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Abstract Complex geological structure modeling holds significant importance in fields such as resource exploration, underground
engineering design, and geological hazard prediction. Generative adversarial networks (GANs) have demonstrated strong nonlinear
modeling capabilities and pattern transfer abilities in geological modeling. However, when dealing with complex geological constraints
and the reconstruction of fine structures, they still face challenges in modeling accuracy, structural connectivity, and modeling efficiency.
To address these issues, this paper proposes a GAN-based geological modeling method incorporating multi-scale feature fusion and deep
separable convolutions. A multi-scale feature fusion module enhances the expression of geological structure details and overall
consistency, while deep separable convolutions reduce model parameters and computational costs, improving modeling efficiency.
Additionally, a conditional feature adaptive fusion and progressive resolution generation strategy enhances the model's sensitivity to
conditional data. To validate the method's effectiveness, typical models including two-dimensional river phases, multi-attribute ice
wedges, and three-dimensional fold structures were selected. Systematic evaluations were conducted across spatial variability,
connectivity, attribute consistency, and conditional point reconstruction accuracy. Comparative analyses were performed against multi-
point statistical methods (QS) and an improved generative adversarial network (CWGAN-GP). The results show that at resolutions of
64x64 and 64x64x64, the MS-SWD indicators of the generated models for the two-dimensional and three-dimensional datasets are
0.016, 0.025, 0.0079, and 0.0087 respectively, which are significantly lower than those of the comparison methods. At the same time,
the average connected region size of the generated models is closest to that of the reference model (300.59 pixels for the two-dimensional
river data and 17814.17 pixels for the three-dimensional fold data). In terms of overall accuracy, the accuracy rate and MSE indicators
of the proposed method are superior to those of the comparison method (73.24%, 69.48% and 0.024, 0.047 respectively), and the
advantages in efficiency and parameter quantity are proved through efficiency analysis and ablation experiments. The experiments show
that the proposed method significantly improves the modeling efficiency while ensuring reasonable and high fidelity, and is suitable for
efficient modeling tasks of complex non-stationary geological bodies, with broad engineering application prospects.
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Fig. 1 Overall framework design of geological modeling method based on multi-scale features and depthwise separable convolution
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Fig. 2 Structure diagram of conditional data feature fusion
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Table 1 Hyperparameter Settings

jlES e
A YRR =Y

a b c d
4x4(x4)" 5000 5000 6000 6000
8x8(x8)" 10000 12000 15000 15000
16x16(x16)" 10000 12000 15000 15000
32x32(x32)" 10000 12000 15000 15000
64x64(x64)" 10000 12000 20000 30000

128x128(x128)" I 12000 I I

E{1A= NN 32 32 16 16



N P YR 128 256 8 8

BRREIE VAL E (A) 10 10 10 10
FMARRAE (Aeon) 500 500 500 500
)R (R R 1x10%  1x10%  1x10%/  1x10%/
ELS) 1x10° 1x10%*  1x10*  1x107

b 2% Adam

A ICS AR, © R OESIKBEIRE, <N —Je R
HRAEARSE, ¢ N ZTESE RS, NP
R 2 ANFIBUE T A A R

Table 2 Generation results under different weights

MS-SWD(64%)

EXE i =R (<107)
a b c d

Agp=5, Acon=400 0.023 0.036 8.05 891
Agp=5, Acon=500 0.019 0.029 7.99 10.53
Agp=5, Acon=600 0.021 0.032 8.11 9.14
Agp=10, Acon=400 0.018 0.029 7.96 11.06
Agp=10, Acon=600 0.021 0.027 8.03 9.72
Agp=10, Acon=500 0.016 0.025 7.92 8.66
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Fig. 6 Visualization comparison chart on two-dimensional datasets
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Table 3 Connectivity metrics on binary classification river facies

dataset

FEEE XN (B
HEEX R ()

)
SR 1229 475.58
QS 2550 243.43
CWGAN-GP 2950 195.22
AIT5i 1938 300.59
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Fig. 8 Bar and box plots of attribute distributions for the

multivariate continuous ice wedge dataset
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Table 4 MS-SWD metric and condition point accuracy on the binary classification river dataset

