))),
Conv (Conv (Conv ( ))),
Conv (Conv (Conv ( ))))))

M F

F

F

F

     

     

     

     



(1) 

其中 Conv 为卷积，Cat 为拼接操作，M 为四个分支

拼接融合后的特征.  

1.4 三维深度可分离卷积 
在高分辨率三维地质建模任务中，标准卷积操作

的计算量随着输入特征的通道数、卷积核尺寸及数据

的空间尺寸呈指数级增长，尤其在处理大规模数据时，



 

计算和内存开销变得尤为显著. 特别是对于多尺度特

征融合模块中不同尺寸卷积核的使用，更进一步增加

了计算量，导致计算效率低下，成为制约模型训练和

推理速度的瓶颈. 随着模型复杂度的增加，这一问题

在高分辨率三维数据的处理过程中变得愈加严重.  
为解决上述问题并提升模型的计算效率，本文提

出将标准卷积替换为深度可分离卷积（DSC）. 深度可

分离卷积通过将标准卷积操作拆分为两个较为高效的

步骤：深度卷积和逐点卷积，有效降低了计算复杂度. 
具体来说，深度卷积在每个输入通道上独立执行卷积

操作，而逐点卷积则通过 1×1×1 卷积核融合不同通道

的信息. 这种拆分方式大大减少了计算量，同时保留

了标准卷积在特征提取上的优势.  
相比于标准卷积，深度可分离卷积的计算复杂度

大大降低. 在标准卷积中，计算复杂度为： 

3
std in outC C C k D H W       

其中， in outC C和 分别是输入和输出通道数，
3k 是卷

积核的尺寸，D、H、W 是输入数据的空间尺寸. 而在

深度可分离卷积中，计算复杂度则分为两个部分： 
3

1 1 1
in

i
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t

D

n ou

C C k D H W
C C D H W

     

      
 

其中，第一项是深度卷积的计算复杂度，第二项是逐

点卷积的计算复杂度. 通过这种优化，深度可分离卷

积在减少计算量的同时，保持了对特征的良好提取能

力.  

1.5 联合损失函数 
在本文的框架中，目标是将潜在向量和条件输入

映射为地质模型. 为了实现这一目标，必须设计合适

的损失函数，以衡量生成数据与真实数据及条件数据

之间的差异，并且采用基于随机梯度下降的算法优化

相应的网络参数，从而帮助生成器和判别器评估自身

的生成效果和判别能力.  
为此本文提出了一种联合损失函数，该联合损失

函数由先验损失函数和条件损失函数组成，先验损失

通过定义生成数据和实际数据的差异，引导生成器和

判别器评估生成样本的真实性，而条件损失确保生成

器生成的样本满足条件数据的约束. 联合损失函数的

定义如公式 2 所示： 

 ( , ) ( )
concon xL L G D L G           (2) 

其中，𝐿ሺ𝐺ఏ, 𝐷ఝሻ为先验损失；𝐿ሺ𝐺ఏሻ௫೎೚೙为条件损失，

其权重为𝜆௖௢௡. 这些不同的损失函数将在下面进行详

细描述.  
本文方法中采用带梯度惩罚的 Wasserstein 损失函

数作为先验损失函数，先验损失函数的定义如公式 3
所示：

图 3 三维多尺度特征融合模块结构图 
Fig. 3 Structure diagram of 3D multi-scale feature fusion module 
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其中𝑥௥为训练数据，𝑥௖௢௡为条件数据， ~ datax prE 为在分

布𝑥௥~𝑃ௗ௔௧௔下的数学期望；𝐺ఏ为生成器，𝐺ఏሺ𝑧, 𝑥௖௢௡ሻ表
示从生成器生成的样本；𝐷ఝ为判别器，𝐷ఝሺ𝑥௥ሻ为判别

器对真实样本的打分，𝐷ఝሺ𝐺ఏሺ𝑧, 𝑥௖௢௡ሻሻ为判别器对生成

样本的打分. 𝜆௚௣  为梯度惩罚权重， x̂   是从真实数据

的分布𝑥௥~𝑃ௗ௔௧௔和生成数据的分布𝑥ீ~𝑝ீ中采样得到

的，其计算公式为： 𝑥ො ൌ 𝑡𝑥௥ ൅ ሺ1 െ 𝑡ሻ𝑥ீ ，其中

~ (0,1)t uniform .  



 

在渐进式训练的过程中，生成器生成的样本的分

辨率会逐级提高，但是条件输入的分辨率是恒定的，

这给准确计算生成样本与条件数据在条件点处的差异

带来了挑战. 为了克服这个挑战，本文方法将训练过

程中的低分辨真实数据和生成的数据上采样以匹配条

件数据的分辨率. 接下来，计算上采样后样本之间的

L2 距离，以便正确地引导生成器学习如何满足条件数

据的约束. 条件损失函数如公式 4 所示： 
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~ , ~( )

( ( ( , ) ))
conx

con r

z con xconz p x pL G
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
       (4) 

其中 M 为空间位置数据，US 为上采样算子. 条件损

失只作用于生成器，通过反向传播优化生成器的参数，

使得生成器逐渐学习满足条件数据约束的能力. 

