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基于可解释机器学习的库岸滑坡位移预测研究 
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摘要：库岸滑坡位移是评估边坡稳定性和实现精准预警的关键指标，但受水库水位周期性涨落的影响，其位移过程常呈现

阶梯式变化，给建模预测带来较大挑战。为此，本文提出一种融合信号分解、深度学习与模型可解释性的滑坡位移预测方

法。首先，采用改进的完全集合经验模态分解自适应噪声法（ICEEMDAN）对位移信号进行分解，有效剥离高频周期项与

低频趋势项，缓解模态混叠问题并保留多尺度特征；其次，引入双向门控循环单元（BiGRU）模型，分别对各分量进行建

模与逐点预测，提升了对滑坡位移的前后依赖关系及突变响应的刻画能力；最后，借助 SHAP（SHapley Additive 

exPlanations）方法解释模型预测结果，揭示了历史与当前水库水位、降雨量及近期位移趋势等关键特征在不同监测点的影

响差异。案例研究表明，该方法在 RMSE、MAE、MAPE 和 R² 等评价指标上较传统分解方法（EMD、EEMD、

CEEMDAN）提升超过 20%，BiGRU 在 YY209 监测点实现了 R² = 0.992、MAE = 3.617 mm 的预测精度，SHAP 分析结果进

一步增强了模型的物理可解释性。本研究提出的预测框架兼具精度与透明度，为库岸滑坡风险监测与预警提供了新的技术

支撑。 
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Abstract: Landslide displacement is a key indicator for evaluating slope stability and implementing early warning measures. However, 
under the influence of cyclic reservoir water level fluctuations, displacement often exhibits step-like patterns, posing significant 
challenges for accurate modeling and prediction. To address this, we propose an interpretable machine learning framework for landslide 
displacement forecasting. The framework first employs an improved Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (ICEEMDAN) to decompose displacement signals into high-frequency cycles and low-frequency trends, effectively 
mitigating mode mixing while preserving multi-scale features. Then, a Bidirectional Gated Recurrent Unit (BiGRU) model is used to 
predict each component, leveraging bidirectional context and a lightweight gating mechanism to capture both long-term dependencies 
and abrupt changes triggered by rainfall. Finally, SHapley Additive exPlanations (SHAP) are applied to interpret the model outputs, 
identifying key drivers such as historical and current reservoir levels, cumulative rainfall, and recent displacement trends, with site-
specific differences across monitoring points. Case studies demonstrate that ICEEMDAN improves RMSE, MAE, MAPE, and R² by 
over 20% compared to traditional decomposition methods (EMD, EEMD, CEEMDAN). The BiGRU model achieves high prediction 
accuracy (e.g., R² = 0.992 and MAE = 3.617 mm at YY209), while SHAP enhances the transparency and physical interpretability of 
the predictions. Overall, the proposed framework combines high accuracy with interpretability, offering a promising approach for 
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reservoir landslide early warning and risk management. 
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0 引言 
在大型水库的正常运行过程中，水位的周期性变动叠加强降雨，极易诱发大量库岸滑坡 (蒋水华等, 

2024 , Tehrani et al., 2022 , Zhang et al., 2025)。随着水库运行周期的持续推进，滑坡事件的数量和规模也

呈现不断上升的趋势。作为地质灾害链的起始环节，库岸滑坡不仅本身具有破坏性，还可能引发堰塞坝、

涌浪等次生灾害，造成严重的生命财产损失 (李东阳等, 2023 , Ma and Mei, 2021)。例如，2003 年长江三

峡水库的将坪滑坡，体积约 2400 万立方米，诱发大规模涌浪，严重威胁航道通行和沿岸居民的生命财产

安全，部分房屋甚至因此损毁 (刘艺梁等, 2022)。更早的案例发生在20世纪60年代的意大利瓦伊昂水库，

水库蓄水后山体突发滑坡，导致约 5000 万立方米的水从大坝溢出，灾难性洪水瞬间吞没下游村镇，造成

约 2000 人死亡，成为历史上最严重的水库滑坡灾害之一 (肖诗荣等, 2023)。斜坡位移是滑坡失稳过程中的

关键前兆指标，精确预测其变化对于风险防控和灾害预警具有重要意义 (冯谕等, 2025)。然而，水库诱发

滑坡通常受水位涨落、降雨强度和历史变形等多因素驱动，位移过程呈现出非线性与阶梯状特征。这种

复杂性严重制约了传统模型的预测能力，也对滑坡早期识别与预警提出了巨大挑战。 
库岸滑坡位移预测的主要方法包括物理模型和数据驱动模型 (邓李政等, 2023)。物理模型通过模拟地

质力学和水文过程，能够详细反映滑坡的物理机制 (Zhang 等., 2024 , 贺旭荣等, 2024) 。然而，其构建和

应用需要大量现场数据和实验验证，过程耗时且成本高昂，限制了其在滑坡位移预测中的及时性和准确

性 (张泰丽等, 2023)。相比之下，数据驱动模型依托机器学习技术，能够快速处理大量数据，具有较高的

预测精度和灵活性 (Meng et al., 2024b , 郭子正等, 2024 , Dou et al., 2025) 。数据驱动模型不仅大幅降低预

测的时间与成本，还有效增强滑坡灾害的预警与应对能力 (Meng et al., 2024a , Dou et al., 2023)。 
在数据驱动模型方面，研究主要包括数据处理、模型训练与预测结果解释三个环节。其中，在数据

