[1] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.A Case of Nanoseismic Observations of Seismogenic Fractures.Progress in Natural Science, 19(10):1076-1081 (in Chinese). doi: 10.1029/2006JB004665/abstract
[2] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2016.Observations and Analyses of Nano/Micro-Structures of Coseismic Stick Slipping and Aseismic Creep Slipping Faults.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):37-42 (in Chinese with English abstract). http://linkinghub.elsevier.com/retrieve/pii/S0191814110001653
[3] Chen, J.Z., 1994.Nanotechnology Development and Nanomineralogy Research.Geological Science and Technology Information, 13(2):32-38 (in Chinese with English abstract). http://europepmc.org/abstract/MED/15807631
[4] Chen, W.J., Li, Q., Wang, Y.P., 1996.Miocene Diachronic Uplift Ailao Mountains-Red River Left-Lateral Strike-Slip Shear Zone.Geology Review, 42(5):385-390 (in Chinese with English abstract). doi: 10.1111/1755-6724.12275/abstract
[5] Chester, F.M., Evans, J.P., Biegel, R.L., 1993.Internal Structure and Weakening Mechanisms of the San Andreas Fault.Journal of Geophysical Research, Solid Earth, 98(B1):771-786. https://doi.org/10.1029/92JB01866
[6] de Paola, N., Holdsworth, R.E., Viti, C., et al., 2015.Can Grain Size Sensitive Flow Lubricate Faults during the Initial Stages of Earthquake Propagation? Earth and Planetary Science Letters, 431:48-58. http://linkinghub.elsevier.com/retrieve/pii/S0012821X15005695
[7] Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.017
[8] Han, R., Hirose, T., Shimamoto, T., 2010.Strong Velocity Weakening and Powder Lu-Brication of Simulated Carbonate Faults at Seismic Slip Rates.Journal of Geophys Research, 115:B03412. http://doi.org/10.1029/2008JB006136
[9] Han, R., Shimamoto, T., Hirose, T., et al., 2007.Ultra-Low Friction of Carbonate Faults Caused by Thermal Decomposition.Science, 316:878-881. https://doi.org/10.1126/science.1139763
[10] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001
[11] Leloup, H.P., Lacassin, R., Tapponnier, P., et al., 1995.The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina.Tectonophysics, 251:3-84. doi: 10.1016/0040-1951(95)00070-4
[12] Liu, D.L., Yang, Q., Li, W.Y., et al., 2004.A Discovery of Nanometer-Grade Grain in the Mylonite of Ductile Fracture in the South of Tancheng-Lujian Fracture Zone.Science Technology and Engineering, 4(1):42-43 (in Chinese with English abstract). https://www.researchgate.net/publication/273059544_082012-923-140066
[13] Liu, H., Sun, Y., Shu, L.S., et al., 2009.Nano-Scaled Study on the Ductile Shear Zone in Wugongshan, South China.Acta Geologica Sinica, 83(5):609-616 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHLX200503017.htm
[14] Rangin, C., Klein, M., Roques, D., et al., 1995.The Red River Fault System in the Tonkin Gulf, Vietnam.Tectonophysics, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P
[15] Sammis, C.G., Ben-Zion, Y., 2008.Mechanics of Grain-Size Reduction in Fault Zones.Journal of Geophysic Research, 113:B02306. https://doi.org/10.1029/2006JB004892
[16] Scharer, U., Zhang, L.S., Tapponnier, P., 1994.Duration of Strike-Slip Movement in Large Shear Zones:The Red River Belt, China.Earth Planet Science Letters, 126:379-397. doi: 10.1016/0012-821X(94)90119-8
[17] Siman-Tov, S., Aharonov, E., Sagy, A., et al., 2013.Nanograins Form Carbonate Fault Mirrors.Geology, 41(6):703-706. doi: 10.1130/G34087.1
[18] Sun, Y., Ge, H.P., Lu, X.C., et al., 2003.Discovery and Analysis of Ultrafine Abrasive Grain Structure in Slip-Glide Shear Blades.Science China Earth Sciences, 33(7):619-625 (in Chinese). doi: 10.1088/0370-1301/64/9/303
[19] Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):52-55 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006
