[1] Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182:88-108. https://doi.org/10.1016/j.gca.2016.02.036
[2] Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 doi: 10.1016-S0146-6380(97)00022-3/
[3] Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1):1-23. https://doi.org/10.1016/0016-7037(80)90173-8
[4] Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731):54-57. https://doi.org/10.1038/19953
[5] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5):878-888 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201805003
[6] Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59(17):3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o. doi: 10.1016/0016-7037(95)00225-O
[7] Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2007. Detection of 2-Thiaadamantanes in the Oils from Well TZ83 in Tarim Basin and Its Geological Implication. Chinese Science Bulletin, 52(24):2871-2875 (in Chinese with English abstract). doi: 10.1360/csb2007-52-24-2871
[8] Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5):831-839 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201705002
[9] Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7):1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
[10] Li, J., Li, Z.S., Wang, X.B., et al., 2017. New Indexes and Charts for Genesis Identification of Multiple Natural Gases. Petroleum Exploration & Development, 44(4):503-512 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201704003
[11] Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1):93-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007
[12] Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78:1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
[13] Li, Y., Xiong, Y. Q., Liang, Q. Y., et al., 2018. The Application of Diamondoid Indices in the Tarim Oils. AAPG Bulletin, 102(2):267-291. https://doi.org/10.1306/0424171518217073
[14] Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane:A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190:247-272. https://doi.org/10.1016/j.earscirev.2018.11.017
[15] Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1):35-43. https://doi.org/10.1016/j.jnggs.2016.03.001
[16] Ma, A.L., Jin, Z.J., Wang, Y., 2006. Problems of Oil-Source Correlation for Marine Reservoirs in Paleozoic Craton Area in Tarim Basin and Future Direction of Research. Oil & Gas Geology, 27(3):356-362 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200603010
[17] Ma, A. L., Jin, Z. J., Zhu, C. S., 2018a. Detection and Research Significance of Thiadiamondoids from Crude oil in Well Shunnan 1, Tarim Basin. Acta Petrolei Sinica, 38(1):42-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
[18] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018b. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi 2 from Magaiti Slope, Tarim Basin:Evidences from Molecular Markers.Oil & Gas Geology, 39(4):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201804011.htm
[19] Ma, A.L., Jin, Z.J., Zhu, C.S., et al., 2009. Quantitative Analysis on Absolute Concentration of Diamondoids in Oils from Tahe Oilfield. Acta Petrolei Sinica, 30(2):214-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200902009
[20] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2017. Cracking and Thermal Maturity of Ordovician Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 2(4):239-252. https://doi.org/10.1016/j.jnggs.2017.12.001
[21] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10):1440-1450. https://doi.org/10.1007/s11430-017-9244-7
[22] Pepper, A. S., Dodd, T. A., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅱ:Oil-Gas Cracking. Marine and Petroleum Geology, 12(3):321-340. https://doi.org/10.1016/0264-8172(95)98382-f doi: 10.1016/0264-8172(95)98382-F
[23] Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge.
[24] Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3):38-51 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201603004
[25] Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub-surface. Nature, 333(6173):549-552. https://doi.org/10.1038/333549a0
[26] Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin:Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x doi: 10.1016/0016-7037(82)90285-X
[27] Schoell, M., Carlson, R. M. K., 1999. Diamondoids and Oil are not Forever. Nature, 399(6731):15-16. https://doi.org/10.1038/19847
[28] Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases:Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22):2763-2770. https://doi.org/10.1007/s11434-006-2188-8
[29] Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin. https: //doi.org/10.1007/978-3-642-87813-8
[30] Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2):577-593 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.026 http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
[31] Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation:Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6):553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 doi: 10.1016/S0146-6380(00)00023-1
[32] Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007a. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6):3431-3436. https://doi.org/10.1021/ef7003333 http://cn.bing.com/academic/profile?id=c484aece8d234d34313c91c5ffafbf95&encoded=0&v=paper_preview&mkt=zh-cn
[33] Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007b. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking:Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2):227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011
[34] Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 1. Oil Family Classification. Organic Geochemistry, 36(8):1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013 http://cn.bing.com/academic/profile?id=719c1550a1442e347bed232581bb4f41&encoded=0&v=paper_preview&mkt=zh-cn
[35] Zhang, S. C., Su, J., Wang, X. M., et al., 2011. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3. Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations. Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013
[36] Zhao, X. Z., Jin, F. M., Wang, Q., et al., 2011. Niudong 1 Ultra-Deep and Ultra-High Temperature Subtle Buried Hill Field in Bohai Bay Basin:Discovery and Significance. Acta Petrolei Sinica, 32(6):915-926 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01c7e5816be8d62a22a610de64d64a1d&encoded=0&v=paper_preview&mkt=zh-cn
[37] Zhu, G. Y., Milkov, A. V., Chen, F. R., et al., 2018a. Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China. Marine and Petroleum Geology, 89:252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019
[38] Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018b. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123:136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
[39] Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69:1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
[40] Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52:88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012
[41] 邓尚, 李慧莉, 张仲培, 等, 2018.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系.石油与天然气地质, 39(5):878-888. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201805003
[42] 姜乃煌, 朱光有, 张水昌, 等, 2007.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义.科学通报, 52(24):2871-2875. doi: 10.3321/j.issn:0023-074x.2007.24.009
[43] 焦方正, 2017.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义.石油与天然气地质, 38(5):831-839. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201705002
[44] 李剑, 李志生, 王晓波, 等, 2017.多元天然气成因判识新指标及图版.石油勘探与开发, 44(4):503-512. http://d.old.wanfangdata.com.cn/Periodical/syktykf201704003
[45] 李培军, 陈红汉, 唐大卿, 等., 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx201701007
[46] 马安来, 金之钧, 王毅, 2006.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向, 石油与天然气地质, 27(3):356-362. doi: 10.3321/j.issn:0253-9985.2006.03.010
[47] 马安来, 金之钧, 朱翠山, 等, 2009.塔河油田原油中金刚烷化合物绝对定量分析.石油学报, 30(2):214-218. doi: 10.3321/j.issn:0253-2697.2009.02.009
[48] 马安来, 金之钧, 朱翠山, 2018a.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义.石油学报, 39(1):42-53. http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
[49] 马安来, 金之钧, 朱翠山, 等, 2018b.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据.石油与天然气地质, 39(4):730-737. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201804010
[50] 漆立新, 2016.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义.中国石油勘探, 21(3):38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004
[51] 田辉, 王招明, 肖中尧, 等., 2006.原油裂解成气动力学模拟及其意义.科学通报, 51(15):1821-1827. doi: 10.3321/j.issn:0023-074X.2006.15.014
[52] 王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
[53] 赵贤正, 金凤鸣, 王权, 等, 2011.渤海湾盆地牛东超深潜山高温油气藏的发现及其意义.石油学报, 32(6):915-926.