处理阶段，滑坡位移预测的关键在于在考虑外部环境影响的基础上，提高对未来变形趋势的识别能力 (陈
铭熙等, 2024)。然而，滑坡位移的时间序列数据通常具有非平稳性，并伴随大量噪声，这一特性显著削弱

了机器学习模型的预测精度 (刘勇等, 2023)。为应对这一问题，越来越多的研究引入数据分解技术，以缓

解非平稳性并去除高频干扰 (Wang et al., 2023 , Xiang et al., 2024)。近年来，经验模态分解（EMD）算法

因能够将滑坡累积位移自适应地分解为趋势项与周期项，在处理复杂非平稳信号方面表现出一定优势 (Ma 
et al., 2023)。然而，EMD 在实际应用中仍存在残余噪声大、模态混叠严重等问题，导致所提取特征存在

冗余和失真，影响了后续建模的准确性与稳定性。因此，提升分解算法的鲁棒性与特征提取能力，成为

当前滑坡位移预测中亟需突破的关键技术瓶颈。 
在模型训练方法方面，深度学习算法因能有效刻画滑坡累积位移与时间之间的复杂非线性关系，已

被广泛应用于滑坡预测研究中 (许强等, 2022)。例如，循环神经网络（RNN）被用于位移时间序列建模 
(Ge et al., 2024)，但由于其存在梯度消失、收敛速度慢和参数调优依赖人工等问题，导致预测性能受限。

为克服这些不足，长短期记忆网络（LSTM）被引入滑坡预测中，取得了更好的预测效果 (邢保印等, 
2023)。然而，传统 LSTM 模型在处理多变量输入时存在一定局限。一方面，其难以充分挖掘环境变量

（如降雨、水位等）与位移之间的时序依赖关系；另一方面，在高维输入下模型易陷入局部最优或发生

过拟合，限制了其泛化能力和预测精度的进一步提升。因此，亟需引入结构更高效、适应性更强的时序

建模框架，以增强模型对多源异构输入的学习能力，并提升其在复杂滑坡场景下的预测鲁棒性。 
在结果解译方面，库岸滑坡位移预测模型不仅需追求高精度，更应注重模型输出的可解释性。当前

多数研究仍偏重于预测精度的提升，尤其是在面临水位波动、降雨强度和历史位移等因素共同驱动、位

移过程呈显著非线性趋势的情境下。然而，在多输入变量的综合作用分析中，现有方法往往采用

Spearman 相关系数（SCC）或 Pearson 相关系数（PCC）等统计手段，仅能评估单一变量与位移的线性关

系 (Xiang et al., 2024)，难以揭示多因素之间的非线性耦合机制及其对模型预测的协同影响。缺乏对特征

贡献机制的深入理解不仅限制了模型在实际应用中的信任度，也削弱了其对滑坡物理机制的反馈能力。

因此，引入面向解释性分析的工具，如 SHAP、LIME 等，可为模型“黑箱”输出赋予可理解的结构，有助

于实现预测结果与地质过程之间的逻辑对应，从而提升模型在滑坡风险识别与管理中的实用价值。 



 

为此，本文提出一种融合可解释性与高精度的滑坡位移预测模型。首先，采用改进的自适应噪声完

全集合经验模态分解（ICEEMDAN）算法对原始滑坡位移序列进行分解，有效提取周期性与趋势性特征，

缓解数据的非平稳性与噪声干扰；随后，引入双向门控循环单元（BiGRU）模型，利用其在捕捉时间序

列前后依赖关系方面的优势，实现对各分量的高精度预测；最后，结合 Shapley 加法解释（SHAP）方法

对模型输出进行解释，量化多输入因素（如水位、降雨与历史位移）对预测结果的相对贡献。该方法为

滑坡灾害的风险评估与预警响应提供了更加科学、可靠的技术支撑。 

1 研究方法 
为实现对滑坡位移的精准建模，本文构建了一个集特征提取、模型训练与结果解释于一体的方法。

研究方法包括四个主要步骤：首先，采用改进的自适应噪声完全集合经验模态分解（ICEEMDAN）算法

对原始滑坡位移序列进行分解，提取周期与趋势特征（见第 1.1 节）；其次，引入双向门控循环单元

（BiGRU）模型对分解后的各分量进行建模与预测（见第 1.2 节）；第三，开展模型性能评估，从多指标

角度验证其预测精度与稳定性（见第 1.3 节）；最后，结合 Shapley 加法解释（SHAP）方法，对模型中各

输入因素的贡献度进行量化分析，揭示其在不同工况下对位移预测结果的驱动机制（见第 1.4 节）。 

1.1 数据预处理 

水库滑坡位移由多变量因素驱动，包括水位波动、降雨和历史变形记录 (Ma et al., 2022)，详见表 1。
这些输入表现出周期性和趋势性，需要分解成不同的组成部分才能进行有效分析： 

