Advances in Analysis for Halogens in Geological Materials
-
摘要: 地质样品中卤素是反演与流体和挥发分相关的地质过程的重要示踪元素.由于卤素含量低和强挥发性,准确测定地质样品中卤素一直是分析地球化学的难点.近年来,针对地质样品卤素的样品前处理技术的开发开展了大量工作.高温热解法、碱熔(溶)法、酸性消解法和碱性提取法能够满足土壤、沉积物和岩石中高含量卤素的分析要求.针对低含量卤素,仅有中子活化法和稀有气体质谱法能够准确定量.随着分析地球化学的发展,地质样品卤素分析技术逐渐向更高效的消解方法、更简便的操作以及更高灵敏度和高精度的分析方向改进.总结了近年来国内外在地质样品卤素分析方面所取得的成果,对比了各类方法的优缺点,展望了地质样品卤素分析方法的发展前景.Abstract: Halogen in geological materials is the key tracer for the fluid/volatile related geological processes. Due to low concentration of halogens and high volatility, it is a challenge for the analysis of halogens in geological materials. Many studies on sample preparation for the analysis of halogens in geological materials have been reported in the last decade. Pyrohydrolysis, alkali fusion, acid digestion and alkali extraction are suitable for the high concentrations of halogens in soils, sediments and most of rocks. Only neutron activation analysis and noble gas technique can be utilized to analyze the low concentrations of halogens in geological materials. With the development of earth science and the analytical geochemistry, the future analysis of halogens will be more effective, more convenients and with higher sensitivity and precision are the future of the analysis of halogens. In this study, we reviewed the development of analysis techniques for halogens and compares the advantages and drawbacks between different methods. Finally, a perspective of the development of analytical method for halogens in geological materials are given.
-
Key words:
- halogen /
- geological material /
- sample preparation /
- analytical method /
- geochemistry
-
硅化蚀变作用是指岩石在热液作用下,产生含有石英、玉髓、蛋白石、似碧玉等蚀变矿物的过程,是岩石矿物蚀变中一种重要的矿化蚀变类型,且石英脉和硅化带等硅化信息也常作为野外重要的找矿标志(于正军等,2010).很多金矿的形成与硅化蚀变密切相关,一般硅化越强,矿化越显著(肖晋等,1989).
岩石在发生硅化作用后形成的蚀变矿物,其主要成分为SiO2,由此岩石在发生硅化蚀变作用前后SiO2含量会发生巨大的变化,而且蚀变程度越强,岩石所含SiO2含量越高.这就使得发生硅化作用的岩石在SiO2含量方面成为一种异常,偏离相对均一的地质体背景,所以依据SiO2含量可以用来辅助对硅化信息的提取.
自从先进星载热发射和反射辐射仪(advanced spaceborne thermal emission and reflection radiometer,ASTER)传感器问世以来,国内外诸多学者针对造岩矿物在ASTER热红外波段的发射光谱特征与SiO2含量的关系做了大量研究,Ninomiya(2002)实现了从定性到定量的突破;Lyon(1965)测得25个火成岩样品(酸性-超基性)的发射率光谱及其SiO2含量,结果表明随着SiO2含量的增加,发射率吸收位置会向短波方向偏移.在国内,杨长保和朱群(2009)从USGS、JPL和JHU 3个岩石矿物光谱库中选择62个火成岩样本,并利用SPSS软件进行多元逐步回归分析从而得出了定量反演SiO2含量的回归方程.在硅化信息提取研究方面,利用遥感可见光-近红外数据对其进行提取的技术方法已日趋成熟,杨波等(2005)利用Landsat/TM数据建立了矿化信息定量提取模型,对鹰嘴山金矿区的硅化信息进行了提取.
前人对于SiO2含量反演及硅化信息提取是分开独立研究,并没有考虑依据二者间的关系.利用SiO2含量和热红外遥感数据来对硅化信息的提取的研究还尚未见报道.因此,本文选取ASTER热红外数据,对蚀变矿物在ASTER热红外波段的光谱特征进行分析,以SiO2含量为辅助因子,寻求硅化信息的提取方法.
1. 硅化信息提取方法
1.1 ASTER热红外数据预处理
ASTER热红外数据包含5个波段(波段10~14),波段范围为8.125~11.650 μm,空间分辨率为90 m,辐射度分辨率≤0.3 k,量化级别为12 bits.
ASTER热红外数据的预处理包括辐射定标、大气校正、几何校正以及发射率反演.笔者基于TIR AtmosCorrect模型对ASTER热红外数据进行大气校正,消除了大气对地物发射率信息的影响;同时在ASTER可见光-近红外波段影像上选取与基准图像相对应的控制点,通过控制点坐标信息找到对应于热红外波段影像上的点,完成了ASTER热红外数据的几何校正.利用发射率归一化法对ASTER热红外波段数据进行了发射率反演(徐州等,2006),得到了ASTER的10~14波段发射率影像图.
1.2 硅化蚀变矿物热红外波谱特征分析
在研究ASTER热红外数据硅化信息提取方法的过程中,对USGS标准波谱数据库中硅化蚀变矿物石英及蛋白石发射率曲线重采样到ASTER热红外波段,综合分析后,笔者发现石英和蛋白石在9.0 μm处有明显的吸收谷(对应ASTER数据的B12),在10.65 μm处有明显的发射峰特征(对应ASTER数据的B13)(图 1).
1.3 硅化信息提取方法
依据蚀变矿物在ASTER热红外波段的发射率曲线特征,结合Rowan and Mars(2003)针对ASTER热红外数据使用的比值法,笔者发现可以突出硅化信息,对硅化信息按照蚀变强度分为3级进行初步提取.
在对硅化信息初步提取的基础上,依据发生硅化作用的岩石在SiO2含量大小上明显高于其他地质背景,同时硅化蚀变越强SiO2含量越高.依据此,可以将SiO2含量定义为提取硅化信息的辅助因子,对初步提取的硅化信息做进一步纠正,以完善ASTER热红外遥感硅化信息提取方法,方法具体流程如图 2所示.
2. 方法应用
为验证提出的ASTER热红外硅化信息提取方法是否具有可行性,笔者选取两处成像于2005年9月15日的ASTER热红外影像,在内蒙古二连浩特市北部区域做实地验证分析.
2.1 研究区地质概况
研究区位于内蒙古二连浩特市北部,地理坐标范围111°45′00″~112°15′00″E,44°10′00″~44°45′00″N.由于研究区地处戈壁荒漠区,植被覆盖度较低,岩石裸露条件较好,所以被选作为低覆盖草原蚀变信息提取方法及地质填图方法研究区.
研究区出露地层以石炭系-二叠系为主,零星发育中、晚奥陶世、早石炭世、晚石炭世和晚侏罗世的地层,多为第四系覆盖.区内褶皱构造和断裂构造同等发育,所显示的构造线方向以NE方向为主.区内岩浆岩分布相对广泛,以华力西期和燕山期的花岗岩类侵入岩石为主.华力西期岩体侵入石炭系宝力高庙组或中、下奥陶统乌宾敖包组中,以二长花岗岩、正长花岗岩、砂砾岩以及黑云母花岗闪长岩为主,华力西晚期的岩体被侏罗纪地层不整合覆盖,或被燕山期花岗岩侵入(图 3).