ZIUAr S AR R % JUE BRI 5
MS-SWD ) MS-SWD o
Sl R R A L 2
64* 32% 16* 64* 32% 16%
Qs 0.030 0.040 0.062 1 0.064 0.040 0.062 1
CWGAN-GP 0.025 0.033 0.063 0.97 0.055 0.033 0.025 0.97
AT 0.016 0.030 0.061 0.99 0.025 0.017 0.021 0.98
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Fig. 9 The generation results of the two-dimensional data set and the reference model MS-SWD-MDS graph
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Fig. 10 Visualization comparison chart on three-dimensional datasets
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Fig. 11 The variogram and mean comparison graph of the three-dimensional dataset
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Table 5 Connectivity metrics on a binary classification
lithofacies fold dataset
HEEXI (D) FEEE KA (BFD

SRR 231 42838.32
QS 1490 6742.76
CWGAN-GP 1980 5145.35
AT 556 17814.17
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*® 0,008 l 8 =
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0.002 d 7
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Fig.12 Histograms and box plots of attribute distribution in a
multivariate continuous lithofacies fold dataset
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Fig. 13 The generation results of the three-dimensional data set and the reference model MS-SWD-MDS graph
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Table 6 The MS-SWD metric and conditional point accuracy on the 3D dataset

TR ICE IR AR A 2 CIE S MIRE AR 4R
MS-SWDx103 i MS-SWDx103
KU SRR ARFLEE (ms/it) FAF AR AOPLEEE (ms/it)
64 32% 32% 16%
Qs 1257 2049 3534 1 7000 2059 2728 2877 1 7000
CWGAN-GP 937 1563 31.26 0.90 1.99 1533 18.67  44.66 0.91 1.98
AT 7.92 1413 29.21 0.99 1.65 8.66 9.51 17.55 0.99 1.66

FRENFII D PRSI T EOR R A T § et s
RT oo KA LR AR AER

Table 7 Overall accuracy on a binary classification dataset

R 8 ZouELLHERE LB AR HERE

Table 8 Overall accuracy on multivariate continuous datasets

TG RTIA SR n o AR A £ TGSV 42 % TR AR R R
CHEWZE/%) Pl (AEWIZ/%) (MSE) # (MSE)
Qs 65.38 61.41 QS 0.033 0.066
CWGAN-GP 68.71 65.47 CWGAN-GP 0.038 0.059
KL T5 73.24 69.48 ATk 0.024 0.047

R 9 AR R BRIARHEE RS R T 7 B BRI ZRAR R

Table 9 Comparison of training efficiency between standard convolution and depthwise separable convolution at different resolution

stages
" o, e P-4 8 epoch Il 25 Wit 3 GPU &A% 5 SONGRRE ] O
144 71 YA 3>
BdRaR BRRA o RGP (epoch) (GB) i)
4x4 1.136 3892 32 1.58
8x8 1.194 6975 45 3.32
FrifE AR 16x16 1.382 6451 6.8 3.84
32x32 1.526 7253 9.2 424
v I B T A4 64%64 1.717 7792 12.5 477
JERAE 4x4 0.219 3427 2.8 0.30
S R T N 8x8 0.347 6684 25 0.96
”"Emu“\ At 16x16 0.562 7092 3.8 1.56
7 32x32 0.694 6934 52 1.93
64%64 0.936 7529 7.1 2.60
4x4 0.945 4134 35 131
8x8 1.162 8697 5.1 3.87
s 16x16 1.321 8231 7.6 4.40
FRAEER 32x32 1.584 9053 10.2 5.28
64x64 1.652 9837 143 5.51
% JUIE SR 128x128 1.838 10461 20.5 6.13
g 4x4 0.416 4074 2.1 0.58
8x8 0.543 8453 32 1.81
R85 16x16 0.694 9879 45 231
o 32x32 0.829 8125 6.3 2.76
64x64 0.987 8396 8.7 3.29
128x128 1.125 9837 12.4 3.75
4x4x4 1.076 4657 33 1.79
8x8x8 1.227 9672 47 5.11
FrifEB A 16x16x16 1.594 10245 7.2 6.64
32x32x32 1.817 11476 95 7.57
ZILAT A AHRE 64%x64x64 2.178 15783 13.1 12.10
it 4x4x4 0.347 5247 1.9 0.58
o RE T 25 T 8x8x8 0.424 9782 2.7 1.77
’*Eﬂf\%% 16x16x16 0.754 10347 4.1 3.14
o 32x32x32 1.189 9978 55 4.95
64%64%64 1.515 12267 7.8 8.42
4x4x4 1.272 5127 3.7 2.12
8x8x8 1.715 11276 53 7.15
e g o b PR 16x16x16 1.987 12378 8.3 8.28
%E&.?;Ef%% 32x32x32 2.142 11786 10.8 8.93
Huige 64%64%64 3.267 13275 15.2 18.15
et A s 4x4x4 0.594 4937 23 0.99
RECTT O B 8x8x8 0.772 9834 3.4 3.22