𝐿ሺ𝑡ሻ ൌ 𝜎ሺ𝑡ሻ ൅ 𝜔ሺ𝑡ሻ (1) 
其中，L(t) 是 t 时刻的累积位移，σ(t) 代表趋势项，ω(t) 表示周期项。 

为提取滑坡位移序列中的趋势与周期成分，本文采用了改进的完全集合经验模态分解自适应噪声方

法（ICEEMDAN）。与早期的 EMD 系列方法相比，ICEEMDAN 在分解有效性和稳定性上具有显著优势。

具体而言，EEMD 通过引入白噪声和多次平均来缓解模态混叠，但易残留噪声且计算代价较高；

CEEMDAN 在残差处理上有所改进，但在低频成分的提取上仍可能受噪声干扰。 
ICEEMDAN 在 CEEMDAN 的基础上引入了自适应噪声注入与残差补偿机制：在每一轮分解中，根据

前一轮残差的能量动态调整噪声强度，以在不同频段提取阶段实现精度与鲁棒性的平衡；在重构残差前

对噪声影响进行均值校正，从而进一步抑制噪声在后续模态中的传播；此外，当剩余信号满足预设的频

域特征阈值时，算法自动终止迭代，并将该剩余整体作为趋势项，避免了过度分解产生的伪模态。上述

改进使得 ICEEMDAN 能更清晰地分离出滑坡位移中的多尺度周期与稳态趋势，为后续的时序建模与物理

解释提供了更可靠的输入。 
本文将 EEMD、CEEMD、CEEMDAN 与 ICEEMDAN 进行对比，将原始位移序列分解为趋势项和周

期项（见图 1）。结果显示，ICEEMDAN 能更清晰地提取周期性特征，趋势项拟合平稳、周期项频率合

理，整体分解效果优于其他方法，为后续建模提供了更加可靠的输入基础。 
表 1. 库岸滑坡位移预测的输入变量。 

Table 1. Input variables for predicting reservoir landslide displacement. 
因子 编号 候选变量 

库水位 

a1 当月水库平均水位 
a2 上月水库平均水位 
a3 前两个月水库平均水位 
a4 前三个月水库平均水位 

库水位变化 
a5 当月水库水位变化 
a6 上月水库水位变化 
a7 前两个月水库水位变化 

降雨 

a8 本月降雨量 
a9 上月降雨量 

a10 过去两个月的降雨量 
a11 过去三个月的降雨量 
a12 当月及上月累计降雨量 



 

演化状态 
a13 与上个月相比的周期位移 
a14 前两个月的周期位移 
a15 前三个月的期间位移 

 

（a）周期项 （b）趋势项 
图 1. 基于 EMD、EEMD、CEEMDAN 和 ICEEMDAN 对位移分解：（a）周期项，（b）趋势项 
Fig. 1. Decomposition of displacement based on EMD, EEMD, CEEMDAN and ICEEMDAN: (a) periodic 
component, (b) trend component 

1.2 模型训练 

本文选用双向门控循环单元（BiGRU）模型对分解后的周期分量和趋势分量分别进行逐点预测，如

图 2 所示。BiGRU 在保留传统单向 GRU 网络轻量化优势的同时，通过前向与后向两个独立 GRU 层，对

序列信息进行双向编码，从而更全面地捕捉时序依赖关系，计算如下： 
ℎ௧ሬሬሬ⃗ ൌ 𝑓൫𝑈ሬሬ⃗ ℎ௧ିଵ ൅𝑊ሬሬሬ⃗ 𝑥௧ ൅ 𝑏ሬ⃗ ൯ (2) 

ℎ௧ሬ⃖ሬሬ ൌ 𝑓൫𝑈⃖ሬሬℎ௧ିଵ ൅ 𝑊⃖ሬሬሬ𝑥௧ ൅ 𝑏⃖ሬ൯ (3) 

ℎ௧ ൌ ൣℎ௧ሬሬሬ⃗ , ℎ௧ሬ⃖ሬሬ൧ (4) 

其中 xt是输入，U、W、b 是可训练参数。 
训练细节如下：以均方误差（MSE）作为损失函数，采用 Adam 优化器进行参数更新，批量大小为 

32，初始学习率设为 0.001。为抑制过拟合，模型使用了 0.2 的 dropout，并结合 early stopping 策略终止训

练；重要超参数通过时间序列交叉验证（rolling-origin CV）确定。将分量化建模与上述训练策略结合，

不仅降低了单模型的学习难度，也提高了整体预测的稳定性与泛化能力。 



 

 
图 3. BiGRU 模型示意图 

Fig. 2. Schematic diagram of the BiGRU model 

1.3 模型性能评估 

为全面衡量各模型在滑坡位移预测中的表现，本文采用均方根误差（RMSE）、平均绝对误差

（MAE）、平均绝对百分比误差（MAPE）及决定系数（R²）四项指标，定义如下： 
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其中，𝑁 表示样本数量，𝑦௜ 为第 𝑖个时刻的实际值，𝑦ො௜ 为预测值，𝑦̄ 为所有实际值的平均值。 

1.4 可解释性算法 

为揭示机器学习模型的“黑箱”特性，本研究采用 SHAP（SHapley Additive exPlanations）方法对 
BiGRU 预测结果进行可解释性分析。SHAP 基于博弈论中的 Shapley 值，通过计算特征在所有可能子集中

的边际贡献，量化每个输入变量对最终预测的影响，从而实现统一解释。SHAP贡献(Øi)或第 i个特征由下

式表示： 

∅௜ ൌ ෍ ൌ
|𝑆|! ሺ𝑛 െ |𝑆| െ 1ሻ!