图 3 研究区地质图1.湖积层:现代湖积淤泥沉积;2.冲洪积层: 由砂岩及砾石层组成;3.冲洪积层: 由粗砂和砾石层组成;4.阿巴嘎组: 灰紫色、紫褐色气孔状玄武岩及伊丁玄武岩、安山玄武岩;5.宝格达乌拉组:砖红色泥岩夹含砾粗砂岩;6.伊尔丁曼哈组:红色粘土和黄色砂砾岩;7.大磨拐河组:页岩、泥岩、砂岩、砂砾岩及砾岩组成夹褐煤;8.白音高老组:流纹质岩屑晶屑凝灰岩、流纹岩及流纹质溶结凝灰岩等酸性火山岩;9.玛尼吐组:安山岩、粗安岩、石英粗安岩、安山玢岩安山质角砾凝灰岩、英安玢岩及灰黑色及灰紫色玄武岩;10.宝力高庙组二段:灰-灰褐色安山岩、溶解凝灰岩,黄褐色灰绿色流纹质含角砾晶屑凝灰岩、凝灰质砂岩英安岩等中酸性火山岩及火山碎屑岩,含植物化石;11.宝力高庙组二段:(变质)长石砂岩、板岩、砾岩、硬砂岩为主夹中酸性岩屑晶屑凝灰岩、安山玢岩及灰岩透镜体;12.泥鳅河组:为浅海相碎屑岩夹灰岩组合,岩性为灰色、灰绿色、褐灰色(变质)粉砂质泥、砂岩夹灰岩;13.乌宾敖包组:灰褐色、灰绿色板岩、绢云母板岩、分砂质板岩、长石砂岩、变泥岩夹安山玢岩及灰岩透镜体;14.肉红色中细粒正长花岗岩;15.肉红色中细粒云母二长花岗岩;16.肉红色斑状中细粒黑云母二长花岗岩;17.肉红色中细粒-细中粒碱长花岗岩;18.灰绿色角闪花岗闪长岩;19.灰绿-暗灰绿色中细粒闪长岩、石英闪长岩;20.灰、灰白、灰黄色中细粒正长花岗岩、碱长花岗岩局部有闪石碱性花岗岩;21.灰白-灰色斑状中细粒黑云母正长花岗岩;22.肉红色中细粒-细粒二长花岗岩;23.灰白-灰色中细粒黑云母二长花岗岩;24.灰白-灰色斑状中细粒黑云母二长花岗岩及少量花岗闪长岩;25.灰白-灰色花岗闪长岩及少量石英闪长岩、石英二长岩;26.晚侏罗世次粗面斑岩;27.石英脉;28.花岗岩脉;29.碱性花岗斑岩脉;30.闪长岩脉;31.地质界线;32.实测地层不整合界线、火山喷发不整合地质界线;33.实测正断层;34.实测逆断层;35.实测平移断层;36.实测性质不明断层;37.角岩化;38.构造破碎带Fig. 3. Geological sketch of the research area2.2 SiO2含量反演
陈江和王安建(2007)将ASU波谱库的矿物波谱重采样至ASTER热红外波段,对矿物的波谱进行波段比值处理,选择波段比值与SiO2含量最大相关系数,进行对数模拟,从而确定了发射率波谱与SiO2含量的数值关系.其反演公式如下:
SiO2=28.76×ln(6.56×E13×E14/(E10×E12)), (1) 式(1)中,E10、E12、E13和E14对应ASTER热红外波段中心波长处的发射率值.笔者依据公式(1),在对ASTER热红外数据做完预处理的基础上,利用波段计算工具得出了研究区的SiO2含量结果(图 4).图 4中含量高值对应于地质图上的红色粘土和黄色砂砾岩,含量低值对应于地质图上的安山岩及粗安岩等.
2.3 硅化信息提取
利用比值法(B13/B12)对研究区发射率影像进行处理,得到突出硅化信息的图像.对其进行滤波处理后,统计滤波后图像的均值和标准差,对初步提取的硅化信息按蚀变强度分为3级.硅化信息初步结果如图 5所示.
对反演得到的SiO2含量结果与初步提取的硅化信息结果进行叠加对比分析,将图像中SiO2含量明显高于周围背景而没有在蚀变结果中得到体现的区域,认定为存在硅化蚀变.由此得到研究区的最终硅化信息结果(图 6).对比分析图 5与图 6,可以明显地发现在区域A~D中,通过引入SiO2含量这一辅助因子使得在最终得到的结果图中硅化信息得以补充完善.尤其是在区域A与C中,完善的硅化信息在野外实地勘察中得到了实地验证.
通过实验区野外考察,笔者发现在研究区裸露岩石处硅化蚀变现象十分明显,硅化程度由弱到强,在39个野外硅化采样点中,33个采样点在结果图中得到验证,精度达到86.14%.然而对于初始硅化信息提取结果,其没有考虑SiO2含量与硅化信息间的关系,这就使得有些野外实际存在的岩石硅化蚀变在结果图中没有被提取出来,提取结果精度为76.92%.总的来说,通过以SiO2含量为辅助因子对硅化信息纠正,使得硅化信息提取结果精度提高了9.22%.
3. 结论
通过分析硅化蚀变矿物在ASTER热红外波段的波谱特征,利用比值法(B13/B12)得到初步硅化信息结果,结合硅化蚀变与SiO2含量间的关系对硅化信息进行纠正,完善了提取方法.通过在内蒙古二连浩特市北部区域对方法进行实地应用,笔者发现硅化信息提取结果与野外实地勘察吻合度较高,精度达到86.14%,与未利用SiO2含量来对硅化信息进行纠正的结果相比,精度提高了9.22%.结果表明,以SiO2含量为辅助因子的硅化信息提取方法能够实现对野外硅化信息进行较精确的提取,丰富了利用遥感技术对硅化信息提取的手段,对遥感地质找矿工作带来了帮助.