2 地质建模实验结果 

 本文选用了四种数据集来验证所提出方法的有效

性. 同时选用了两种不同的方法作为对比，分别为基于

多点统计的 QS 方法和基于生成对抗网络的 CWGAN-
GP 方法. 为了评估所建立模型的真实性，采用了多种

评价指标包括使用变差函数用于评估生成样本与参考

样本在空间变异性上的一致性；平均连通区域大小反

映模型对地质连通体整体尺度的保持能力；连通区域

数量衡量结构的分裂程度，体现其连贯性；多尺度切片

Wasserstein 距离（Multiscale Sliced Wasserstein Distance, 
MS-SWD）度量生成与真实样本在多尺度下的空间分

布差异；其扩展形式（Multiscale Sliced Wasserstein 
Distance Multi-Dimensional Scaling Analysis, MS-SWD-
MDS）通过多维尺度降维分析揭示全局结构的分布相

似性；相属性比例评价生成图在相类别分布上的一致

性；条件点准确率衡量生成结果在已知井点处的属性

还原能力，反映模型对空间约束的响应程度；整体准确

度反映生成模型的总体精度；不确定性评估反映反映

模型的可靠性. 选择 Python 3.7.12 和 Pytorch 1.13.1 作

为编译器和深度学习框架. 实验部署在一台配备 AMD 
EPYC 9654 2.4GHz、256G RAM 和 NVIDIA 4090 GPU
的服务器上.  

2.1 实验数据集 
本文分别在二维与三维场景下选用了两类具有代

表性的数据集，覆盖了二元分类变量与多元连续变量

两种典型地质属性类型，以全面验证所提方法的适应

性与泛化能力，这些数据集来自地质建模领域的开源

库(https://github.com/GAIA-UNIL). 具体如图 4 和图 5
所示.  

在二维建模中，选取一个分辨率为 250×250 的二

元分类河流相数据集和一个分辨率为 500×550 的多元

连续冰楔数据集. 前者包含河流相与泥岩相两类属性，

属于典型的离散相类型；后者为具有复杂空间变异性

的连续变量模型. 分别采用 64×64 与 128×128 大小的

窗口对原始数据进行划分，最终得到 34596 个和 39644
个子区域，均按 9:1 的比例划分为训练集和测试集. 

(a) 二元分类河流相数据           (b) 多元连续冰楔数据 

图 4 二维实验数据集 
Fig. 4 2D experimental data set 

(a) 二元分类岩相褶皱数据       (b) 多元连续岩相褶皱数据 

图 5 三维实验数据集 
Fig. 5 3D experimental data set 

在三维建模中，使用了大小为 120×150×180 的二

元分类岩相褶皱数据集与多元连续岩相褶皱数据集. 
分别代表分类型与连续型三维建模任务 . 都采用

64×64×64 窗口划分原始模型，按 9:1 划分训练与测试

数据，分别得到 4664 个训练样本与 520 个测试样本.  
为统一各数据集的条件建模方式，在每个子区域

中随机选取一定数量的空间点作为条件点，并用 0 对

未选取位置进行填充，从而生成与原图分辨率一致的

条件输入. 其中，二维河流相数据在每个子区域中选取

12 个点（包括 6 个河流相点和 6 个泥岩相点）；二维

冰楔数据由于属性连续且结构复杂，每个子区域选取

100 个点作为条件点. 三维数据集中，每个样本从长度

和宽度方向选取 5~15 个测井点，并沿深度方向提取所

选井点在整个剖面上的完整属性值，从而构建三维条

件输入. 对于未被选中的体素位置，其属性值设为 0，
以保持条件数据与原始子区域在空间维度上的一致性.  

2.2 超参数设置 
对于四种不同的数据集，选用了四组不同的超参

数，这些超参数会影响模型的建模效果. 这些超参数包

括不同分辨率阶段的迭代次数、学习率、批量大小、梯

度惩罚权重和条件损失权重，对应的值如表 1 所示.  
表 1 超参数设置 

Table 1 Hyperparameter Settings 

超参数 
训练数据 

二维数据 三维数据 
a b c d 

4×4(×4)* 5000 5000 6000 6000 
8×8(×8)* 10000 12000 15000 15000

16×16(×16)* 10000 12000 15000 15000
32×32(×32)* 10000 12000 15000 15000
64×64(×64)* 10000 12000 20000 30000

128×128(×128)* 无 12000 无 无 
批量大小 32 32 16 16 



 

输入噪声维度 128 256 8 8 
梯度惩罚权重(𝜆௚௣) 10 10 10 10 
条件损失权重(𝜆௖௢௡) 500 500 500 500 
学习率（生成器/判别