𝑛!
ௌ⊆ே௟௘௙௧ሺ௜ሻ

ൣ𝑣൫𝑆 ∪ ሺ𝑖ሻ൯ െ 𝑣ሺ𝑆ሻ൧ (9) 

其中 N 是特征的总数，n 是特定特征的数量，Nleft(i) 是除 i 之外的特征的总数。S 表示没有特征 i 的 n 的子

集的数量。 v(N)是当每个特征 n 的值未知时的基线预测输出。每个特征的 SHAP 值之和等于模型的输出，

如下所示： 

𝑔ሺ𝑧ᇱሻ ൌ ∅଴ ൅෍∅௜𝑧௜
ᇱ

ெ

௜ୀଵ

 (10) 

其中 M 是输入特征的数量，z’�(0, 1)M，当所有输入特征都缺失时，Ø0是常数值。特征的全局影响由显示

特征重要性排序和效果的摘要图定义，其局部影响由力图显示（每个特征对分类的具体影响） 。 
在本研究中，首先利用 SHAP算法对所有监测点的主要影响因素进行排序与可视化，直观呈现水库水

位、降雨量、历史位移趋势等特征的全局重要性及其取值对预测结果的正负效应；通过上述分析，不仅

验证了 BiGRU 模型对关键驱动因子的敏感度，也为滑坡位移预测提供了可操作的场地特异性洞察。 



 

2 研究案例 

2.1 滑坡信息 

旧县坪滑坡位于中国重庆市云阳县长江左岸，距三峡大坝上游约 213.4 km，距云阳县城约 11.3 km
（如图 3所示）。滑坡整体平面呈近圆形，由构造剥蚀形成的低山丘陵与浅阶地构成，滑坡两侧受冲沟界

定，后缘为陡峭岩壁，前缘临近长江，受河流侵蚀切割影响明显。滑坡体总长度约 1200 m，中部最大宽

度约 850 m，海拔范围为 85.4 m 至 569.5 m，相对高差约 460 m，总体积估算为 5.7×10⁷ m³。地层主要由侏

罗纪遂宁组灰白砂岩、紫红色泥质粉砂岩及粉砂岩互层构成，滑体上覆松散的第四纪含砾粉质黏土，滑

动面位于岩性薄弱夹层中（如图 4 所示）。 
滑坡体结构明显，由后缘陡坡、中部缓坡和前缘悬崖三部分构成，滑动面总体呈缓倾态势，由中后

部的层间平移过渡至前部的切割滑动。滑坡前缘拱起，易遭受 135–175 m水位波动带的长期淹没与削切。

坡面倾角为 15°–30°，主滑动方向约为 144°。由于地层软硬相间、基岩节理发育，整体工程地质条件较为

复杂。 
此外，云阳县属亚热带湿润气候区，云阳县多年年均降水量约为 1145.1 毫米，其中约 79%集中于 5

月至 10 月汛期，导致滑坡体常年处于高饱水状态。三峡水库水位在 145–175 m 之间呈季节性涨落，暴雨

与快速退水过程中水位强烈波动进一步加剧了坡体失稳风险。 

 
图 3. 研究区域的位置 

Fig. 3. Location of the study area 

图 4. 滑坡的地质剖面(Meng et al., 2025) 



 

Fig. 4. Geologic profile of the Jiuxianping landslide.

2.2 监测数据 

最初在旧县坪滑坡体上布设了 9 个位移监测站，但 YY204 因地表破坏而停止使用。其余八个监测站

记录了 2005 年 1 月至 2020 年 12 月期间的累积位移、降雨量和水库水位数据（图 5）。位移监测站均采

用 GPS 技术进行监测，数据采样频率为每月一次。YY0209 站位于中心位置，能够捕捉到滑坡的代表性变

形行为，因此被选中用于模型开发。 
分析表明，水库运行、降雨和位移之间存在很强的耦合关系（图 5）。水位上升或稳定与最小位移相

关联，而快速缩水则会引发急剧上升，其一到两个月的滞后期反映了水文地质响应时间。2007 年至 2018 
年的年度水位周期与阶梯式位移增量一致。季节性降雨在 5 月至 8 月达到峰值，加剧了不稳定性，甚至在

夏末水位上升时也会导致快速变形。在洪水季节，同步的降雨高峰和水位下降放大了位移，在累积曲线

中产生了特有的阶梯状模式。这种相互作用突出表明，降雨是滑坡动态的主要触发因素，而水位波动则

是滑坡动态的调节因素。 
在机器学习预测中，关键输入（季节性降雨、水库水位和历史位移）根据其地球物理意义进行优先

排序。16 年的数据集跨越了不同的水文条件，能够对所提出的框架进行稳健的训练和验证，将计算创新

与地球地球科学见解相结合。本研究使用 [2005–2021] 年的观测数据。为保证时序预测的因果性与稳健性，

我们将数据按时间顺序划分为训练集（70%）与测试集（30%）。 

图 5. 2005 年 1 月至 2021 年 12 月旧县坪滑坡监测点的月降雨量、水库水位和位移 
Fig. 5. Monthly rainfall, reservoir levels, and displacements on Jiuxianping landslide monitoring site at 2005 