-
图 1 地球上不同卤素储库的Br/Cl和I/Cl比值与不同矿床类型流体的Br/Cl和I/Cl比值(改自Lecumberri-Sanchez and Bodnar, 2018)
Fig. 1. Characteristic Br/Cl and I/Cl ratios of the different halogen reservoirs on the Earth and fluids in different ore deposit types(revised from Lecimberri-Sanchez and Bodnar, 2018)
图 2 国内土壤(GSS系列)和沉积物(GSD系列)标准物质和国际岩石标准物质(玄武岩BHVO-2、安山岩AGV-2、花岗岩GS-N和橄榄岩JP-1)中Br (a)和I (b)的测定值
Fig. 2. The measured values of Br (a) and I (b) in reference standard materials including soils (GSS series), sediments (GSD series) and rocks (basalt BHVO-2, andesite AGV-2, granite GS-N and peridotite JP-1)
图 3 高温热解法装置(改自Chai and Muramatsu, 2007)
Fig. 3. The schematic diagram of pyrohydrolysis (revised from Chai and Muramatsu, 2007)
图 4 氟化氢铵消解卤素分析方法机理图(改自He et al., 2019)
Fig. 4. The decomposition mechanism of NH4HF2 digestion for halogen analysis (revised from He et al., 2019)
图 5 79Br中子活化过程示意(改自Ruzié-Hamilton et al., 2016)
Fig. 5. The schematic of neutron irradiation for 79Br(revised from Ruzié-Hamilton et al., 2016)
表 1 地球各个储库的卤素丰度
Table 1. Abundances of halogens on Earth
储库类型 储库总质量(1021 kg) F(μg/g) Cl(μg/g) Br(μg/g) I(μg/g) 海水 1.4±0.7 1.30±0.07 19 300±970 66±3.3 0.058±0.006 蒸发盐 0.030±0.005 10±10 550 000±50 000 150±100 1±1 海洋沉积物 0.5±0.1 1 000±300 4 000±3 000 40±20 30±15 沉积岩 1.5±0.3 550±100 700±400 4±3 1.5±1.0 地壳卤水 0.06±0.03 20±15 100 000±50 000 600±400 15±10 地壳 26±3 550±100 300±100 0.60±0.25 0.018±0.009 地幔 2 800±800 12±2 5±2 0.013±0.006 0.000 3±0.000 01 原始地幔 4 040 17±6 26±8 76±25 0.007±0.004 注:数据引自 Kendrick et al.(2017) .表 2 卤素的质谱干扰所需分辨率
Table 2. The resolution to resolve the spectral interferences on halogens
被测元素 干扰离子 所需分辨率(M/ΔM) 19F+ 38Ar2+ 1 116 18O1H+ 1 160 35Cl+ 19F16O+ 1 430 18O18O1H+ 1 059 37Cl+ 36Ar1H+ 4 680 79Br+ 63Cu16O+ 12 790 41K38Ar+ 12 688 39K40Ar+ 10 184 40Ar38Ar1H+ 5 405 81Br+ 65Cu16O+ 12 624 45Sc36Ar+ 11 286 41K40Ar+ 10 217 63Cu18O+ 6 489 40Ar40Ar1H+ 4 965 127I+ 87Sr40Ar+ 3 822 87Rb40Ar+ 3 854 111Cd16O+ 23 545 -
Adam, J., Green, T., 2006. Trace Element Partitioning between Mica- and Amphibole-Bearing Garnet Lherzolite and Hydrous Basanitic Melt: 1. Experimental Results and the Investigation of Controls on Partitioning Behaviour. Contributions to Mineralogy and Petrology, 152(1): 1-17. https://doi.org/10.1007/s00410-006-0085-4 Anazawa, K., Tomiyasu, T., Sakamoto, H., 2001. Simultaneous Determination of Fluorine and Chlorine in Rocks by Ion Chromatography in Combination with Alkali Fusion and Cation-Exchange Pretreatment. Analytical Sciences, 17(1): 217-219. https://doi.org/10.2116/analsci.17.217 Balcone-Boissard, H., Michel, A., Villemant, B., 2009. Simultaneous Determination of Fluorine, Chlorine, Bromine and Iodine in Six Geochemical Reference Materials Using Pyrohydrolysis, Ion Chromatography and Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 33(4): 477-485. https://doi.org/10.1111/j.1751-908x.2009.00018.x doi: 10.1111/j.1751-908X.2009.00018.x Barbosa, J.T.P., Santos, C.M.M., dos Santos Bispo, L., et al., 2013. Bromine, Chlorine, and Iodine Determination in Soybean and Its Products by ICP-MS after Digestion Using Microwave-Induced Combustion. Food Analytical Methods, 6(4): 1065-1070. https://doi.org/10.1007/s12161-012-9511-6 Blackwell, P.A., Cave, M.R., Davis, A.E., et al., 1997. Determination of Chlorine and Bromine in Rocks by Alkaline Fusion with Ion Chromatography Detection. Journal of Chromatography A, 770(1-2): 93-98. https://doi.org/10.1016/s0021-9673(97)00028-9 doi: 10.1016/S0021-9673(97)00028-9 Bodkin, J.B., 1977. Determination of Fluorine in Silicates by Use of an Ion-Selective Electrode Following Fusion with Lithium Metaborate. Analyst, 102(1215): 409-413. http://doi.org/10.1039/an9770200409 Boulyga, S.F., Heumann, K.G., 2005. Direct Determination of Halogens in Powdered Geological and Environmental Samples Using Isotope Dilution Laser Ablation ICP-MS. International Journal of Mass Spectrometry, 242(2-3): 291-296. https://doi.org/10.1016/j.ijms.2004.10.028 Broadley, M.W., Barry, P.H., Ballentine, C.J., et al., 2018. End-Permian Extinction Amplified by Plume-Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11(9): 682-687. https://doi.org/10.1038/s41561-018-0215-4 Bu, X.D., Wang, T.B., Hall, G., 2003. Determination of Halogens in Organic Compounds by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). Journal of Analytical Atomic Spectrometry, 18(12): 1443-1451. https://doi.org/10.1039/b306570g Caulfield, J.T., Tomlinson, E.L., Chew, D.M., et al., 2020. Microanalysis of Cl, Br and I in Apatite, Scapolite and Silicate Glass by LA-ICP-MS. Chemical Geology, 557: 119854. http://doi.org/10.1016/j.chemgeo.2020.119854 Chai, J.Y., Muramatsu, Y., 2007. Determination of Bromine and Iodine in Twenty-Three Geochemical Reference Materials by ICP-MS. Geostandards and Geoanalytical Research, 31(2): 143-150. https://doi.org/10.1111/j.1751-908x.2007.00856.x doi: 10.1111/j.1751-908X.2007.00856.x Chew, D.M., Donelick, R.A., Donelick, M.B., et al., 2014. Apatite Chlorine Concentration Measurements by LA-ICP-MS. Geostandards and Geoanalytical Research, 38(1): 23-35. https://doi.org/10.1111/j.1751-908X.2013.00246.x Claret, F., Lerouge, C., Laurioux, T., et al., 2010. Natural Iodine in a Clay Formation: Implications for Iodine Fate in Geological Disposals. Geochimica et Cosmochimica Acta, 74(1): 16-29. http://doi.org/10.1016/j.gca.2009.09.030 Clay, P.L., Burgess, R., Busemann, H., et al., 2017. Halogens in Chondritic Meteorites and Terrestrial Accretion. Nature, 551: 614-618. https://doi.org/10.1038/nature24625 Cortizas, A.M., Vázquez, C.F., Kaal, J., et al., 2016. Bromine Accumulation in Acidic Black Colluvial Soils. Geochimica et Cosmochimica Acta, 174: 143-155. https://doi.org/10.1016/j.gca.2015.11.013 