F 16x16x16 1.171
32x32x32 1.481

64x64x64 1.490

10276 4.8 4.88
12176 6.7 6.17
12976 9.2 12.42

R0 AR R SE 56 2 B

Table 10 Ablation experimental analysis of different components

MS-SWDx103 B EIHEIR b3 I E
Baseline 3DMSFF 3DDSC ZH (M)
64 16 #(G) (ms/it)
8.35 31.54 3.40 138.71 1.77
7.81 28.79 5.58 711.82 21.68
\ v 7.92 29.21 0.25 32.22 1.65
F 11 AEHIEE T WA E RGBSR
Table 11 Quantitative indicators of uncertainty under different data sets
MS-SWD ($#41H) MS-SWD (J5 %) 95% 15 [X [A] P1E
— MR Loy FE AR R 0.048 4.1e-05 [0.045, 0.051] 0.34
- % TUIE LR UKL E AR 0.024 1.8e-05 [0.022, 0.026] 0.47
YA IO MRE AR AR 27.86 456 [26.86, 28.86] 0.40
- - % TCIE LA AR RR G AR 15.14 1.64 [14.54, 15.74] 0.51

0.25M, A= BAEEANFEAR T AE 27 (P ] H 21.68ms 187> 22
1.65ms. 25K, DSC HEHRAE LRUERE ks FE R R I
REGS AT R0 T S IR RE, PRABEEY ) TH SRR
DSC f#15] A {115 MSFF #1 DSC Wi M A N4 S,
S 5% A TR AE ARG P AN AN B) b0k 3P, fE
SEBRRL AR R 7RO 71, Rl e
SGHIRA BR (G LR AT DA R LAY 1 S A 4 A
M 37 33 2

2.7 T MITE

N T HE— B IR AE BT IR A AR T SR, AT
R (4 BEAT T ORHA E VA . BRI AT T
20 JMAST IBEHLINAR, A5 R RS Rl Y 100 ZHAF
ARFAT AR, ISR MS-SWD {H, FFxf ik
TGN, HHEGXE. FESAWEEEIE
bR, W 11 fros.

R R EIE, B SRS 1 5 2 50 TRk
-, RABALLE 2 YOMST IR 14 A R R A,
BRI HIK, 95% B A7 X [ AR ) S 41 A 52
HET — AP SE B ERYE R, EOUE T AT 1 e
VbR R Y JF BT SRR 7 2T p (H3z
KF 0.05 (EZ AT, RARIMGZ 8 131 %
Bt EMEEER, W 7R L R AEAFFEHL
KA T I X e G AR b U B BT R A A
TEE G S P IR AR R e N R &, B R
SRR ] gk

