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Reservoir landslide displacement prediction based on explainable machine
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Abstract: Landslide displacement is a key indicator for evaluating slope stability and implementing early warning measures. However,
under the influence of cyclic reservoir water level fluctuations, displacement often exhibits step-like patterns, posing significant
challenges for accurate modeling and prediction. To address this, we propose an interpretable machine learning framework for landslide
displacement forecasting. The framework first employs an improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (ICEEMDAN) to decompose displacement signals into high-frequency cycles and low-frequency trends, effectively
mitigating mode mixing while preserving multi-scale features. Then, a Bidirectional Gated Recurrent Unit (BiGRU) model is used to
predict each component, leveraging bidirectional context and a lightweight gating mechanism to capture both long-term dependencies
and abrupt changes triggered by rainfall. Finally, SHapley Additive exPlanations (SHAP) are applied to interpret the model outputs,
identifying key drivers such as historical and current reservoir levels, cumulative rainfall, and recent displacement trends, with site-
specific differences across monitoring points. Case studies demonstrate that ICEEMDAN improves RMSE, MAE, MAPE, and R* by
over 20% compared to traditional decomposition methods (EMD, EEMD, CEEMDAN). The BiGRU model achieves high prediction
accuracy (e.g., R> = 0.992 and MAE = 3.617 mm at YY209), while SHAP enhances the transparency and physical interpretability of

the predictions. Overall, the proposed framework combines high accuracy with interpretability, offering a promising approach for
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reservoir landslide early warning and risk management.

Keywords: Geological disasters; Empirical mode decomposition; Bidirectional gated recurrent unit; Interpretable model
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Table 1. Input variables for predicting reservoir landslide displacement.
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Fig. 1. Decomposition of displacement based on EMD, EEMD, CEEMDAN and ICEEMDAN: (a) periodic
component, (b) trend component
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Fig. 4. Geologic profile of the Jiuxianping landslide.
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Fig. 7. Prediction of trend terms based on EMD, EEMD, CEEMDAN and ICEEMDAN

3.2 B[R B T 40 M

ASER YY208 GEIFEH) « YY209 GEdHED 1 YY210 GE¥RETZ) (EAVTARN S, BIE#H
INTE AN B X IR AE AR AL S I S2 B K ZE KA P B A A R 25 1 22 57 (Song et al., 2024): A%k
YY210 FEARKIT, AT = BLAZ K PE /KA T+ B 51 AL /K 3784k 3]s s Y'Y 209 T [E] 52 21 B i 5 7K
IKALIEEZRE M, 3R KA B 7K B K A7 AR AT 3 B N ZE T PR RN AN s B Y'Y 208 i &KL, S5/KFEE
KL RS, FAR Y 3 BB IE S 3B 3 s AT BT S B N B AT . 1@ I X IR = AN SRR
W0 AP B A BT, R0 B 4 T b B S A [0 A5 14 A8 T TN 12k B o
3.2.1 B BT T

£ YY208 st AT (K 8) w1, BiGRU (B RELE) HMMNME (Hasesd) JLTESA, B
R B fE R A E S, H MSE A 25.796. RMSE N 5.079. #H%RE R & 0.957, R Hik 0.503,
W= BT B RN R ZE R A, Rz R ARG b ] B R S R e B RE /). AHEEZ R, GRU 1)
MSE 32.091. RMSE 5.685. R 0.936, EHAEFEAIBEES, HAERGSEREHIREMME, SERE



AU Y B LSTM FEHRIR A X (A w214 K (MSE 28.664. RMSE 5.354. R 0.611) , ¥%ZizhH
i SVM N FXTHERMESHIEA L, MHAERZESER (MSE 49.719. RMSE 7.051. R -0.725) , R®RZ%E
oA o B EA ZitE RS . BiIGRU BIARHALE T XU A5 B Rl& 1 FL e Rl 2% o) i K 5 AR P FIHFE,
I T g R AR P U R, B OR TR YY208 S s R I

