[1] Capaccioni, B., Didero, M., Paletta, C., et al., 2001. Hydrogeochemistry of Groundwaters from Carbonate Formations with Basal Gypsiferous Layers: An Example from the Mt Catria-Mt Nerone Ridge (Northern Appennines, Italy). Journal of Hydrology, 253(1-4): 14-26. https://doi.org/10.1016/s0022-1694(01)00480-2
[2] Dang, S., 2015. Regulation of Karst Groundwater Utilization Risk and Resources Present Situation of Guiyang (Dissertation). Guizhou University, Guiyang (in Chinese with English abstract).
[3] Ding, Z.Y., Sun, N., Sun, Y.H., et al., 2015. Karst Groundwater Vulnerability and Pollution Risk Control in Guiyang City. Environmental Protection Science, 41(6): 104-112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbhkx201506023
[4] Dogramaci, S. S., Herczeg, A. L., 2002. Strontium and Carbon Isotope Constraints on Carbonate-Solution Interactions and Inter-Aquifer Mixing in Groundwaters of the Semi-Arid Murray Basin, Australia. Journal of Hydrology, 262(1-4): 50-67. https://doi.org/10.1016/s0022-1694(02)00021-5
[5] Galy, A., France-Lanord, C., Derry, L. A., 1999. The Strontium Isotopic Budget of Himalayan Rivers in Nepal and Bangladesh. Geochimica et Cosmochimica Acta, 63(13-14): 1905-1925. https://doi.org/10.1016/s0016-7037(99)00081-2
[6] Jiang, Y.J., Yuan, D.X., 2014.Geochemical Tracers to Characterize Effects of Urbanization on Karst Groundwater Quality from Nanshan Underground River System, SW China. Quaternary Sciences, 34(5):1044-1053 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201405013
[7] Klaus, J. S., Hansen, B. T., Buapeng, S., 2007. 87Sr/86Sr Ratio: A Natural Tracer to Monitor Groundwater Flow Paths during Artificial Recharge in the Bangkok Area, Thailand. Hydrogeology Journal, 15(4): 745-758. https://doi.org/10.1007/s10040-007-0175-z
[8] Lang, Y.C., 2005. Geochemical Characteristics of Cycling of Substances in Karstic Groundwater System: A Case Study from Guiyang and Zunyi Cities, China (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract).
[9] Lang, Y.C., Liu, C.Q., Han, G.L., et al., 2005.Characterization of Water-Rock Interaction and Pollution of Karstic Hydrological System: A Study on Water Chemistry and Sr Isotope of Surface/Ground Water of the Guiyang Area. Quaternary Sciences, 25(5):655-662 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200505014.htm
[10] Li, C.S., Wu, X.C., Sun, B., et al., 2018. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(S1):313-325 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027
[11] Li, H., Wen, Z., Xie, X.J., et al., 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016
[12] Liu, W.J., Yuan, X.M., Zhang, Y., et al., 2018. Hydrochemical Characteristics and Evolution of Karst Groundwater in Guiyang City. Geological Science and Technology Information, 37(6):245-251 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201806031.htm
[13] Lü, Y.X., Hu, W., Yang, Y., et al., 2019. Research Progress of Hydrological Cycle in Karst Critical Zone. Advances in Water Science, 30(1):123-138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz201901013
[14] Ma, Y.H., 2017. Process of Hydrochemical Evolution and Contamination of Karst Groundwater Systems in Guiyang City, Southwest China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
[15] Moral, F., Cruz-Sanjulián, J. J., Olías, M., 2008. Geochemical Evolution of Groundwater in the Carbonate Aquifers of Sierra de Segura (Betic Cordillera, Southern Spain). Journal of Hydrology, 360(1-4): 281-296. https://doi.org/10.1016/j.jhydrol.2008.07.012
[16] Pu, J. B., Yuan, D. X., Zhang, C., et al., 2012. Identifying the Sources of Solutes in Karst Groundwater in Chongqing, China: A Combined Sulfate and Strontium Isotope Approach. Acta Geologica Sinica (English Edition), 86(4): 980-992. https://doi.org/10.1111/j.1755-6724.2012.00722.x
[17] Wang, J.Y., Wang, J.L., Jin, M.G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5): 821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705018
[18] Wang, Y. X., Guo, Q. H., Su, C. L., et al., 2006. Strontium Isotope Characterization and Major Ion Geochemistry of Karst Water Flow, Shentou, Northern China. Journal of Hydrology, 328(3-4): 592-603. https://doi.org/10.1016/j.jhydrol.2006.01.006
[19] Wen, B., Zhou, J. W., Zhou, A. G., et al., 2016. Sources, Migration and Transformation of Antimony Contamination in the Water Environment of Xikuangshan, China: Evidence from Geochemical and Stable Isotope (S, Sr) Signatures. Science of the Total Environment, 569-570: 114-122. https://doi.org/10.1016/j.scitotenv.2016.05.124
[20] Xu, S., Li, S.L., Zhong, J., et al., 2018. Hydrochemical Characteristics and Chemical Weathering Processes in Chishui River Basin. Chinese Journal of Ecology, 37(3):667-678 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stxzz201803007
[21] Yang, X.L., Zeng, Q., Su, Z.Z., et al., 2010. Pollution Condition and Prevention of Groundwater Pollution in Guiyang City. Guizhou Geology, 27(4):291-295 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201004012
[22] Zha, X.F., Wu, P., Zhu, L.J., et al., 2008. Sustainable Development and Utilization and Measures of Karst Groundwater in Guiyang City. Environmental Protection and Technology, 14(1):27-30 (in Chinese with English abstract).