器） 
1×10-4/
1×10-5 

1×10-4/ 

1×10-4 
1×10-3/
1×10-4 

1×10-3/
1×10-3 

优化器 Adam 
a 为二元分类河流相数据集，b 为多元连续冰楔数据集，c 为二元分类岩

相褶皱数据集，d为多元连续岩相褶皱数据集，*为分辨率等级 

表 2 不同权重下的生成结果 
Table 2 Generation results under different weights 

权重值 
MS-SWD(64*) 

二维数据 三维数据(×10-3) 
a b c d 

λgp=5, λcon=400 0.023 0.036 8.05 8.91 
λgp=5, λcon=500 0.019 0.029 7.99 10.53 
λgp=5, λcon=600 0.021 0.032 8.11 9.14 

λgp=10, λcon=400 0.018 0.029 7.96 11.06 
λgp=10, λcon=600 0.021 0.027 8.03 9.72 
λgp=10, λcon=500 0.016 0.025 7.92 8.66 

a 为二元分类河流相数据集，b 为多元连续冰楔数据集，c 为二元分类岩

相褶皱数据集，d为多元连续岩相褶皱数据集，*为分辨率等级 

在确定超参数时，首先进行了预训练，通过生成样

本的真实性来确定超参数的范围，最终确定最佳的超

参数. 如表 2 所示，选取广泛验证的权重经验值进行预

训练并进行测试，得到最优的梯度权重和条件权重；由

于生成对抗网络的对抗训练性质，训练过程中容易出

现失衡，导致其中一方的训练过快，而另一方得不到充

分训练. 受 Heusel et al.(2017)提出的 TTUR (Two Time-
Scale Update Rule)启发，通过为生成器和判别器设置不

同的学习率，有助于避免训练过程中的失衡，确保生成

器和判别器的训练进程能够保持平衡. 在边界清晰的

二元分类数据集上，通过降低判别器的学习率来减缓

判别器的收敛速度，防止其过快主导训练过程，确保生

成器获得足够的梯度信息. 对于多元连续数据集，由于

判别器学习任务较为复杂，因此为生成器和判别器设

置相同的学习率，保持训练的平衡性.  

2.3 二维建模结果 
在二维建模实验中，本文提出的方法在多种地质

建模任务中展现了显著的稳定性与适应性. 通过对生

成结果的定性与定量分析，可以发现该方法在满足条

件约束的同时，生成的地质模型不仅具有完整的整体

结构和合理的属性分布，还能有效地表达空间变异性

并保持较高的统计一致性. 相比现有的 CWGAN-GP
和 QS 方法，本文方法在多样性、细节保留及复杂地质

特征的恢复方面均表现出更优的综合性能.  
从测试集中随机选取五组参考模型及对应条件数

据，分别输入至本文方法、CWGAN-GP 方法与 QS 方

法中，生成结果如图 6 所示. 可以看出，在二元分类河

流数据的建模任务中，本文方法能够清晰且准确地还

原河流相与泥岩相之间的边界，生成的河道走向和弯

曲形态与参考模型高度一致，整体结构连续且自然. 相
比之下，CWGAN-GP 方法生成的模型边界模糊，局部

区域出现了结构畸变，无法精确捕捉复杂的地质特征；

而 QS 方法虽然严格遵循条件点信息，但生成模型的空

间分布较为离散，缺乏全局连贯性. 同样的优势也体现

在多元连续冰楔模型的建模中. 所生成的冰楔模型在

边界过渡、平滑性和结构连贯性方面优于对比方法，属

性分布与参考模型更加接近，并且在多个样本之间表

现出了较好的稳定性，未出现突变或结构失真.  
为了进一步验证这些定性分析，本文通过变差函

数、连通性分析以及属性分布量化了各方法的空间结

构恢复效果. 通过 500 组测试样本的变差函数结果(图
7)量化空间点之间的差异性或变异性，变差函数越接

近说明两组数据的结构越相似，可以看出本文方法生

成的曲线与参考模型最为接近，能够较好地反映地质

体的空间异质性特征，表明其能够有效捕捉局部和全

局的空间变异性. 连通性分析(表 3)进一步表明，本文

方法生成的模型在连通区域数量与尺度分布方面更符

合真实地质结构，综合连通性表现明显优于 CWGAN-
GP 和 QS 方法. 图 8 进一步验证了本文方法生成的模

型与参考模型之间的属性分布一致性，表明本文方法 



 

图 6 二维数据集上的可视化对比图 
Fig. 6 Visualization comparison chart on two-dimensional datasets 

      图 7 二维数据集上的变差函数及其均值对比图 
Fig. 7 The contrast diagram of the variance function and its mean on the two-dimensional dataset

在多属性建模方面具有较强的能力， 验证了该方法在

处理复杂地质体时的优越性.  
此外，通过 MS-SWD 指标并结合 MDS 方法，

对生成结果在多尺度空间结构一致性方面进行深入分

析，其中，MS-SWD 可以评估两组数据在不同尺度上

的空间分布距离，而 MDS 可以将高阶统计数据投影到



 