TEYY209 £iff) 50 ANFEE M (& 9) fr, BiGRU ZEZE | HAL S AE: MSE 42.826. RMSE 6.544,
IR ZEEAL 1439, FRAEZE 6.501, WRZESFERE T EML, RUIBAREGEER € B 1% X 380 30
GRU MR ZEms = (MSE 46.499. RMSE 6.819) , 7r-Aifi%; LSTM M1y shtEE B E (MSE 47.544,
RMSE 6.895. FrifEZ 6.784) , 1fi SVM M F XK % (MSE 70.732. RMSE 8.410. #rifE % 8.438) , &
ZEoy A d . BiGRU FEUG I OL 34 UR H FLah 2 1 1R HLH s KA m R 3 L BETE AN [R] 38 BE 2
REFEHREIE .

76 YY210 A1 60 ANEFEZE M (B 10) A, BiGRU 5 GRU [FMIKE BB, 4 53k 73 MSE
17.335/17.043. RMSE 4.163/4.128, #1355 253541 0.60, Wk ZEd HIEE /N LSTM KIiZZmg = (MSE
18.087. RMSE 4.253) , WaPENIN: SVM WA FAEL @ ige I AR, A R miRZE (MSE 22.571.
RMSE 4.750) , ZpAtid 3. s REM, 2RI A AR AL, GRU Bl AT 2 2142200 X n) A5 28 1 2%
3, {H BiGRU 7EAC3E AT B8 (111 J5 K5 AL s AT B A s e

BiGRU 7E = /NS AY MR pi B35 SISl 22 5 i A v BB 22 70 AT, UF B LX) [1428 244 R s )
WA T2 IR H . GRU BOJYERTAT IR RS S, (BTERHE S 4 8 B 30 B AR AR e 2 7 T s idh — %5 5
M Z T, LSTM 5 SVM M RI/ERZ e M SR v B R IS Rl 2, UG A2 mohit T A I F00m) 1 75 5K
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Fig. 8. Prediction of YY208 periodic terms based on BiGRU, GRU, LSTM, and SVM
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3.2.2 BALRE TR

11 JE7R T YY208 LRI RS T &5 5 . SR sSe R R silifi %, H L) 640 mm “FAa FF+ % 850 mm,
FELE 2017 . 2019 SEVIFFM mgE (KN EZ 75 mm, AR HHE BB B R (g 2 .
BiGRU (ZLfajEsk) RH 1 iX—#a%, {LLE 2018 £EAN 2020 ERY KA o T8 K AW {5 B Rl A it AR
RAREREFI A 0 s BTG R, RE MRS ZI R SCR S IS (5 5, BRI e AR B R 3 1 s i Je A
FEiE. MILLZ N, GRU 7E 2017 FERIH B 76 2019 F HIUEA; LSTM MIZE 2018 4= H BB B3
J& . JFLE 2020 FEEE LA SVM W ERITGIEA AU & AR AR BRI N, 7E 2018 FE P B AILAY . 7E 2020 F 5
fli, RERK. £2 24 RE/R, BiGRU LB T R2=0.988. MAE = 6.954 mm. RMSE = 7.631 mm Al
MAPE =0.008, ft+ GRU (R2=0.981) . LSTM (R2=0.979) fl SVM (R2=0.975) HIKIEE R % .

K12 R T YY209 BTN L. Sfz 8 2D 640 mm EFH2E 780 mm, — IR EEFWIEME (K&
15 100 mm) Sf M 3G FEVE AT L. BiGRU BERAORS B € 1 & M ik 2CERTHINE 2], 48 A i 22 Il - LAk

(R*=0.992. MAE =3.617 mm. RMSE = 4.418 mm. MAPE =0.005) , ifi HikZ&EED TEMHiE, &
P AR ) e e MRS . GRU BB RE KA I B &S, {E7E 2018 HEH K fh; LSTM 7E 2018-2019
FEPUEIG I I S s SVM U S A e BRI By, AR BEARIILIE Y 51 S ) R A2