[20] Sun, Y., Lu, X.C., Liu, D.L., et al., 2005.Discovery, Nomenclature of the Centimeter Scale Grinding Gravels and the Nanometer Scale Grinding Grains in Fault Shearing Zones and the Significance for Oil-Gas Geology.Geological Journal of China Universities, 11(4):521-526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXJZ201103004.htm
[21] Wan, J.L., Li, Q., Chen, W.J., 1997.Fission Track Evidence of Diachronic Uplift alone the Ailao-Red River Left-Lateral Strike-Slip Shear Zone.Seismology and Geology, 19(1):87-90 (in Chinese with English abstract). doi: 10.1029/2000JB900322
[22] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.uvm.edu/cas/geology
[23] Wibberley, C.A.J., Shimamoto, T., 2003, Internal Structure and Permeability of Major Strike-Slip Fault Zones:The Median Tectonic Line in Mie Prefecture, Southwest Japan.Journal of Structural Geology, 25:59-78. https://doi.org/10.1016/S0191-8141(02)00014-7
[24] Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004a.Large-Scale Dextral Strike-Slip Movement and Asociated Tectonic Deformation along the Red-River Fault Zone.Seismology and Geology, 26(4):598-610 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzyj-e200502003
[25] Xiang, H.F., Han, Z.J., Guo, S.M., et al., 2004b.Processing About Quantitative Study of Large-Scale Strike-Slip Movement on Red River Fault Zone.Advance in Earth Sciences, 19(Suppl.):56-59 (in Chinese with English abstract). doi: 10.11648/j.earth.20170605.15
[26] Xu, Y., Liu, J.F., Liu, F.T., et al., 2003.The Crust-Upper Mantle Structure of Ailaoshan-Red River Fault Zone and Its Adjacent Area.Science China Earth Sciences, 33(12):1201-1208 (in Chinese). doi: 10.1002/cjg2.848
[27] Yuan, R.M., Zhang.B.L., Xu, X.W., et al., 2014.The Characteristics, Formation Mechanism and Seismic Significance of Micro-Nanometer Particles in the Shearing Surface of Wenchuan Earthquake.Science China Earth Sciences, 44(8):1821-1832 (in Chinese). http://earth.scichina.com:8080/sciDe/CN/Y2014/V57/I8/1961
[28] 晁洪太, 孙岩, 王志才, 等, 2009.发震断裂的纳米级运动学观测一例.自然科学进展, 19(10):1076-1081. doi: 10.3321/j.issn:1002-008X.2009.10.008
[29] 晁洪太, 孙岩, 王志才, 等, 2016.同震和无震剪切滑移作用的纳微米级构造观察与分析.矿物岩石地球化学通报, 35(1):37-42. http://www.cqvip.com/QK/84215X/201601/668146275.html
[30] 陈敬中, 1994.纳米科技的发展与纳米矿物学研究.地质科技情报, 13(2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm
[31] 陈文寄, 李齐, 汪一鹏, 1996.哀牢山-红河左旋走滑剪切带中新世抬升的时间序列.地质论评, 42(5):385-390. http://www.oalib.com/paper/4887717
[32] 宫伟, 姜效典, 2017.哀牢山-红河断裂带-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239. http://www.earth-science.net/WebPage/Article.aspx?id=3430
[33] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
[34] 刘德良, 杨强, 李王晔, 等, 2004.郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现.科学技术与工程, 4(1):42-43. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200702001.htm
[35] 刘浩, 孙岩, 舒良树, 等, 2009.华南武功山地区韧性剪切带的纳米尺度测量研究.地质学报, 83(5):609-616. http://www.oalib.com/paper/4875965
[36] 孙岩, 葛和平, 陆现彩, 等, 2003.韧脆性剪切带滑移叶片中超微磨粒构造的发现和分析.中国科学:地球科学, 33(7):619-625. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkx-cd200307002
[37] 孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 35(1):52-55. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006
[38] 孙岩, 陆现彩, 刘德良, 等, 2005.断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义.高校地质学报, 11(4):521-526. http://www.cqvip.com/QK/90539X/200504/20835610.html
[39] 万景林, 李齐, 陈文寄, 1997.哀牢山-红河左旋走滑剪切带构造抬升时间序列的裂变径迹证据.地震地质, 19(1):87-90. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200710002528.htm
[40] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010
[41] 向宏发, 韩竹军, 虢顺民, 等, 2004a.红河断裂带大型右旋走滑运动与伴生构造地貌变形.地震地质, 26(4):598-610. doi: 10.3969/j.issn.0253-4967.2004.04.006
[42] 向宏发, 韩竹军, 虢顺民, 等, 2004b.红河断裂带大型右旋走滑运动定量研究的若干问题.地球科学进展, 19(增刊):56-59. http://www.cqvip.com/QK/94287X/2004S1/1000335770.html
[43] 胥颐, 刘建华, 刘福田, 等, 2003.哀牢山-红河断裂带及其邻区的地壳上地幔结构.中国科学:地球科学, 33(12):1201-1208. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312001010.htm
[44] 袁仁茂, 张秉良, 徐锡伟, 等, 2014.汶川地震剪切滑动面微-纳米级颗粒的特征、形成机制及地震意义.中国科学:地球科学, 44(8):1821-1832. http://www.oalib.com/paper/4152475