二维空间以可视化其对应关系. 表 4 列出了不同尺度

下的 MS-SWD 距离与条件点准确率，图 9 展示了基于

MDS 降维的样本空间分布图，左侧为样本点在二维降

维空间中的散点图，右侧为对应的核密度估计等值线

图. 等值线描绘了样本集的概率密度分布，其形状和重

叠程度直观反映了两组样本在多尺度空间结构上的分

布相似性. 从结果可以看出，本文方法在不同尺度下均

取得最小的 MS-SWD 距离，生成样本在低维空间中

与参考模型高度重合，蓝色（生成）与红色（真实）点

簇之间呈现紧密分布，在保持高条件点准确率的同时，

能够在全局结构与局部细节层面均实现高度还原，体

现出良好的建模一致性与精度.  
本文方法无论在河流相的二元分类任务，还是在

冰楔的多元连续建模任务中，都展现了优异的性能，能

够有效恢复复杂地质特征，并在空间一致性、细节保留

及属性分布的还原方面优于现有方法. 定量评估和多

尺度分析进一步验证了该方法在处理复杂地质数据时

的稳定性与精度，展现了其在实际地质建模中的强大

潜力.  

表 3 二元分类河流相数据集上的连通性指标 
Table 3 Connectivity metrics on binary classification river facies 

dataset 

 连通区域（个） 
平均连通区域大小（像

素） 

参考模型 1229 475.58 

QS 2550 243.43 

CWGAN-GP 2950 195.22 

本文方法 1938 300.59 

 
 

 

图 8 多元连续冰楔数据集的属性分布柱状图和箱型图 
Fig. 8 Bar and box plots of attribute distributions for the 

multivariate continuous ice wedge dataset

表 4 二维数据集上的 MS-SWD 指标和条件点准确率 
Table 4 MS-SWD metric and condition point accuracy on the binary classification river dataset 

 二元分类河流相数据集 多元连续冰楔数据集 

 MS-SWD 
条件点准确率

MS-SWD 
条件点准确率 

 64* 32* 16* 64* 32* 16* 

QS 0.030 0.040 0.062 1 0.064 0.040 0.062 1 

CWGAN-GP 0.025 0.033 0.063 0.97 0.055 0.033 0.025 0.97 

本文方法 0.016 0.030 0.061 0.99 0.025 0.017 0.021 0.98 

*代表不同的分辨率等级，加粗字体表示同组中的最优结果 

 (a) 二元分类河流相数据集上的 MS-SWD-MDS 图        (b) 多元连续冰楔数据集上的 MS-SWD-MDS 图 
图 9 二维数据集生成结果和参考模型 MS-SWD-MDS 图 

Fig. 9 The generation results of the two-dimensional data set and the reference model MS-SWD-MDS graph

2.4 三维建模结果 
相较于二维建模任务，三维地质建模在空间结构

表达、数据维度扩展、计算效率及多尺度一致性等方面

面临更高挑战. 一方面，三维模型需同时保持横向与纵

向的结构连贯性，在建模过程中对局部细节与全局形

态的统一表达提出更高要求；另一方面，三维输入数据

的维度显著提升，增加了模型对空间感知能力与训练

稳定性的依赖. 尤其在处理复杂构造、多属性耦合及稀

疏条件信息时，往往难以兼顾建模精度与效率.  
针对上述挑战，从二元分类褶皱模型与多元连续

褶皱模型的实验结果中可以看出，本文方法在结构还

原的完整性、属性表达的连续性、条件点响应的准确



 