3 g
3.1 SEIAA AR
T, TR ST AR TSR R, &R

JEHATS, RS 7R e AR B vk, R
Lervkdn, FERAY (Diffusion Models) & H &R 2%

Nk PR A RO, B AR s LR AN 2 R RE ), DU
TE AR AR Y 3 SR AN TR AR o &7 T ST ER . S
AT 2% (CGAND /FA—Fh B 1) A il A,
IS B A 2 YR 2 AR, RE NS ST 5T A4 AR B
BRG] TS E R, BT I N S
¥, Beig it — AR B A ZRRsE M. e R TR
AR K B R A 2R I BT S B, 7R b A A B
BITZRH. A, BRAMAEERE (Implicit Neural
Representations, INRs) I8zt /)]s HY 41 25 X £ 45 — 4 1 Jig
JE AR IR BB R, BRI IR AL S8 S 2 HE
PR, SCELHB G A 1) Sks B S B S 2. INRs 7E'R 3
Y hi 5 2% b 5T 25 R RN SCRF 22 ROBE SRR 7 TH R IR
U IE T 75 22 v R P B R R I A0 [ b ot B A

AP E T, AFR— R T 2 RO RFE Rl
BRI AT 73 B8 A R T 0E 0 A SO T ) 48 28K,
T2 BIHTAE TSI T 280 e O B 5 e Jo 45 4
FRAOE S 0 50 2 B0 S P4l 3 0 6 IR B2 T 43 B 5 AR
(DSC) MIGINEMAL, AT RZERTT T iHEACE,
FERROR 15 S50 5 AR AR (R (RTINS Ay bR AR Bl 22 A 1) 3
Jo7 S B LA SCHRFANTA 7 4 43 A 60 SIZ B i Joig A ARE e SR it
T A RORE. BT RO A AR U 2 Rk
BRI REATE A, AT VAR SN AR BT TR IR
R ZE AL H RN, AR AT 57 A AR M S5 1 AR
A Ry AT IR R BRI, BRI R L R
HIRR TG %6, JUFE F T30 AR s s B A A v SR I s
BRI S5, X 2438 5 K, BE ) et , {5 A TR AE Y
HIT 5T A 7V A MR I 1A

3.2 W RN AR =

B 7= P A% 0o H b 2 15 22 PRI b L/
HAEE L HERY B S L R R R SR A 13 [
AR, BEEETWIE—S A2 RE = 48250
M IRy, IR TR A R X T R AL AN S



DX Bl . 55 0 gt o — a0 ol e S AR 1 A =X
FAEL, B 7= 0 56 A 7E B A A S . SR
et =3 2 [0 A5 P4l v AR T 200, &
{REE A PR EIE I . 2SI SRR S 2 R ki
TS, IS4 Ja SR Bl B AL 5 T AR 3k,

AR SCHR H 3T 22 X RE R AIE il RO 7T 43 1 4
TP A T 7T D09 285 1 5 A AR 40 TR T R 2l T —
FHATAT AL AR, HARATE T RE 08 SEIL 2K A 200K A5
SR Zp bt A P s B S Bt — D T AR R
SR 55 22 RRERRAE A A A e T ) e 221 o X 45 R Ry i
RS RN g, HEWEAT 1052 22 RO 5 R 2
PRI R 53— 5T, SRR E R A L BE
K s L A S ) TR R N A R R, A R
O G A S A UL 2% A ) R B R R i S 2 1R B
L2 U T b 75 L Y NS4 e e 2 57 R =
M3, (FIZHELL S E LA 7 T 22 2 Hh s SEBRAAR BR
AR BN s M A SR R B A
B I Z R = SRR Se B, AT SR S5
SEREMAS K HIMESR, et LA E
PRI, T ABE X ARk KR Al 5 5 S FL e S R
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33 ERMSERE

U AT FEAE S B i 200 v o B b o By T LA
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(1) ASCHRE 22 R RRAE Rl A WL S 7 37 vy A
KSR T R T EEAEA, HM AR Z REME
Vi A5 3k — B AL 2 ). R R W5 AT DL &
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A AR, B AT R LB R AR RS
PR, T 7 2B S A A5 A 1k b 5 45 440 1 4 =) T
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(2) ASHF TR AT HU B 1 R E 2, EAEK
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