January to 2021 December 

3 结果 

3.1 位移分解分析 

图 6 以雷达图形式比较了 EMD、EEMD、CEEMDAN 与 ICEEMDAN 四种分解方法在 8 个监测点

（YY203–YY213）上对周期项预测的性能差异。显而易见，ICEEMDAN（紫色多边形）在各个监测点上

的多边形面积最小，表明其在 RMSE、MAE 和 MAPE 等关键误差指标上均处于最低水平，同时对应的 R² 
值最高，反映出最优的拟合精度。如在 YY203 点，ICEEMDAN 在 MAPE 与 RMSE 上的误差相较于 EMD 
和 EEMD 均显著降低，优势最为突出。CEEMDAN（绿色）仅次于 ICEEMDAN，其多边形面积略大，但

整体性能仍优于传统的 EMD（蓝色）和 EEMD（红色）。其中，EMD 的多边形面积最大，尤其在 MAPE 
和 RMSE 指标上误差最高，说明其在分离滑坡位移周期成分时易产生模式混叠；EEMD 尽管在一定程度

上改善了模态混叠问题，但由于未能充分抑制残余噪声，其整体表现仍逊于 CEEMDAN 和 ICEEMDAN。 
这种显著差异的根本原因在于 ICEEMDAN 在分解过程中引入了迭代噪声注入与自适应筛选机制：一

方面，通过有针对性的噪声补偿，有效消减了伪模态的干扰；另一方面，多次迭代保证了低频趋势与高

频周期信号的分离清晰，避免了传统方法在面对复杂非平稳信号时的分解偏差。因此，ICEEMDAN 不仅

提高了周期项的分解精度，也为后续的趋势项预测提供了噪声更少、特征更突出的输入数据。 
图 7 展示了四种方法在趋势项预测性能上的散点分布，其中 ICEEMDAN（紫色）聚集在高 R²、低 



 

MAE 和低 RMSE 的理想区域，凸显其在趋势项拟合上的稳定性与高精度。例如，在 YY210 点的 MAPE 
210 图中，ICEEMDAN 的散点紧密集中，而 EMD（红色）的散点则分布广泛，部分点偏离理想区域较远，

暗示其受噪声影响大、预测波动明显。CEEMDAN（绿色）在多数监测点上的散点分布虽比 EMD/EEMD
（蓝色）更集中，但仍略逊于 ICEEMDAN。值得一提的是，在 MAPE 211 图中，所有方法的散点整体较

为集中，说明该点位数据本身分解难度较低，但 ICEEMDAN 依然以最高 R²、最低 MAE 和 RMSE 保持最

佳表现，进一步验证了其解耦趋势信号的优越能力。 
ICEEMDAN 在周期项和趋势项分解中均表现优异，其优势源于对噪声的自适应注入与迭代补偿机制，

既能有效抑制模式混叠，又能完整保留多尺度特征，从而为滑坡位移预测提供了更准确、更稳定的分解

结果。 

YY203 YY205 

 
YY208 YY209 YY210 

 
YY211 YY212 YY213 

图 6. 基于 EMD、EEMD、CEEMDAN 和 ICEEMDAN 对周期项的预测 
Fig. 6. Prediction of periodic terms based on EMD, EEMD, CEEMDAN and ICEEMDAN 
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图 7. 基于 EMD、EEMD、CEEMDAN 和 ICEEMDAN 对趋势项的预测 

Fig. 7. Prediction of trend terms based on EMD, EEMD, CEEMDAN and ICEEMDAN 

3.2 时间序列预测分析 

本文选取 YY208（滑坡尾部）、YY209（滑坡中部）和 YY210（滑坡前缘）作为研究对象，旨在揭

示滑坡不同区域在变形机制及其受降雨、水库水位波动等外部因素影响上的差异 (Song et al., 2024)：前缘

YY210 紧邻长江，变形主要受水库水位升降引起的水压力变化控制；中部 YY209 则同时受到降雨与水库

水位间接影响，地下水位随水库水位变化而波动并叠加季节性降雨效应；尾部 YY208 远离长江，与水库

水位关联较弱，其变形主要由降雨渗透导致孔隙水压力升高和抗剪强度下降所致。通过对这三个关键监

测点的对比分析，可更全面地理解滑坡不同部位的变形预测性能。 

3.2.1 周期项预测 

在 YY208 点的周期项预测（图 8）中，BiGRU（橙色虚线）与观测值（蓝色实线）几乎重合，展现

出高度一致的时间序列走势，其 MSE 为 25.796、RMSE 为 5.079、相关系数 R 达 0.957，R² 也达 0.503，
残差直方图显示误差高度集中，凸显该模型在细节处对周期性波动的精准捕捉能力。相比之下，GRU 的 
MSE 32.091、RMSE 5.685、R 0.936，虽也能基本追踪走势，但在波峰与波谷处出现轻微偏差，导致误差



 

分布略为扩散；LSTM 在振幅较大的区间偏差增大（MSE 28.664、RMSE 5.354、R 0.611），残差波动明

显；SVM 则由于对非线性动态捕捉不足，产生最差结果（MSE 49.719、RMSE 7.051、R –0.725），误差

分布宽且具有系统性偏倚。BiGRU 的优势在于双向信息融合使其能同时学习过去与“未来”序列特征，再

加上门控结构对短期干扰的敏感响应，确保了在 YY208 点的卓越表现。 
在 YY209 点的 50 个时间步预测（图 9）中，BiGRU 延续了其优异性能：MSE 42.826、RMSE 6.544，