Date, A.R., Stuart, M.E., 1988. Application of Inductively Coupled Plasma Mass Spectrometry to the Simultaneous Determination of Chlorine, Bromine and Iodine in the National Bureau of Standards Standard Reference Material 1648 Urban Particulate. Journal of Analytical Atomic Spectrometry, 3(5): 659-665. https://doi.org/10.1039/ja9880300659 de Gois, J.S., Costas-Rodriguez, M., Vallelonga, P., et al., 2016a. A Simple Method for High-Precision Isotopic Analysis of Chlorine via Pneumatic Nebulization Multi-Collector Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 31(2): 537-542. https://doi.org/10.1039/c5ja00408j doi: 10.1039/C5JA00408J de Gois, J.S., Vallelonga, P., Spolaor, A., et al., 2016b. Bromine Isotope Ratio Measurements in Seawater by Multi-Collector Inductively Coupled Plasma-Mass Spectrometry with a Conventional Sample Introduction System. Analytical and Bioanalytical Chemistry, 408(2): 409-416. https://doi.org/10.1007/s00216-015-8820-1 Ebihara, M., Ozaki, H., Kato, F., et al., 1997. Determination of Chlorine, Bromine and Iodine in Rock Samples by Radiochemical Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 216(1): 107-112. https://doi.org/10.1007/bf02034504 doi: 10.1007/BF02034504 Flores, E. M. M., Mello, P. A., Krzyzaniak, S. R., et al., 2020. Challenges and Trends for Halogen Determination by Inductively Coupled Plasma Mass Spectrometry: A Review. Rapid Communications in Mass Spectrometry, 34: e8727. https://doi.org/10.1002/rcm.8727 Frenzel, M., Cook, N.J., Ciobanu, C.L., et al., 2020. Halogens in Hydrothermal Sphalerite Record Origin of Ore-Forming Fluids. Geology, 48(8): 766-770. https://doi.org/10.1130/g47087.1 doi: 10.1130/G47087.1 Fusswinkel, T., Giehl, C., Beermann, O., et al., 2018. Combined LA-ICP-MS Microanalysis of Iodine, Bromine and Chlorine in Fluid Inclusions. Journal of Analytical Atomic Spectrometry, 33(5): 768-783. https://doi.org/10.1039/c7ja00415j doi: 10.1039/C7JA00415J Gao, Y.C., Gao, Q.F., Sun, M.X., et al., 2007. Simultaneous Determination of Arsenic, Bromine, Iodine in Coal and Coke by Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion. Chinese Journal of Analytical Chemistry, 35(8): 1175-1178. https://doi.org/10.1016/s1872-2040(07)60077-2 doi: 10.1016/S1872-2040(07)60077-2 Gao, Y.C., Sun, M.X., Wu, X.W., et al., 2010. Concentration Characteristics of Bromine and Iodine in Aerosols in Shanghai, China. Atmospheric Environment, 44(34): 4298-4302. https://doi.org/10.1016/j.atmosenv.2010.05.047 Gómez-Guzmán, J.M., Enamorado-Báez, S.M., Pinto-Gómez, A.R., et al., 2011. Microwave-Based Digestion Method for Extraction of 127I and 129I from Solid Material for Measurements by AMS and ICP-MS. International Journal of Mass Spectrometry, 303(2-3): 103-108. https://doi.org/10.1016/j.ijms.2011.01.006 Gubal, A., Chuchina, V., Sorokina, A., et al., 2021. Mass Spectrometry-Based Techniques for Direct Quantification of High Ionization Energy Elements in Solid Materials-Challenges and Perspectives. Mass Spectrometry Reviews, 40(4): 359-380. https://doi.org/10.1002/mas.21643 Guo, W., Jin, L.L., Hu, S.H., et al., 2017. Method Development for the Determination of Total Fluorine in Foods by Tandem Inductively Coupled Plasma Mass Spectrometry with a Mass-Shift Strategy. Journal of Agricultural and Food Chemistry, 65(16): 3407-3413. https://doi.org/10.1021/acs.jafc.7b00535 Guo, W., Liu, X., Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374(in Chinese with English abstract). Hammerli, J., Rusk, B., Spandler, C., et al., 2013. In Situ Quantification of Br and Cl in Minerals and Fluid Inclusions by LA-ICP-MS: A Powerful Tool to Identify Fluid Sources. Chemical Geology, 337-338: 75-87. https://doi.org/10.1016/j.chemgeo.2012.12.002 He, T., Hu, Z.C., Zhang, W., et al., 2019. Determination of Cl, Br, and I in Geological Materials by Sector Field Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 91(13): 8109-8114. https://doi.org/10.1021/acs.analchem.9b00180 He, T., Xie, J.Y., Hu, Z.C., et al., 2018. A Rapid Acid Digestion Technique for the Simultaneous Determination of Bromine and Iodine in Fifty-Three Chinese Soils and Sediments by ICP-MS. Geostandards and Geoanalytical Research, 42(3): 309-318. https://doi.org/10.1111/ggr.12212 Hou, X.L., Chai, C.F., Qian, Q.F., et al., 1997. Determination of Bromine and Iodine in Biological and Environmental Materials Using Epithermal Neutron Activation Analysis. Fresenius' Journal of Analytical Chemistry, 357(8): 1106-1110. https://doi.org/10.1007/s002160050314 Hu, R.G., Zhao, Y.L., Cai, Y.F., et al., 2020. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Science, 45(4): 1213-1226(in Chinese with English abstract). Hu, Z.C., Qi, L., 2014. Sample Digestion Methods. In: Turekian, K.K., ed. Treatise on Geochemistry. Elsevier, Oxford, 87-109. Huang, W.H., Johns, W.D., 1967. Simultaneous Determination of Fluorine and Chlorine in Silicate Rocks by a Rapid Spectrophotometric Method. Analytica Chimica Acta, 37: 508-515. https://doi.org/10.1016/s0003-2670(01)80714-5 doi: 10.1016/S0003-2670(01)80714-5 Jamari, N.L.A., Behrens, A., Raab, A., et al., 2018. Plasma Processes to Detect Fluorine with ICPMS/MS as[M-F]+: An Argument for Building a Negative Mode ICPMS/MS. Journal of Analytical Atomic Spectrometry, 33(8): 1304-1309. https://doi.org/10.1039/c8ja00050f doi: 10.1039/C8JA00050F Jones, G.B., Belling, G.B., Buckley, R.A., 1979. Recovery of Iodine as Iodine-125 from Biological Materials Prior to Assay. Analyst, 104(1238): 469-471. https://doi.org/10.1039/AN9790400469 doi: 10.1039/an9790400469 Kendrick, M.A., 2012. High Precision Cl, Br and I Determinations in Mineral Standards Using the Noble Gas Method. Chemical Geology, 292-293: 