性、建模效率以及多尺度空间一致性等方面均优于 QS
与 CWGAN-GP 对比方法. 无论是对整体构型的还原，

还是对复杂边界与层间界面细节的精细描绘，本文方

法均展现出较高的建模能力.  
同样从测试集中随机选取 5 组参考模型的条件数

据输入至本文方法及对比方法中，建模结果如图 10 所

示. 本文方法生成的三维结构不仅能够准确还原褶皱

的全局形态，在局部细节的刻画上也表现出显著优势： 
模型的地层边界过渡平滑且连续，层理界面清晰，有效

避免了对比方法中常见的结构断裂或模糊伪影等问

题；相较之下，QS 方法虽能保持一定的条件准确率，

但在褶皱边界区域表现模糊，缺乏形态一致性，

CWGAN-GP 虽可模拟整体构型，但局部常出现断裂或

孤立结构. 
在定量评估方面，从测试集中选取 100 组样本，

XYZ 三个方向的变差函数如图 11 所示，本文方法生成

的模型在各方向均与参考模型曲线走势高度一致，尤

其在 XY 平面上方差最为接近，说明其对空间变异性

的捕捉更加准确. 连通性指标(表 5)分析也验证了模型

对结构连续性的有效保持，在连通区域数量与平均连

通区域大小方面，本文方法均最接近真实模型. 图 12 

展示了本文方法所建立模型的属性分布与参考模型的

高度相似性，这进一步证明了本方法能有效捕捉并还

原复杂地质体的属性分布特征. 进一步地，通过 MS-
SWD 对多尺度结构一致性进行评估(表 6)，本文方法

在各尺度下均取得最优结果. 此外，图 13 MS-SWD-
MDS 分布中，同样显示生成模型与参考模型在空间结

构上高度相似. 
除了建模质量，本文方法在计算效率方面也具有

显著优势. 在多个任务中，其平均建模时间远低于 QS
方法，明显快于 CWGAN-GP，展现出良好的推理速度

与扩展性，使其更加适用于大规模、高分辨率的三维地

质建模任务. 条件准确率方面，本文方法也保持在较高

水平，与 QS 方法接近，显著优于 CWGAN-GP，说明

其不仅能快速建模，还能有效响应输入条件信息，提升

模型的可信度. 
综上所述，本文提出的方法在三维建模任务中同

样表现优异，兼具高精度、高一致性与高效率. 在复杂 
地质构造的表达上展现出强大的建模能力，还能应对

高维数据的挑战，保持模型稳定性和训练可靠性，适用

于对质量与速度要求同时较高的三维地质建模场景. 

图 10 三维数据集上的可视化对比图 
Fig. 10 Visualization comparison chart on three-dimensional datasets 

图 11 三维数据集上的变差函数及其均值对比图 



 

Fig. 11 The variogram and mean comparison graph of the three-dimensional dataset 
表 5 二元分类岩相褶皱数据集上的连通性指标 

Table 5 Connectivity metrics on a binary classification 
lithofacies fold dataset 

 连通区域（个） 平均连通区域大小（像素） 

参考模型 231 42838.32 

QS 1490 6742.76 

CWGAN-GP 1980 5145.35 

本文方法 556 17814.17 

图 12 多元连续岩相褶皱数据集的属性分布柱状图和箱型图 
Fig.12 Histograms and box plots of attribute distribution in a 

multivariate continuous lithofacies fold dataset 

2.5 整体准确度和效率分析 
本节通过对准确度和效率两个方面进行分析，全

面评估生成模型的性能，以下是针对这两个方面的详

细讨论. 

2.5.1 整体准确度分析 
为进一步量化生成模型在局部点位的准确性，本

文进行了整体准确度分析. 具体而言，从每个测试样本

中随机抽取 100 个离散点作为虚拟钻孔，对比生成模

型与参考模型在这些点上的属性值一致性. 对于三维

数据，考虑其纵深特性，沿每个采样点深度方向等间距

抽取 10 个属性点，最终在每个三维测试样本中获得 
1000 个离散属性点. 针对二元分类数据集，由于其属

性为离散类别，我们采用准确率进行评估；针对多元连

续数据集，其属性值为连续变量，采用均方误差（MSE）
进行评估.测试结果如表 7 和表 8 所示，本文方法在二

元分类数据上的准确率显著高于 QS 和 CWGAN-GP，
表明其在像素级分类任务中具有最高的精度； 在多元

连续数据上的 MSE 小于对比方法，表明其在还原连续

属性值上的误差最小. 

(a) 二元分类岩相褶皱数据集上的 MS-SWD-MDS 图    (b) 多元连续岩相褶皱数据集上的 MS-SWD-MDS 图 
图 13 三维数据集生成结果和参考模型 MS-SWD-MDS 图 

Fig. 13 The generation results of the three-dimensional data set and the reference model MS-SWD-MDS graph

2.5.2 效率分析 
为验证深度可分离卷积在模型整体效率方面的优

势，在处理速度之外，补充了训练阶段的效率分析. 具
体而言，分别以标准卷积与深度可分离卷积训练模型，

并在二维与三维数据集上进行了对比实验，量化在不

同分辨率阶段训练时间、收敛轮数及计算开销方面的

差异. 结果如表 9 所示. 从表中可以看出，引入 DSC
后模型在不同分辨率阶段的单 epoch 训练时间均明显

减少，尤其在高分辨率阶段表现最为显著. 与此同时，

模型在达到稳定收敛所需的迭代次数上与标准卷积基

本一致，表明 DSC 在保持模型收敛性能的同时有效降

低了训练计算成本. 此外，在相同硬件配置下，使用

DSC 的模型在整体训练阶段的 GPU 显存同样明显下

降，验证了其在内存消耗方面的优势.  