13 W2 YY210 OFINEE 5. S A7 F8 A 560 mm B4 780 mm, HAMAITE 2016 . 2018 FFEAIFI
2019 Frh = KFEM g (B 80 mm) Xf BB I8 H ., BiGRU (R2=0.976. MAE = 10.67 mm. RMSE =
10.77 mm. MAPE = 0.014) FJFdh &5 5 sedh & JL-FHE S, AERD BN S8 W% . LSTM R
MAE (10.39 mm) 5 BiGRU iz, {H R2 &A% (0.964) H RMSE (13.51 mm) % /; GRU Al SVM NI [A]



SFARLE M BRI RAN L, IR E R EW K (GRUMAE =16.17 mm, SVM MAE = 11.67 mm) .

A=A RN S EAIRFR T, BiGRU A% Dl m R> MRz G4, AR HIE T 0m 14
S8 R 1 A A A AR AR i S92 B (1) ip TR EA Ak BOE f T B T 75 R () B At s R It 12, S e 4 ) B AR
RENER . GRU BB R, BRI SI BEAE: LSTM 5 SVM I T 4589 5 2%
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Fig. 11. Prediction of total displacement at YY208
=800 — 100
& SR BIGRU e S DB
E_ | mmi i 5
ﬁ& , .t A=t—g—g—gue—a—F L 50 ;&.\(
& g0 osaerttmeet? -25
A . , ‘ . . 1 T . : 0
=800 - 100
E LEREIGRU e et
E ol Fi e memeemeadPRERESSSaSE e 75
H-b& e _50%
%640‘ Lipt i St B B B SRR o -35
ESDD S ALSTM T ;20
E o [ ] N i e
® ey 50 7
4= g—g—r—a=" - 25 o
= 640+ R
i) " - I ! . ! : 1 . 0
=800+ E 100
£ J2hr ] SVM TR G :
E p i g o
@720- g 50 ;-é
5‘;:]540- 4=t—3Hlre—1—s e Ko
i) 0

i) (4E-H-H)
12. Y'Y209 ELA7F 1 T
Fig. 12. Prediction of total displacement

2016/3/1 2016/9/1 2017/3/1 2017/9/1 2018/311 2018/9/1 2019/3/1 2019/91 2020/31 2020/9/1 2021/3/1

at YY209



=800+ 100

= 9B BIGRU T ——

5?20_ _____ — TG J— RS = e e L75 ;‘:\H
:‘3640' i=i=i=i-a—a=>0=—¢ L o5 s
DVrpgnloele B 0 _  opmcenlilife._ . econnlilfssoieasinfilNiTeoeenBWNNE |
—~800- — 100

E I‘l‘:lbj‘.nl GRU . 8888y O—D—D

£ 720 }—— i 75
@ GRS -~ ~2-3-4 50 ;':}
,':'-;:_ 640+ o e = = i Sl : L 25 e
1 50 | 22015 1 e e 5 50 0 5 o e 0 O 8 o 0 B O B O O S P RRoe o
~—800 - 100

= S:frfl LSTM PP v L b

5720— e T illi'. ‘._‘__I_'_.--,---=-f--'? .—t—o—a—0—0—2—1 L75 ;‘:‘;‘
3‘&540 A, 90 o
*H 560 ; r r T : : T T T 0
~—800- P 100

E F2hRAE SVM 4 et—s—tg g gg=f-a-t P

E 720 {—— Bl (75
55 640 ygor-ag-atrt¥ s 5
1 560 +-

N6/ 20161911 201731 2017191 20181311 20181911 20191311 2019/911 2020131 2020091 2024/3/
e (4E-H-H)
13. YY210 j A2 F% [ it
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R 2. WTERE VAL TR AR

Table 2. Evaluation metrics for predictive performance.