116-126. https://doi.org/10.1016/j.chemgeo.2011.11.021 Kendrick, M.A., Burgess, R., Pattrick, R.A.D., et al., 2001. Fluid Inclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralising Fluids. Geochimica et Cosmochimica Acta, 65(16): 2651-2668. https://doi.org/10.1016/s0016-7037(01)00618-4 doi: 10.1016/S0016-7037(01)00618-4 Kendrick, M.A., Caulfield, J.T., Nguyen, A.D., et al., 2020. Halogen and Trace Element Analysis of Carbonate-Veins and Fe-Oxyhydroxide by LA-ICP-MS: Implications for Seafloor Alteration, Atlantis Bank, SW Indian Ridge. Chemical Geology, 547: 119668. https://doi.org/10.1016/j.chemgeo.2020.119668 Kendrick, M.A., D'Andres, J., Holden, P., et al., 2018. Halogens (F, Cl, Br, I) in Thirteen USGS, GSJ and NIST International Rock and Glass Reference Materials. Geostandards and Geoanalytical Research, 42(4): 499-511. https://doi.org/10.1111/ggr.12229 Kendrick, M.A., Hémond, C., Kamenetsky, V.S., et al., 2017. Seawater Cycled throughout Earth's Mantle in Partially Serpentinized Lithosphere. Nature Geoscience, 10(3): 222-228. http://doi.org/10.1038/ngeo2902 Kendrick, M.A., Honda, M., Vanko, D.A., 2015. Halogens and Noble Gases in Mathematician Ridge Meta-Gabbros, NE Pacific: Implications for Oceanic Hydrothermal Root Zones and Global Volatile Cycles. Contributions to Mineralogy and Petrology, 170: 43. https://doi.org/10.1007/s00410-015-1192-x Kendrick, M.A., Kamenetsky, V.S., Phillips, D., et al., 2012a. Halogen Systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: A Macquarie Island Case Study. Geochimica et Cosmochimica Acta, 81: 82-93. https://doi.org/10.1016/j.gca.2011.12.004 Kendrick, M.A., Woodhead, J.D., Kamenetsky, V.S., 2012b. Tracking Halogens through the Subduction Cycle. Geology, 40(12): 1075-1078. http://doi.org/10.1130/g33265.1 doi: 10.1130/G33265.1 la Rosa Novo, D., Pereira, R.M., Henn, A.S., et al., 2019. Are There Feasible Strategies for Determining Bromine and Iodine in Human Hair Using Interference-Free Plasma Based-Techniques? Analytica Chimica Acta, 1060: 45-52. http://doi.org/10.1016/j.aca.2019.01.032 Langenauer, M., Krahenbuhl, U., Furrer, V., et al., 1992. Determination of Fluorine, Chlorine, Bromine and Iodine in 7 Geochemical Reference Samples. Geostandards Newsletter, 16(1): 41-44. https://doi.org/10.1111/j.1751-908x.1992.tb00485.x doi: 10.1111/j.1751-908X.1992.tb00485.x Lecumberri-Sanchez, P., Bodnar, R.J., 2018. Halogen Geochemistry of Ore Deposits: Contributions towards Understanding Sources and Processes. In: Harlov, D.E., Aranovich, L., eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer International Publishing, Cham, 261-305 Li, B., He, H.L., Shi, S.Y., et al., 2002. Simultaneous Determination of Iodine, Bromine, Selenium and Arsenic in Geological Samples by Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 17(4): 371-376. https://doi.org/10.1039/b107161k Li, B., He, H.L., Shi, S.Y., et al., 2001a. Determination of Trace Iodine, Bromine, Selenium and Arsenic in Geological Samples by Inductively Coupled Plasma Mass Spectrometry I. Signal Response of Different Anion Species in Mediums. Rock and Mineral Analysis, 20(3): 161-166(in Chinese with English abstract). Li, B., Ma, X.R., Han, L.R., et al., 2004. Pressurised Extraction Using Dilute Ammonia: A Simple Method for Determination of Iodine in Soil, Sediment and Biological Samples by Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(2): 317-323. http://doi.org/10.1111/j.1751-908x.2004.tb00747.x doi: 10.1111/j.1751-908X.2004.tb00747.x Li, B., Shi, S.Y., He, H.L., et al., 2001b. Determination of Trace Iodine, Bromine, Selenium and Arsenic in Geological Samples by ICP-MS with Half-Melting Sample Treatment Ⅱ. Analysis of Soil and Sediment Standard Reference Materials. Rock and Mineral Analysis, 20(4): 241-246(in Chinese with English abstract). Li, J., Zhong, L.F., Cui, X.J., et al., 2006. Precise Determination of Iodine in Soil Samples by ICP-MS with Carius Tube and Standard Addition Method. Rock and Mineral Analysis, 25(1): 19-21(in Chinese with English abstract). Liu, J.C., 1993. Determination Chlorine, Bromine, Iodine in the Samples of Rocks, Soils, Stream Sediments Using the Ion Exchange Chromatography Method. Jilin Geology, 12(4): 82-90(in Chinese with English abstract). Liu, W., Yang, H.X., Li, B., 2008. Recent Development of Methods for Iodine Analysis. Rock and Mineral Analysis, 27(2): 127-136(in Chinese with English abstract). Liu, W., Yang, H.X., Li, B., et al., 2010. Determination of Iodine Concentration in Plant Samples by Inductively Coupled Plasma Mass Spectrometry with Ethanol as a Signal Enhancer. Chinese Journal of Analysis Laboratory, 29(6): 31-33(in Chinese with English abstract). Liu, X., Liu, J.Y., Ni, L.J., et al., 2018. Determination of Halogens in Coal by Ion Chromatography Coupled with High Temperature Pyrolysis Pretreatment. Physical Testing and Chemical Analysis Part B: Chemical Aanalysis, 54(1): 39-43(in Chinese with English abstract). Lu, Z., Jenkyns, H.C., Rickaby, R.E.M., 2010. Iodine to Calcium Ratios in Marine Carbonate as a Paleo-Redox Proxy during Oceanic Anoxic Events. Geology, 38(12): 1107-1110. http://doi.org/10.1130/g31145.1 doi: 10.1130/G31145.1 Ma, X.R., Li, B., Han, L.R., 2003. Determination of Total Iodine and Bromine in Soil, Sediment and Biological Samples by Inductively Coupled Plasma Mass Spectrometry with Dilute Ammonia Pressurizing Decomposition. Rock and Mineral Analysis, 22(3): 174-178(in Chinese with English abstract). Marks, M.A.W., Kendrick, M.A., Eby, G.N., et al., 2017. The F, Cl, Br and I Contents of Reference Glasses BHVO-2G, BIR-1G, BCR-2G, GSD-1G, GSE-1G, NIST SRM 610 and NIST SRM 612. Geostandards and Geoanalytical Research, 41(1): 