2.6 消融实验 
为了验证所添加模块的有效性，本小节将比较所

提出方法的不同模块对最终建模性能的影响. 在本实

验中比较了基线网络、只添加多尺度特征融合模块、只

使用深度可分离卷积和同时使用多尺度特征融合模块

和深度可分离卷积的不同效果. 采用 MS-SWD 指标来

验证不同模块对建模精度的影响，采用模型参数量、模

型浮点计算次数和生成单个模型的时间来衡量模型的

计算效率，表 10 展示了在二元分类褶皱数据集下的消

融实验结果. 
根据表 10，加入 3DMSFF 模块后，相较于基线模

型，在多个尺度下的 MS-SWD 指标显著提升. 结果表

明，MSFF 模块在捕捉不同尺度的空间特征方面表现出

明显的优势，能够增强模型对复杂地质结构的感知能

力，并提高建模精度. 然而，这种提升也伴随着计算资

源的消耗显著增加. 例如，计算量从原本的 138.71G 增

加至 711.82G，生成每个样本所需的时间也从 1.77ms
大幅增加至 21.68ms，同时参数量也从 3.40M 增加至

5.58M. 上述结果表明MSFF模块在提高了模型精度的



 

同时计算效率上有一定牺牲，为了优化模型计算性能，

引入 DSC 模块. 通过引入该模块，细尺度的 MS-SWD
指标略有损失，粗尺度的 MS-SWD 指标略有提升，模

型计算量显著减少至 32.22G，模型参数量显著减少至 
表 6 三维数据集上的 MS-SWD 指标和条件点准确率 

Table 6 The MS-SWD metric and conditional point accuracy on the 3D dataset 
 二元分类岩相褶皱数据集 多元连续岩相褶皱数据集 

 MS-SWD×103 
条件点准确率 处理速度(ms/it) 

MS-SWD×103 
条件点准确率 处理速度(ms/it) 

 64* 32* 16* 64* 32* 16* 

QS 12.57 20.49 35.34 1 7000 20.59 27.28 28.77 1 7000 

CWGAN-GP 9.37 15.63 31.26 0.90 1.99 15.33 18.67 44.66 0.91 1.98 

本文方法 7.92 14.13 29.21 0.99 1.65 8.66 9.51 17.55 0.99 1.66 

*代表不同的分辨率等级，加粗字体表示同组中的最优结果 

表 7 二元分类数据集上的整体准确度 
Table 7 Overall accuracy on a binary classification dataset 

 
二元分类河流相数据集

（准确率/%） 

二元分类岩相褶皱数

据集（准确率/%） 

QS 65.38 61.41 

CWGAN-GP 68.71 65.47 

本文方法 73.24 69.48 

表 8 多元连续数据集上的整体准确度 
Table 8 Overall accuracy on multivariate continuous datasets 

 
多元连续冰楔数据集

（MSE） 

多元连续岩相褶皱数据

集（MSE） 

QS 0.033 0.066 

CWGAN-GP 0.038 0.059 

本文方法 0.024 0.047 

表 9 不同分辨率阶段的标准卷积与深度可分离卷积训练效率对比 
Table 9 Comparison of training efficiency between standard convolution and depthwise separable convolution at different resolution 

stages 

数据集 卷积类型 分辨率 平均单 epoch 训练

时间（秒） 
收敛轮数 
（epoch） 

GPU 显存占用

（GB） 
总训练时间（小

时） 

二元分类河流相数

据集 

标准卷积 

4×4 1.136 3892 3.2 1.58  
8×8 1.194 6975 4.5 3.32  

16×16 1.382 6451 6.8 3.84  
32×32 1.526 7253 9.2 4.24  
64×64 1.717 7792 12.5 4.77  

深度可分离卷

积 

4×4 0.219 3427 2.8 0.30  
8×8 0.347 6684 2.5 0.96  

16×16 0.562 7092 3.8 1.56  
32×32 0.694 6934 5.2 1.93  
64×64 0.936 7529 7.1 2.60  

多元连续冰楔数据

集 

标准卷积 

4×4 0.945 4134 3.5 1.31  
8×8 1.162 8697 5.1 3.87  

16×16 1.321 8231 7.6 4.40  
32×32 1.584 9053 10.2 5.28  
64×64 1.652 9837 14.3 5.51  

128×128 1.838 10461 20.5 6.13  

深度可分离卷

积 

4×4 0.416 4074 2.1 0.58  
8×8 0.543 8453 3.2 1.81  

16×16 0.694 9879 4.5 2.31  
32×32 0.829 8125 6.3 2.76  
64×64 0.987 8396 8.7 3.29  

128×128 1.125 9837 12.4 3.75  

二元分类岩相褶皱

数据集 

标准卷积 

4×4×4 1.076 4657 3.3 1.79  
8×8×8 1.227 9672 4.7 5.11  

16×16×16 1.594 10245 7.2 6.64  
32×32×32 1.817 11476 9.5 7.57  
64×64×64 2.178 15783 13.1 12.10  

深度可分离卷

积 

4×4×4 0.347 5247 1.9 0.58  
8×8×8 0.424 9782 2.7 1.77  

16×16×16 0.754 10347 4.1 3.14  
32×32×32 1.189 9978 5.5 4.95  
64×64×64 1.515 12267 7.8 8.42  

