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Abstract: Tailings reservoirs are high-risk areas for the migration and accumulation of heavy
metals, and vegetation under stress exhibits pronounced spectral and canopy structural
responses.This study integrates airborne hyperspectral imagery and LiDAR point-cloud data to
construct a multi-source feature set, extracting a total of 112 spectral and three-dimensional
structural parameters. Key features were further reduced to 10 through correlation analysis and the
ReliefF method, and multiple inversion models were established for comparison.The results
indicate that multi-source feature fusion captures Pb stress characteristics from both physiological
and structural perspectives and significantly enhances the model’s ability to represent complex
pollution signals, with the ReliefF—RF model achieving the best performance. Spatial inversion
results show that high Pb concentrations are mainly distributed within the first and second tailings
reservoirs and in low-lying areas along their southeastern margins, which are highly consistent
with terrain flow paths. The proposed approach provides a feasible technical pathway for
heavy-metal pollution monitoring and ecological risk assessment in tailings areas.
Keywords: hyperspectral remote sensing; heavy metal pollution; tailings monitoring; feature
optimization; ReliefF-RF
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Figure 1. Overview of the study area
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Table 1. Specifications of the airborne hyperspectral-LiDAR system
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Figure 2. LiDAR point cloud distribution of the study area
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Figure 3. Schematic of airborne hyperspectral-LiDAR integrated data acquisition
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Figure 4. Spectral Data Acquisition of Stressed Vegetation
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Figure 5. Comparison of Spectral Characteristics Between Primary Vegetation and Healthy Vegetation at the

Yueliangbao Tailings
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