107-122. https://doi.org/10.1111/ggr.12128 Mei, Y., Sherman, D.M., Liu, W.H., et al., 2013. Ab Initio Molecular Dynamics Simulation and Free Energy Exploration of Copper (Ⅰ) Complexation by Chloride and Bisulfide in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 102: 45-64. https://doi.org/10.1016/j.gca.2012.10.027 Mello, P.A., Barin, J.S., Duarte, F.A., et al., 2013. Analytical Methods for the Determination of Halogens in Bioanalytical Sciences: A Review. Analytical Bioanalytical Chemistry, 405(24): 7615-7642. http://doi.org/10.1007/s00216-013-7077-9 Mesko, M.F., Costa, V.C., Picoloto, R.S., et al., 2016. Halogen Determination in Food and Biological Materials Using Plasma-Based Techniques: Challenges and Trends of Sample Preparation. Journal of Analytical Atomic Spectrometry, 31(6): 1243-1261. http://doi.org/10.1039/c5ja00488h doi: 10.1039/C5JA00488H Michel, A., Villemant, B., 2003. Determination of Halogens (F, Cl, Br, I), Sulfur and Water in Seventeen Geological Reference Materials. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 27(2): 163-171. https://doi.org/10.1111/j.1751-908x.2003.tb00643.x doi: 10.1111/j.1751-908X.2003.tb00643.x Migdisov, A.A., Williams-Jones, A.E., 2014. Hydrothermal Transport and Deposition of the Rare Earth Elements by Fluorine-Bearing Aqueous Liquids. Mineralium Deposita, 49(8): 987-997. https://doi.org/10.1007/s00126-014-0554-z Migdisov, A.A., Zezin, D., Williams-Jones, A.E., 2011. An Experimental Study of Cobalt (Ⅱ) Complexation in Cl- and H2S-Bearing Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 75(14): 4065-4079. https://doi.org/10.1016/j.gca.2011.05.003 Muramatsu, Y., Wedepohl, K.H., 1998. The Distribution of Iodine in the Earth's Crust. Chemical Geology, 147(3-4): 201-216. https://doi.org/10.1016/s0009-2541(98)00013-8 doi: 10.1016/S0009-2541(98)00013-8 Niu, H.S., Houk, R.S., 1996. Fundamental Aspects of Ion Extraction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(8): 779-815. http://doi.org/10.1016/0584-8547(96)01506-6 O'Hara, M.J., Kellogg, C.M., Parker, C.M., et al., 2017. Decomposition of Diverse Solid Inorganic Matrices with Molten Ammonium Bifluoride Salt for Constituent Elemental Analysis. Chemical Geology, 466: 341-351. https://doi.org/10.1016/j.chemgeo.2017.06.023 Ohata, M., Miura, T., 2014. Accurate Determination and Certification of Bromine in Plastic by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 837: 23-30. https://doi.org/10.1016/j.aca.2014.06.023 Oliveira, A.A., Trevizan, L.C., Nóbrega, J.A., 2010. Review: Iodine Determination by Inductively Coupled Plasma Spectrometry. Applied Spectroscopy Reviews, 45(6): 447-473. https://doi.org/10.1080/05704928.2010.502207 Pagé, L., Hattori, K., de Hoog, J.C.M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133-142. https://doi.org/10.1016/j.epsl.2016.02.054 Parker, A.P., Clay, P.L., Burgess, R., et al., 2019. Halogen Cycling and Precious Metal Enrichment in Sub-Volcanic Magmatic Systems: Insights from the Rum Layered Intrusion, Scotland. Earth and Planetary Science Letters, 526: 115769. https://doi.org/10.1016/j.epsl.2019.115769 Peng, B., Wu, D., Lai, J., et al., 2012. Simultaneous Determination of Halogens (F, Cl, Br, and I) in Coal Using Pyrohydrolysis Combined with Ion Chromatography. Fuel, 94: 629-631. http://doi.org/10.1016/j.fuel.2011.12.011 Peng, B.X., Wu, D.S., 2013. Simultaneous Rapid Determination of Halogens in Clay Using Pyrohydrolysis Combined with Ion Chromatography. Chinese Journal of Analytical Chemistry, 41(10): 1499-1504. https://doi.org/10.3724/sp.j.1096.2013.30374 doi: 10.1016/S1872-2040(13)60683-0 Pereira, J.S.F., Mello, P.A., Duarte, F.A., et al., 2009. Feasibility of Microwave-Induced Combustion for Digestion of Crude Oil Vacuum Distillation Residue for Chlorine Determination. Energy & Fuels, 23(12): 6015-6019. https://doi.org/10.1021/ef900707n Pereira, L.S.F., Pedrotti, M.F., Enders, M.S.P., et al., 2017. Multitechnique Determination of Halogens in Soil after Selective Volatilization Using Microwave-Induced Combustion. Analytical Chemistry, 89(1): 980-987. http://doi.org/10.1021/acs.analchem.6b04300 Pereira, L.S.F., Enders, M.S.P., Iop, G.D., et al., 2018a. Determination of Cl, Br and I in Soils by ICP-MS: Microwave-Assisted Wet Partial Digestion Using H2O2 in an Ultra-High Pressure System. Journal of Analytical Atomic Spectrometry, 33(4): 649-657. http://doi.org/10.1039/c7ja00365j doi: 10.1039/C7JA00365J Pereira, L.S.F., Pedrotti, M.F., Vecchia, P.D., et al., 2018b. A Simple and Automated Sample Preparation System for Subsequent Halogens Determination: Combustion Followed by Pyrohydrolysis. Analytica Chimica Acta, 1010: 29-36. https://doi.org/10.1016/j.aca.2018.01.034 Qiu, Z.J., Fan, H.R., Tomkins, A., et al., 2021. Insights into Salty Metamorphic Fluid Evolution from Scapolite in the Trans-North China Orogen: Implication for Ore Genesis. Geochimica et Cosmochimica Acta, 293: 256-276. https://doi.org/10.1016/j.gca.2020.10.030 Read, K.A., Mahajan, A.S., Carpenter, L.J., et al., 2008. Extensive Halogen-Mediated Ozone Destruction over the Tropical Atlantic Ocean. Nature, 453: 1232-1235. https://doi.org/10.1038/nature07035 Rottier, B., Audétat, A., 2019. In-Situ Quantification of Chlorine and Sulfur in Glasses, Minerals and Melt Inclusions by LA-ICP-MS. Chemical Geology, 504: 1-13. https://doi.org/10.1016/j.chemgeo.2018.11.012 Ruzié-Hamilton, L., Clay, P.L., Burgess, R., et al., 2016. Determination of Halogen Abundances in Terrestrial and Extraterrestrial Samples by the Analysis of Noble Gases Produced by Neutron Irradiation. Chemical Geology, 437: 77-87. https://doi.org/10.1016/j.chemgeo.2016.05.003 Schnetger, B., Muramatsu, Y., 1996. Determination of Halogens, with