平均误差仅 1.439，标准差 6.501，残差高度聚集于零附近，表明模型能够稳定重现该区域周期波动。

GRU 的误差略高（MSE 46.499、RMSE 6.819），分布稍宽；LSTM 的波动性更为明显（MSE 47.544、
RMSE 6.895、标准差 6.784），而 SVM 则再次表现最差（MSE 70.732、RMSE 8.410、标准差 8.438），误

差分布最分散。BiGRU 在此的优势源自其动态门控机制对中长期依赖的高效利用，使其能在不同波段均

保持高精度。 
在 YY210 点的 60 个时间步预测（图 10）中，BiGRU 与 GRU 的预测精度接近，分别获得 MSE 

17.335/17.043、RMSE 4.163/4.128，相关系数均约 0.60，残差集中且幅度小；LSTM 的误差略高（MSE 
18.087、RMSE 4.253），波动性增加；SVM 则仍因非线性建模能力不足，产生最高误差（MSE 22.571、
RMSE 4.750），分布最宽。此结果表明，在周期成分相对平稳的点位，GRU 即可达到接近双向模型的效

果，但 BiGRU 在处理可能的前后依赖与突变点时仍具备微弱优势。 
BiGRU 在三个典型监测点上均实现了最低误差与最集中的残差分布，证明其双向门控架构和对时间

依赖的挖掘优势。GRU 虽可作为可行的轻量替代方案，但在捕捉复杂周期波动及极值响应方面略逊一筹；

相较之下，LSTM 与 SVM 模型在稳定性与精准度上表现不及前两者，难以满足高精度周期项预测的需求。 

(a) BiGRU (b) GRU 

(c) LSTM (d) SVM 
图 8. 基于 BiGRU，GRU，LSTM，和 SVM 对 YY208 周期项预测 

Fig. 8. Prediction of YY208 periodic terms based on BiGRU, GRU, LSTM, and SVM 
 



 

(a) BiGRU (b) GRU 

(c) LSTM (d) SVM 
图 9. 基于 BiGRU，GRU，LSTM，和 SVM 对 YY209 周期项预测结果 

Fig. 9. Prediction of YY209 periodic terms based on BiGRU, GRU, LSTM, and SVM 
  



 

(a) BiGRU (b) GRU 

(c) LSTM (d) SVM 
图 10. 基于 BiGRU，GRU，LSTM，和 SVM 对 YY210 周期项预测 

Fig. 10. Prediction of YY210 periodic terms based on BiGRU, GRU, LSTM, and SVM 

3.2.2 总位移预测 

图 11 展示了 YY208 的总位移预测结果。绿色实线表示实测位移，其从约 640 mm 平稳上升至 850 mm，

并在 2017 年中、2019 年初降雨高峰（最大降雨量约 75 mm，蓝色柱状）期间出现明显阶梯式增量。

BiGRU（红色虚线）复现了这一趋势，仅在 2018 年和 2020 年稍微低估。其强大的双向信息融合能力使模

型既能利用历史累积变形信息，又能从未来时刻的上下文中提取微弱信号，因而在体现突增节点时尤为

精准。相比之下，GRU 在 2017 年表现出轻微高估、在 2019 年出现低估；LSTM 则在 2018 年出现明显滞

后，并在 2020 年略微高估；SVM 则因无法有效拟合非线性阶梯响应，在 2018 年严重低估、在 2020 年高

估，误差最大。表 2 定量结果显示，BiGRU 实现了 R² = 0.988、MAE = 6.954 mm、RMSE = 7.631 mm 和 
MAPE = 0.008，优于 GRU（R² = 0.981）、LSTM（R² = 0.979）和 SVM（R² = 0.975）的大幅度误差。 

图 12 展示了 YY209 的预测情况。实测位移从约 640 mm 上升至 780 mm，三次主要降雨峰值（最高

达 100 mm）对应的增量清晰可见。BiGRU 模型不仅精确捕捉了各阶梯式跃升时刻，整体偏差微乎其微

（R² = 0.992、MAE = 3.617 mm、RMSE = 4.418 mm、MAPE = 0.005），而且残差高度集中于零附近，展

现出极强的稳定性和鲁棒性。GRU 虽也能大体反映上升趋势，但在 2018 年中低估；LSTM 在 2018–2019 
年快速增长期出现滞后；SVM 则普遍低估所有跃升段，未能体现降雨引起的突变。 

图 13 则为 YY210 的预测结果。实测位移从 560 mm 增至 780 mm，期间在 2016 年中、2018 年初和 
2019 年中三次降雨高峰（最高 80 mm）对应明显增量。BiGRU（R² = 0.976、MAE = 10.67 mm、RMSE = 
10.77 mm、MAPE = 0.014）的预测曲线与真实曲线几乎重合，仅在极少数时点略有偏差。LSTM 尽管 
MAE（10.39 mm）与 BiGRU 相近，但 R² 较低（0.964）且 RMSE（13.51 mm）更高；GRU 和 SVM 则因



 