多元连续岩相褶皱

数据集 

标准卷积 

4×4×4 1.272 5127 3.7 2.12  
8×8×8 1.715 11276 5.3 7.15  

16×16×16 1.987 12378 8.3 8.28  
32×32×32 2.142 11786 10.8 8.93  
64×64×64 3.267 13275 15.2 18.15  

深度可分离卷
4×4×4 0.594 4937 2.3 0.99  
8×8×8 0.772 9834 3.4 3.22  



 

积 16×16×16 1.171 10276 4.8 4.88  
32×32×32 1.481 12176 6.7 6.17  
64×64×64 1.490 12976 9.2 12.42  

表 10 不同组件的消融实验分析 
Table 10 Ablation experimental analysis of different components 

Baseline 3DMSFF 3DDSC 
MS-SWD×103 

参数量(M) 
浮点计算次

数(G) 

处理速度

(ms/it) 64 32 16 

√   8.35 16.36 31.54 3.40 138.71 1.77 

√ √  7.81 14.28 28.79 5.58 711.82 21.68 

√ √ √ 7.92 14.13 29.21 0.25 32.22 1.65 

表 11 不同数据集下的不确定性量化指标 
Table 11 Quantitative indicators of uncertainty under different data sets 

  MS-SWD (均值) MS-SWD (方差) 95%置信区间 P 值 

二维数据集 
二元分类河流相数据集 0.048 4.1e-05 [0.045, 0.051] 0.34 
多元连续冰楔数据集 0.024 1.8e-05 [0.022, 0.026] 0.47 

三维数据集 
二元分类岩相褶皱数据集 27.86 4.56 [26.86, 28.86] 0.40 
多元连续岩相褶皱数据集 15.14 1.64 [14.54, 15.74] 0.51 

0.25M，生成每个样本所花费的时间由 21.68ms 减少至

1.65ms. 结果表明，DSC 模块在保证较高精度的同时，

能够有效减少计算资源消耗，优化模型的计算效率. 
DSC 的引入使得 MSFF 和 DSC 两个模块有机结合，

使得该模型在建模精度和建模时间上达到平衡，在

实际应用过程中展现出了较大的潜力，特别是在计

算资源有限的情况下可以有效提升模型的实用性和

响应速度. 

2.7 不确定性评估 
为了进一步验证所提生成模型的可靠性，本节对

模型的输出进行了不确定性评估. 我们对模型进行了

20 次独立的随机测试，每次从测试集中抽取 100 组样

本进行生成. 记录每次测试的 MS-SWD 值，并对其进

行统计分析，计算置信区间、方差等不确定性量化指

标，如表 11 所示.  
根据表中数据，所有数据集的方差都处于较低水

平，表明模型在多次独立测试中的输出结果高度集中，

波动性较小；其次，95%置信区间为模型的平均性能提

供了一个可靠且明确的范围，印证了我们对模型性能

评估的精确性；并且所有数据集的方差分析 p 值均远

大于 0.05 的显著性水平，表明不同测试之间的均值没

有统计学上的显著差异，验证了模型结果在不同随机

条件下的高度可复现性. 这些统计指标说明所提模型

在重复实验中始终保持稳定的输出质量，具有良好的

鲁棒性和可靠性.  

3 讨论 

3.1 与前沿方法的比较分析 
当前，深度学习技术的快速发展，各类创新性方法

层出不穷，极大地丰富了复杂地质体建模的方法. 在这

些方法中，扩散模型（Diffusion Models）凭借其迭代去

噪的生成机制，具备生成高真度和多样化的能力，尤其

在解决模型崩塌和提升样本质量方面潜力巨大。条件

生成对抗网络（CGAN）作为一种重要的生成模型，其

通过整合多源地质约束条件，能够实现对地质体生成

过程的精确引导与定制化建模，通过引入更复杂的架

构，能够进一步提升生成质量和训练稳定性. 它能快速

生成大量符合特定条件的地质实现，在地质建模中具

有广泛应用 . 此外，隐式神经表达（Implicit Neural 
Representations, INRs）通过小型神经网络将三维地质

属性场表示为连续函数，能够摆脱传统网格分辨率的

限制，实现地质体的高精度、连续化重建. INRs 在紧凑

编码复杂地质结构和支持多尺度建模方面表现突出，

尤其适用于需要高精度重建和灵活查询的地质应用. 
本文所提出的方法，作为一种基于多尺度特征融

合和深度可分离卷积的渐进式生成对抗网络架构，其

核心创新在于实现了高效与高保真重建复杂地质结构

特征与拓扑关系的优异平衡. 通过对深度可分离卷积

（DSC）的引入与优化，本方法显著提升了计算效率，

在确保高质量生成效果的同时，为快速生成多样的地

质实现以支持不确定性分析和实时地质建模决策提供

了一条有效途径. 相较于扩散模型和隐式神经表达通

常较高的迭代计算成本，本方法在实时生成方面展现

出显著优势；同时，其在处理具有复杂非线性结构和精

细局部细节恢复的地质体时，能够提供高效率、高精度

的解决方案，尤其适用于对生成速度有较高要求的实

际应用场景. 这种对效率与精度的兼顾，使本研究在当

前地质建模方法中具有独特的价值.  