Special Reference to, Iodine, in Geological and Biological Samples Using Pyrohydrolysis for Preparation and Inductively Coupled Plasma Mass Spectrometry and Ion Chromatography for Measurement. Analyst, 121(11): 1627-1631. https://doi.org/10.1039/an9962101627 Sekimoto, S., Ebihara, M., 2013. Accurate Determination of Chlorine, Bromine, and Iodine in Sedimentary Rock Reference Samples by Radiochemical Neutron Activation Analysis and a Detailed Comparison with Inductively Coupled Plasma Mass Spectrometry Literature Data. Analytical Chemistry, 85(13): 6336-6341. http://doi.org/10.1021/ac400637d Sekimoto, S., Ebihara, M., 2017. Accurate Determination of Chlorine, Bromine and Iodine in U.S. Geological Survey Geochemical Reference Materials by Radiochemical Neutron Activation Analysis. Geostandards and Geoanalytical Research, 41(2): 213-219. http://doi.org/10.1111/ggr.12145 Seo, J.H., Guillong, M., Aerts, M., et al., 2011. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS. Chemical Geology, 284(1-2): 35-44. https://doi.org/10.1016/j.chemgeo.2011.02.003 Shell, H.R., Craig, R.L., 1954. Determination of Silica and Fluoride in Fluorosilicates. Analytical Chemistry, 26(6): 996-1001. https://doi.org/10.1021/ac60090a012 Shelor, C.P., Dasgupta, P.K., 2011. Review of Analytical Methods for the Quantification of Iodine in Complex Matrices. Analytica Chimica Acta, 702(1): 16-36. https://doi.org/10.1016/j.aca.2011.05.039 Shimizu, K., Itai, T., Kusakabe, M., 2006. Ion Chromatographic Determination of Fluorine and Chlorine in Silicate Rocks Following Alkaline Fusion. Geostandards and Geoanalytical Research, 30(2): 121-129. https://doi.org/10.1111/j.1751-908x.2006.tb00919.x doi: 10.1111/j.1751-908X.2006.tb00919.x Shimizu, K., Suzuki, K., Saitoh, M., et al., 2015. Simultaneous Determinations of Fluorine, Chlorine, and Sulfur in Rock Samples by Ion Chromatography Combined with Pyrohydrolysis. Geochemical Journal, 49(1): 113-124. https://doi.org/10.2343/geochemj.2.0338 Shtangeeva, I., Niemelä, M., Perämäki, P., et al., 2017. Phytoextration of Bromine from Contaminated Soil. Journal of Geochemical Exploration, 174: 21-28. https://doi.org/10.1016/j.gexplo.2016.03.012 Song, P., Wen, H.L., 2016. Determination of Bromine and Iodine in Rock, Soil, and Sediments by Inductively Coupled Plasma-Mass Spectrometry Using Pyrohydrolysis with Liquid Nitrogen Trap. Rock and Mineral Analysis, 35(4): 384-388(in Chinese with English abstract). Sumino, H., Burgess, R., Mizukami, T., et al., 2010. Seawater-Derived Noble Gases and Halogens Preserved in Exhumed Mantle Wedge Peridotite. Earth and Planetary Science Letters, 294(1-2): 163-172. https://doi.org/10.1016/j.epsl.2010.03.029 Sun, F.S., Julshamn, K., 1987. An Indirect Determination of Iodine Using Hg in Complexes and Cold Vapour Atomic-Absorption Determination of Mercury. Spectrochimica Acta Part B: Atomic Spectroscopy, 42(7): 889-894. https://doi.org/10.1016/0584-8547(87)80099-x doi: 10.1016/0584-8547(87)80099-X Taflik, T., Duarte, F.A., Flores, E.L.M., et al., 2012. Determination of Bromine, Fluorine and Iodine in Mineral Supplements Using Pyrohydrolysis for Sample Preparation. Journal of the Brazilian Chemical Society, 23(3): 488-495. https://doi.org/10.1590/s0103-50532012000300016 doi: 10.1590/S0103-50532012000300016 Tagami, K., Uchida, S., Hirai, I., et al., 2006. Determination of Chlorine, Bromine and Iodine in Plant Samples by Inductively Coupled Plasma-Mass Spectrometry after Leaching with Tetramethyl Ammonium Hydroxide under a Mild Temperature Condition. Analytica Chimica Acta, 570(1): 88-92. https://doi.org/10.1016/j.aca.2006.04.011 Takeda, A., Nakao, A., Yamasaki, S.I., et al., 2018. Distribution and Speciation of Bromine and Iodine in Volcanic Ash Soil Profiles. Soil Science Society of America Journal, 82(4): 815-825. https://doi.org/10.2136/sssaj2018.01.0019 Tanner, S.D., 1995. Characterzation of Ionization and Matrix Suppression in Inductively-Plasma Mass-Spectrometry. Journal of Analytical Atomic Spectrometry, 10(11): 905-921. https://doi.org/10.1039/ja9951000905 doi: 10.1039/JA9951000905 Tian, Y., Etschmann, B., Mei, Y., et al., 2014. Speciation and Thermodynamic Properties of Manganese (Ⅱ) Chloride Complexes in Hydrothermal Fluids: In Situ XAS Study. Geochimica et Cosmochimica Acta, 129: 77-95. https://doi.org/10.1016/j.gca.2013.12.003 Tjabadi, E., Mketo, N., 2019. Recent Developments for Spectrometric, Chromatographic and Electroanalytical Determination of the Total Sulphur and Halogens in Various Matrices. TrAC Trends in Analytical Chemistry, 118: 207-222. https://doi.org/10.1016/j.trac.2019.05.033 Tong, C.H., Guan, H.G., Li, Y.N., 1987. INAA of Halogen in Geological Standards. Journal of Chengdu College of Geology, 13(8): 176-182(in Chinese with English abstract). Unni, C.K., Schilling, J.G., 1977. Determination of Bromine in Silicate Rocks by Epithermal Neutron Activation Analysis. Analytical Chemistry, 49(13): 1998-2000. https://doi.org/10.1021/ac50021a029 Unni, C.K., Schilling, J.G., 1978. Determination of Chlorine in Silicate Rocks by Neutron Activation Analysis. Analytica Chimica Acta, 96(1): 107-115. https://doi.org/10.1016/s0003-2670(01)93402-6 doi: 10.1016/S0003-2670(01)93402-6 Vickers, G.H., Wilson, D.A., Hieftje, G.M., 1988. Detection of Negative-Ions by Inductively Coupled Plasma Mass-Spectrometry. Analytical Chemistry, 60(17): 1808-1812. https://doi.org/10.1021/ac00168a031 von Glasow, R., 2008. Atmospheric Chemistry: Sun, Sea and Ozone Destruction. Nature, 453: 1195-1196. https://doi.org/10.1038/4531195a Wang, L.C., Hu, W.X., Wang, X.L., et al., 2020. Halogens (Cl, Br, and I) Geochemistry in Middle Triassic Carbonates: Implications for Salinity