对非线性累积效应捕捉不足，误差显著增大（GRU MAE = 16.17 mm，SVM MAE = 11.67 mm）。 
综合三个监测点的量化指标可见，BiGRU 始终以最高 R² 和最低误差占据榜首，其优势源于双向门控

结构在处理长期依赖和突变响应时的协同优化：既能对降雨诱发的阶梯式位移快速响应，又能抑制累积

误差的传播。GRU 虽可作为替代方案，但在捕捉极端波动时略显不足；LSTM 与 SVM 则由于结构复杂度

或非线性拟合能力有限，难以兼顾高精度与高稳定性。 
 

 

 

 

图 11. YY208 总位移的预测 
Fig. 11. Prediction of total displacement at YY208 

 

 

 

 

图 12. YY209 总位移的预测 
Fig. 12. Prediction of total displacement at YY209 



 

 

 

 

 

图 13. YY210 总位移的预测 
Fig. 13. Prediction of total displacement at YY210. 

 
表 2. 预测性能的评估指标 

Table 2. Evaluation metrics for predictive performance. 
Method YY208  YY209  YY210 

 R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE
BiGRU 0.988 6.954 7.631 0.008 0.992 3.617 4.418 0.005 0.976 10.67 10.77 0.014
GRU 0.981 9.553 12.30 0.011 0.983 16.54 15.503 0.022 0.975 16.17 17.90 0.024

LSTM 0.979 18.59 14.89 0.022 0.987 11.92 10.843 0.016 0.964 10.39 13.51 0.014
SVM 0.975 17.56 14.93 0.021 0.975 6.487 9.126 0.009 0.959 11.67 13.94 0.021

3.3 模型可解释性分析 

图 14 给出了监测点 YY208、YY209 和 YY210 上 BiGRU 模型的 SHAP 总结图，其中包括表 1 所列的

15 个输入特征 (a1–a15) 对位移预测贡献的排序和大小。每个子图均根据特征对模型输出平均绝对 SHAP 
值的影响从大到小排列，横轴为 SHAP 值大小，点的颜色由蓝到红表示特征值从低到高。这种可视化清晰

揭示了不同特征数值的高低与预测结果增减的对应关系，有助于直观解释模型决策。值得注意的是，类

似的解释方法近年来也被用于滑坡预测研究，以提高模型结果的可解释性 (Al-Najjar et al., 2023 , Jiang et 
al., 2025)。 

YY208 监测点： 在 YY208 点，特征 a3（“过去两个月的平均水库水位”）对位移预测贡献最大，其

SHAP 取值范围约为 –7.5 至 7.5。当 a3 取高值时（红色点），对应正的 SHAP 值，表示持续高水位会显

著增加模型预测的滑坡位移；反之，当 a3 为低值时（蓝色点），SHAP 值为负，意味着较低的水位减少

预测位移量。这一结果与滑坡物理机制高度一致：长期维持的高库水位会提高滑坡体内部的孔隙水压力，

降低土体有效应力，促使变形积累加剧 (Kafle et al., 2022)。这一现象在三峡库区等地的现场观测和模拟中

多有报道：例如，Tanjiahe 滑坡在高水位运行期因库水浸润软化作用发生显著变 (Chen et al., 2023)。因此，

模型识别出 a3 为最重要特征，从侧面验证了库水位长期变动对滑坡变形的控制作用。在 a3 之后，a14
（“过去三个月的位移增长率”）是第二重要的特征，SHAP 取值约为 –5 至 5。这表明近期滑坡位移的增长

趋势本身是未来位移的重要驱动因素：如果滑坡近期处于快速位移阶段（a14 高，红点），则模型预测其

后续位移也显著增大；反之近期位移停滞（a14 低，蓝点）会降低未来位移预测值有研究 (Gong et al., 
2024) 同样发现，当滑坡近期位移累积超过一定阈值（如 30 天超过 20 mm）时，往往预示着位移将显著



 

加速增长。此外，YY208 点的 a11（降雨量相关特征，SHAP 约 –4 至 4）和 a15（长期水位变化趋势，

SHAP 约 –3 至 3）等特征对预测也有一定影响。这种多因素共同作用的现象强调了滑坡变形的水文–力

学耦合效应：降雨入渗提高地下水位与库水位变化叠加，将进一步削弱坡体抗剪强度，增加滑坡活动性 
(Kafle et al., 2022)。YY208 点的解释性分析揭示了库水位长期高位是该处滑坡变形的主导因素，并受到近

期位移趋势和降雨-水位综合作用的次要影响。 
YY209 监测点： 在 YY209 点，a1（“当前月份平均水位”）的 SHAP 值范围约为 –15 至 15，显示

其对位移预测的即时影响最为显著。a1 数值升高时（红色），SHAP 值为正，意味着当月较高的库水位将

放大预测位移；反之，a1 下降（蓝色）则对应负 SHAP，表明较低水位会抑制位移发展。坡体对库水位变

化的如此快速响应在实测和模型研究中也有所体现：水库滑坡数值模拟研究 (Li et al., 2024a)表明，当出现

库水位的剧烈涨落时，边坡稳定性会显著降低，滑坡变形随之加剧。YY209 点的第二、第三重要特征分

别是 a14（过去三个月位移增长率，SHAP 约 –10 至 10）和 a5（“上月水位变化”，SHAP 约 –8 至 8）。

这凸显了短期库水位剧烈变化与滑坡位移速率之间的动态关系：例如，当上月水位出现突升或骤降（a5 
为高或低值）时，滑坡可能随之加速变形（体现在较高的位移增长率 a14），而位移速度的改变反过来又