3.2 矿产预测应用前景 
矿产预测的核心目标是在多源观测数据（钻孔/测

井信息、地球物理异常信息、地质解释成果等）的共同

约束下，重建控矿构造—岩相组合的多尺度三维空间

格局，并据此对潜在矿化有利区开展概率化评价与靶



 

区圈定. 与传统依赖单一数据或静态解释的建模方式

相比，矿产预测更强调在数据约束、地质规律、空间不

确定性三者之间取得平衡：既要满足硬数据约束，又要

保留合理的地质连通性、空间统计特征与多尺度构造

形态，从而支撑后续资源风险评估与工程决策. 
本文提出的基于多尺度特征融合和深度可分离卷

积的生成对抗网络地质建模框架为上述需求提供了一

种可行的建模路径，其优势在于能够实现条件约束信

息和复杂地质模式的端到端映射. 一方面，渐进式生成

策略与多尺度特征融合模块可同时刻画区域尺度构造

形态与局部细节结构，更贴合矿化受多尺度地质因素

协同控制的客观规律；另一方面，条件特征融合机制能

够将稀疏井点等硬约束有效注入生成过程，使生成的

三维结构在满足观测条件的同时保持连通性与空间统

计一致性. 进一步地，深度可分离卷积带来的计算效率

优势，使该框架更适配矿产预测中多套地质实现体快

速生成到不确定性量化的典型流程：通过批量生成多

套满足观测约束的三维地质实现体，可统计控矿结构

与有利岩相组合的出现概率、空间稳定性及其不确定

性分布，从而为靶区优选、风险评估与后续布孔决策提

供更具可解释性的先验支撑与量化依据.  

3.3 局限性与展望 
尽管本研究在实现高效高保真地质建模方面取得

了一定进展，但还存在一些局限性可以作为进一步研

究的方向： 
(1) 本文提出的多尺度特征融合机制在提高建模

精度方面发挥了重要作用，但地质模式的多尺度耦合

仍有进一步优化的空间 . 未来的研究可以结合

Transformer 的长程依赖建模能力和扩散模型的渐进式

生成优势，通过交叉注意力机制设计跨尺度特征交互

模块，从而在生成过程中逐步优化地质结构的全局形

态与局部细节. 同时，可以探索将物理约束方程隐式嵌

入网络中，实现数据驱动与物理机理的协同建模，提升

模型的物理一致性和泛化能力； 
(2) 本研究聚焦于地质模型的高保真重建，但在软

硬数据协同建模方面仍有进一步研究的空间. 未来可

以探索软硬数据协同建模框架，以应对硬数据稀疏性

与软数据不确定性并存的挑战. 具体可以设计异构数

据融合机制，利用概率图模型或贝叶斯深度学习方法，

量化软数据的不确定性并动态校准其与硬数据的权重

关系；同时，可以引入多任务学习，优化软数据解译精

度（如地震反演结果修正）并同步生成地质模型；此外，

利用地质知识图谱或专家规则库，将领域先验嵌入生

成过程中，进一步提高模型在面对模糊软数据时的鲁

棒性； 
(3) 本方法在效率与精度上表现出显著优势，但其

在大规模和真实地质数据应用中的潜力尚未得到充分

验证. 未来研究可以将该方法应用于更大尺度和更复

杂的地质数据集，尤其是实际矿区数据，并探索与实时

地质导向、动态储量评估等决策系统的深度融合，推动

智能地质建模技术在工业级应用中的实际落地.  

4 结论 

为实现快速准确的地质建模，本文考虑地质结构

不同尺度的地质模式和建模效率，创新性地提出了基

于多尺度特征融合和深度可分离卷积的生成对抗网络

地质建模方法，并在多种数据集下对所提方法进行了

效果验证. 本文得到的主要结论和结果有： 
（1）在二维与三维等多类典型地质场景的对比实

验 中 ， 本 文 方 法 在 变 差 函 数 、 连 通 性 、

MS-SWD/MS-SWD-MDS 及属性分布等多维指标上均

显著优于 QS 和 CWGAN-GP 方法，能准确地还原复杂

地质体的空间统计特征与结构形态； 
（2）通过条件特征融合模块，能高效融入测井等

硬数据约束，保证了生成模型不仅在宏观结构上与真

实地质情况一致，还能在局部精确还原已知信息，从而

生成具有高保真度和结构完整性的地质模型； 
（3）消融实验、效率分析与不确定性评估结果表

明，多尺度特征融合与深度可分离卷积在兼顾建模精

度与效率方面具有显著优势，模型能够在毫秒级实现

稳定高效建模，并在多次随机模拟中保持较低波动性

和较高统计稳定性，展现出良好的鲁棒性与工程应用

潜力.  
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