[23] Zhai, Y.Z., Wang, J.S., Zuo, R., et al., 2011. Strontium Isotopic Tracing of Water-Rock Interaction in Quaternary Aquifer in Beijing Plain. Science & Technology Review, 29(6):17-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201106006
[24] Zhao, J.T., Zhou, J.L., Gao, Y.X., et al., 2016.Spatial- Temporal Evolution of Total Dissolved Solids of Groundwater in Plain Area of Yanqi Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 32(5):120-125 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201605017
[25] 党爽, 2015.贵阳地区岩溶地下水资源现状及开发利用风险评价(硕士学位论文).贵阳: 贵州大学. http://cdmd.cnki.com.cn/Article/CDMD-10657-1015910972.htm
[26] 丁贞玉, 孙宁, 孙运海, 等, 2015.贵阳市岩溶地下水污染风险与防控监管.环境保护科学, 41(6): 104-112. doi: 10.3969/j.issn.1004-6216.2015.06.023
[27] 蒋勇军, 袁道先, 2014.城市发展对岩溶地下水质影响的地球化学示踪——以重庆南山老龙洞地下河系统为例.第四纪研究, 34(5):1044-1053. http://d.old.wanfangdata.com.cn/Conference/8868898
[28] 郎赟超, 2005.喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例(博士学位论文).贵阳: 中国科学院地球化学研究所. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y856107
[29] 郎赟超, 刘丛强, 韩贵琳, 等, 2005.贵阳市区地表/地下水化学与锶同位素研究.第四纪研究, 25(5):655-662. doi: 10.3321/j.issn:1001-7410.2005.05.015
[30] 李常锁, 武显仓, 孙斌, 等, 2018.济南北部地热水水化学特征及其形成机理.地球科学, 43(S1):313-325. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027
[31] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016
[32] 刘伟江, 袁祥美, 张雅, 等, 2018.贵阳市岩溶地下水水化学特征及演化过程分析.地质科技情报, 37(6):245-251. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201806031
[33] 吕玉香, 胡伟, 杨琰, 等, 2019.岩溶关键带水循环过程研究进展.水科学进展, 30(1):123-138. http://d.old.wanfangdata.com.cn/Periodical/skxjz201901013
[34] 马燕华, 2017.西南岩溶地区地下水系统水化学演化过程及污染成因研究——以贵阳市为例(硕士学位论文).武汉: 中国地质大学.
[35] 王珺瑜, 王家乐, 靳孟贵, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5): 821-831. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705018
[36] 徐森, 李思亮, 钟君, 等, 2018.赤水河流域水化学特征与岩石风化机制.生态学杂志, 37(3):667-678. http://d.old.wanfangdata.com.cn/Periodical/stxzz201803007
[37] 杨秀丽, 曾群, 苏泽志, 等, 2010.贵阳市地下水污染现状评价及防治对策.贵州地质, 27(4):291-295. doi: 10.3969/j.issn.1000-5943.2010.04.012
[38] 查学芳, 吴攀, 朱立军, 等, 2008.贵阳市岩溶地下水可持续开发利用与对策.环保科技, 14(1):27-30. doi: 10.3969/j.issn.1674-0254.2008.01.006
[39] 翟远征, 王金生, 左锐, 等, 2011.北京平原区第四系含水层中水-岩作用的锶同位素示踪.科技导报, 29(6):17-20. doi: 10.3981/j.issn.1000-7857.2011.06.001
[40] 赵江涛, 周金龙, 高业新, 等, 2016.新疆焉耆盆地平原区地下水溶解性总固体时空演化.农业工程学报, 32(5):120-125. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201605017