与水位变化过程相互印证。类似的因果联动在库区滑坡中被反复报道－快速的水位消落往往引发滑坡速

度陡增 (Li et al., 2024b)。 相比之下，YY209 点的降雨相关特征（如 a9、a11）的 SHAP 影响范围仅约 –3 
至 3，远小于水位因素。这表明在该监测点，水位的短期波动较降雨更能主导位移演化。这一结果与“水

动力压力型”库岸滑坡的典型机制相符：即滑坡变形主要受控于库水位消落速率的变化，而降雨仅起次

要作用 (Li et al., 2024c)。因此，YY209 点的模型解释揭示其变形驱动以水位即时变化为主，并与近期位

移速率存在紧密耦合关系。 
YY210 监测点： 在 YY210 点，不同于前两点，a13（“过去两个月位移增长率”）成为最主要的影

响特征，其 SHAP 值范围约 –15 至 15。a13 取高值时（红色），对应显著的正 SHAP，表示近期滑坡位

移增长迅猛会强烈拉动未来位移的增加；而 a13 为低值时（蓝色），则减小后续位移预测。这种“滑坡运

动的惯性”现象意味着该点滑坡一旦进入加速阶段，其运动很可能持续一段时间，类似的规律在其他研

究 (Li et al., 2021)中也有所体现 。YY210 点次重要的特征是降雨相关的 a11（过去 7 天降雨量等，SHAP 
约 –12 至 12）和 a9（其他降雨指标，SHAP 约 –10 至 10）。降雨特征对模型预测的正向贡献表明：强

降雨诱发的入渗作用和由此导致的孔隙水压力升高是该监测点滑坡位移的主要触发因素。这与一些库区

滑坡更易受暴雨控制的报道一致 (Liu et al., 2024)。相比之下，YY210 点的水位特征（如 a1 当前水位、a3 
近两月平均水位）的 SHAP 值幅度明显偏小，表明在该处地质水文条件下，库水位变化对位移的直接影响

相对有限。换言之，大气降雨入渗与由此产生的地下水动力过程主导了 YY210 点的滑坡活动，而库水位

起伏并非主要矛盾。这一点也符合“三峡库区滑坡类型”分类中对降雨主控型滑坡的认识：此类滑坡的

变形往往与降雨强度高度相关 (Chen and Fan, 2023)。 
此外，不同监测点位中变量对位移预测的贡献存在显著差异。其中，a12 在三个点位上均呈现出极低

的 SHAP值，表明该变量整体对模型输出影响有限，可能是由于其信息冗余或与预测目标关联性较弱。而

a3 在 YY208 和 YY209 中表现出较高贡献，尤其在 YY208 为主要驱动因素之一，但在 YY210 中几乎无贡

献，反映了该点位对水库水位变化响应不敏感。此外，a1 在 YY209 中 SHAP 值范围广、重要性高，但在

YY210中贡献极小。相反，a9在YY210中为重要变量，在YY209和YY208中作用较弱。这些差异说明，

不同监测点位受控因子存在空间异质性。 
通过以上 SHAP 可解释性分析，不仅验证了 BiGRU 模型在预测精度之外的透明性优势，更重要的是

挖掘出不同监测点滑坡触发因素存在的空间异质性借助可解释性分析，在不同场景下量化了关键诱因的

作用程度，可为现场差异化预警和风险管控提供科学支撑。 
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图 14. SHAP 总结图 
Fig. 14. SHAP summary plots 

4 结论 
本文构建了一种集精细分解、高精度预测与机制解释于一体的库岸滑坡位移建模框架（ICEEMDAN–

BiGRU–SHAP），并以三峡库区典型滑坡案例为研究对象，验证了其有效性与工程实用性。主要结论如

下： 
(1) 引入的 ICEEMDAN 分解算法显著提升了滑坡位移时间序列的周期–趋势解耦能力，为后续预测建模提

供了更稳定、更具物理意义的输入特征。 
(2) 基于 BiGRU 的时序预测模型在多个监测点上均取得优异性能，尤其在处理周期波动与突变响应方面具

备明显优势，验证了其对复杂非线性滑坡位移过程的适应能力。 
(3) SHAP 分析揭示了不同监测点在水位、降雨及历史位移驱动机制上的显著差异，体现出库岸滑坡的空

间异质性，模型具备较强的解释透明性与因果机制揭示能力。 
然而，当前方法仍存在一定局限性。首先，模型仅在旧县坪滑坡一处场地进行了验证，虽然该案例



 

具备典型性，但其结果的泛化能力仍需进一步检验。其次，对于受地下水补给、岩溶突涌或工程扰动等

因素主控的滑坡类型，现有模型的解释机制可能无法直接适用。因此，未来研究应考虑以下几个方面的

拓展：（1）在多个滑坡实例上开展交叉验证，提升模型的适应性与稳定性；（2）结合迁移学习等策略，

提高模型在区域滑坡预测中的推广能力；（3）将数值模拟和应力场分析相结合，进一步提升机制耦合深

度和模型物理解释性。 
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