Method YY208 YY209 YY210
R? MAE RMSE MAPE R?> MAE RMSE MAPE R?> MAE RMSE MAPE

BiGRU 0.988 6.954 7.631 0.008 0.992 3.617 4.418 0.005 0976 10.67 10.77 0.014

GRU 0981 9.553 1230 0.011 0983 16.54 15503 0.022 0975 16.17 1790 0.024
LSTM 0979 1859 1489 0.022 0987 1192 10.843 0.016 0964 1039 13.51 0.014
SVM 0975 17.56 1493 0.021 0.975 6.487 9.126  0.009 0.959 11.67 13.94 0.021

33 EBRI TR

14 25 7 W A YY208. YY209 A1 YY210 | BiGRU #7 ] SHAP M 45K, HApafEE 1 sl
15 MRNFHIE (al - al5) LR T ST BRI HE S AR /N o B4 7 B AR RR A A5 8 B P 38 48 %) SHAP
MR MR B/ NHES, 50 SHAPE K/, s B i 6 2 40 R R R E MR B R o IRl mT FE 4k I8 B
s 1A FRVREAEEOE 1 AR5 PO &5 SRR I X NG &, A B T B o . EHAEEMRE, &K
BB e 7 R A R AR F T IR B 7T, DASR A Y 25 B PT A M (Al-Najjar et al., 2023, Jiang et
al., 2025).

YY208 #iill sl 7E YY208 s, FRE a3 C “lE AN HBFEKEARAL” D A Tl vk i ok, H
SHAP HUETEHZI N - 7.5 2 7.5, 24 a3 BUEMER () , XMIER) SHAP fH, RRFFEEE/KA S
AL SO (R YA RS s IRZ, 2 a3 AMRMERS CGE ) , SHAP fH RN, RWREBAKIKALIRD
TR RS B . 1X— &5 SR 51 S BRG] S R — 80 K HIYE R0 = 28 KA, 2 38 i SR 3 S0 I FLIR K 77,
FEAR AT RN 1, ARAEAR TEAR ZUINJEI (Kafle et al., 2022). X —BL G =0k 28 [X 25 Hiy (1) 37 S0 0 A A48
ZHMIE: Hl, Tanjiahe W3 7E S /K AE AT HAK FE KR T BALME ] &K 4 B34 (Chen et al., 2023). K,
BRI a3 e EERHIE, MTEIE T KA AR B0 i 3 AR e ) HE . 76 a3 2 )5, al4
CFE=EAD AR R 5 T EERRHME, SHAP BUEZI N —5 & 5, X £ UM SAL R 1 K
AR B RARN ) EEIKFR R WO A TR AL R P B (ald &, 2080, DURBERY SR
JRER BB R R RZITIAMI R (ald K, 2D SRR BUNE A #F 7 (Gong et al,
2024) [FIFERIL, g3 AR B — e RE (A0 30 KE 20 mm) B, EEHURE M BKEG EE



TG, BeAh, YY208 sif all (FERVEAHRHHE, SHAP 2 -4 2 4) Al al5 (KHIKA AL ES,
SHAP #) -3 % 3) SEHREXT A — @ fomi . XAl 2 R 2R 3L FE A LSRR T I3 T K ST - 7
RGN BB S R KA S KA AR E N, Wik — 25 M 55 0 R P BT B, 38 i BeE B
(Kafle et al., 2022). YY208 IR TR T KA KA 2 Z A AR £ S R &R, 280
HAOL R e 35 R B W - /K A7 27 B 1 FH R R R

YY209 WMl A: FE YY209 5, al C“HFT A FKAL” ) B SHAPETEEZN - 15 215, &R
HOUH R T B S o B2 . al BUE TR (L0 , SHAPH NIE, EUWRE 24 H 5m i E KA
ORTRIMAIRS: ez, al FFE (B MR AL SHAP, & BEMR KA S IMHI AT 7 K o« JAdox e K Ar AR
A P skt PR T i S SIS AR BRI 5 G BT AR I 7K M S B AU 7T (L et al., 2024a) KB, 40
PE KA RN ZATK & I, A Rs e e B AR, TR Rl . YY209 SRS . B = EBRHIE S
A ald GEE=AAABHBEKE, SHAPZ - 10 £ 10) flas  “ EHAKAALL” , SHAPZ) -8 £ 8) .
X B TR PR KA RN B AR S W AL RS S R 2 (R Eh A R R B, 4 A KA IR B (a5
NEBURAED B, W ATRERE 2 AR (RBE R R ALK Z al4) T A FE I o S itk S
57K AR AT FE AR B EIIE o SABUR DR SR B S 7E J2E DX 3 b B s R ik — R ) KL Y VR AR AT B R T
FEBESE (Li et al., 2024b). AMHELZT, YY209 sUHIPFERVAHICHRAE (W1 a9. all) ) SHAP sMayGHI{L ) -3
2 3, W/NTKRAIFEZE . XRLEZIN A, KA SR N R = SR . X—4RE “K
NIRRT S SR R B S5 R 3 ST 4 T P KL W VR R AR AL, 1T B RN A S YK
ZAEH (Ui et al,, 2024c). L, YY209 siBBA R4 H AR T R 3 LKA RIS 2840 R 3, Ff 5L
BB R EMAE LR

YY210 WIS 7E YY210 i, ANETHEP A, al3 ( “DERHMHAMBHEEKR” ) o E B
WREAE, H SHAP {HEHZ - 15 £ 15, al3 BUEEN (L) , XREERIE SHAP, FKonim A
R K IR 2 s Z e s A SRR 38 s 10 al13 AARAERS CEED , NS S B . XA “Wiis
BN IR 1Z T — BN IR B, OB BN IR AT RE RS — BRI ], SRALI B4R 7E L A A
Fi(Li et al, 2020 HAFTAIL . YY210 SR EZEPFHEEENACH all G2 7 REEW =S, SHAP
Y - 12 & 12) M a9 (HABPERIEFR, SHAP 2] - 10 & 10) o PR EREX R T 6 1F [ STk e B . o
B WY 15 A TR N VB AE AT |l LG S B FLIR K 0 o 2 il s S e i B B R R 3R . X5 — 2R X
WY 5 52 B A I 19 4RIE — 3 (Liu et al., 2024). MHLLZ T, YY210 fS/KACREE (40 al 4FT/KAL. a3
W A SFIKALD) ) SHAP (B I8 FE B BAw /N, IR IZ ALK SC AR, RS AR X 7 4% 1) ELBE R i
FXAR. 52, KRABENASBS B AR TR SRR T YY210 sESiEsl, KA
ERIFAEFEET G X —f TS« SR XA 43 Kot PR E 42 A0 B iR I I
AT AR AT 5 B MY 5 2 51 S AH G (Chen and Fan, 2023).

UbAh, AR I 5 A7 Hp AR AR TN DT RR AP AR R 22 5. Hod, al2 7E = AN A B R AR A
) SHAP{H, 3B 1AL S A Ay 52 A R, v B2 BT HAS BT AR BS T B AR B E55 . 1M
a3 7F YY208 1 YY209 H R B mvimk, JCHAE YY208 NEBIKSHR R —, {HIE YY210 LT 5T
Wk, ST 12 s A0 K EE R AT AR A AR . IR AR, al 7E YY209 H SHAP (Y6 BEEMER, (HIE
YY210 Tkl /e AR, a9 7E YY210 FOREEAR &, 78 YY209 F1 YY208 4 LSS . X 4822 R i,
A7 M 00 P A8 2 4 DR A7 A 2 ) S o

BT Ll SHAP A @ BEE 00, AMUIGIE 7 BiGRU R BLZE TR E 2 A HE B L3, BB
T2 HH A (7] 00 R 3B ik A R 3 A A 1) 2 T S o A B PT AR A, EAN[E 5 N &4k 1 ORBE R R I
TEFIRRRE, TIIag 22 S A T A XU s SR R S 4% o
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ARG T — PRGN o Rk B TN S5 AL AR T — AR 11 PR R T 3 A # SR AREHEZE (ICEEMDAN-
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