and Diagenetic Alteration of I/(Ca+Mg) Ratios. Chemical Geology, 533: 119444. https://doi.org/10.1016/j.chemgeo.2019.119444 Wang, Q.Y., Makishima, A., Nakamura, E., 2010. Determination of Fluorine and Chlorine by Pyrohydrolysis and Ion Chromatography: Comparison with Alkaline Fusion Digestion and Ion Chromatography. Geostandards and Geoanalytical Research, 34(2): 175-183. https://doi.org/10.1111/j.1751-908X.2010.00043.x Webster, J.D., Baker, D.R., Aiuppa, A., 2018. Halogens in Mafic and Intermediate-Silica Content Magmas. In: Harlov, D.E., Aranovich, L., eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer International Publishing, Cham, 307-430. Weis, P., Driesner, T., Heinrich, C.A., 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114): 1613-1616. https://doi.org/10.1126/science.1225009 Wifladt, A.M., Lund, W., Bye, R., 1989. Determination of Iodine in Seaweed and Table Salt by an Indirect Atomic-Absorption Method. Talanta, 36(3): 395-399. https://doi.org/10.1016/0039-9140(89)80207-3 Yamada, H., Kiriyama, T., Yonebayashi, K., 1996. Determination of Total Iodine in Soils by Inductively Coupled Plasma Mass Spectrometry. Soil Science and Plant Nutrition, 42(4): 859-866. https://doi.org/10.1080/00380768.1996.10416633 Yamada, H., Kiriyama, T., Onagawa, Y., et al., 1999. Speciation of Iodine in Soils. Soil Science and Plant Nutrition, 45(3): 563-568. https://doi.org/10.1080/00380768.1999.10415819 Yamada, H., Hisamori, I., Yonebayashi, K., 2002. Identification of Organically Bound Iodine in Soil Humic Substances by Size Exclusion Chromatography/Inductively Coupled Plasma Mass Spectrometry (SEC/ICP-MS). Soil Science and Plant Nutrition, 48(3): 379-385. https://doi.org/10.1080/00380768.2002.10409215 Yardley, B.W.D., 2005.100th Anniversary Special Paper: Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation. Economic Geology, 100(4): 613-632. http://doi.org/10.2113/100.4.613 doi: 10.2113/gsecongeo.100.4.613 Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2011. The Solubility of Copper in High-Temperature Magmatic Vapors: A Quest for the Significance of Various Chloride and Sulfide Complexes. Geochimica et Cosmochimica Acta, 75(10): 2811-2827. https://doi.org/10.1016/j.gca.2011.02.029 Zhang, C., Wang, L.X., Marks, M.A.W., et al., 2017. Volatiles (CO2, S, F, Cl, Br) in the Dike-Gabbro Transition Zone at IODP Hole 1256D: Magmatic Imprint versus Hydrothermal Influence at Fast-Spreading Mid-Ocean Ridge. Chemical Geology, 459: 43-60. https://doi.org/https://doi.org/10.1016/j.chemgeo.2017.04.002 Zhang, W., Hu, Z.C., 2019. Recent Advances in Sample Preparation Methods for Elemental and Isotopic Analysis of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 160: 105690. https://doi.org/10.1016/j.sab.2019.105690 Zhang, W., Hu, Z. C, Liu, Y.S., et al., 2012. Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: A New Development in Open-Vessel Digestion. Analytical Chemistry, 84(24): 10686-10693. https://doi.org/10.1021/ac302327g Zhang, Y.Y., Lin, X.H., He, X.L., et al., 2015. Determination of Chlorine and Sulfur in Marine Sediment by Ion Chromatography. Journal of Analytical Science, 31(2): 249-252(in Chinese with English abstract). Zheng, J., Takata, H., Tagami, K., et al., 2012. Rapid Determination of Total Iodine in Japanese Coastal Seawater Using SF-ICP-MS. Microchemical Journal, 100: 42-47. https://doi.org/10.1016/j.microc.2011.08.007 Zhong, Z.H., Fang, R., She, X.L., 1990. Application of Ion Chromatography in Petrological, Mineralogical and Environmental Studies. Rock and Mineral Analysis, 9(1): 14-22(in Chinese with English abstract). 郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199 胡荣国, 赵义来, 蔡永丰, 等, 2020. 广西大厂花岗斑岩黑云母成分特征及其成岩成矿意义. 地球科学. 45(4): 1213-1226. doi: 10.3799/dqkx.2019.130 李冰, 何红蓼, 史世云, 等, 2001a. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ. 不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 20(3): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200103000.htm 李冰, 史世云, 何红蓼, 等, 2001b. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅱ. 土壤及沉积物标准物质分析. 岩矿测试, 20(4): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200104000.htm 李杰, 钟立峰, 崔学军, 等, 2006. Carius管溶样-标准加入电感耦合等离子体质谱法测定土壤中碘. 岩矿测试, 25(1): 19-21. doi: 10.3969/j.issn.0254-5357.2006.01.005 刘江潮, 1993. 离子色谱法测定岩石、土壤、水系沉积物等样品中的氯、溴、碘. 吉林地质, 12(4): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199304009.htm 刘崴, 杨红霞, 李冰, 2008. 碘分析方法研究进展. 岩矿测试, 27(2): 127-136. doi: 10.3969/j.issn.0254-5357.2008.02.012 刘崴, 杨红霞, 李冰, 等, 2010. 乙醇增强-电感耦合等离子体质谱法测定植物样品中的痕量碘. 分析试验室, 29(6): 31-33. doi: 10.3969/j.issn.1000-0720.2010.06.008 刘霞, 刘建云, 倪力军, 等, 2018. 高温裂解-离子色谱法测定煤中卤素的含量. 理化检验(化学分册), 54(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201801009.htm 马新荣, 李冰, 韩丽荣, 2003. 稀氨水密封溶解-电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘溴. 岩矿测试, 22(3): 174-178. doi: 10.3969/j.issn.0254-5357.2003.03.004 宋萍, 温宏利, 2016. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘. 岩矿测试, 35(4): 384-388. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201604008.htm 童纯菡, 管和国, 李幼宁, 1986. 地质标样中卤素元素的中子活化分析. 成都地质学院学报, 13(3): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198603018.htm 张媛媛, 林学辉, 贺行良, 等, 2015. 离子色谱法同时测定海洋沉积物中氯和硫分析科学学报, 31(2): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201502021.htm 钟展环, 方容, 佘小林, 1990. 离子色谱在岩石矿物、环境地质研究中的应用. 岩矿测试, 9(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199001002.htm 期刊类型引用(9)
1. 汪大明,栗旭升,魏佳林,曹思琦,汪翡翠,仝云霄,闫国强. 虎头山地区多平台同步热红外遥感稀有金属岩脉识别. 地球科学. 2024(06): 2242-2252 . 本站查看
2. 裴秋明,沈家乐,王世明,房大任,高永璋,李典,马少兵. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用:以内蒙古水头萤石矿床为例. 西北地质. 2024(04): 121-134 . 百度学术
3. 曹海玲,王正海,秦昊洋,孙袁超,尹国盼. 基于加权融合TIR数据的LST反演与硅化信息提取——以广东仁差盆地铀多金属矿区为例. 遥感学报. 2023(07): 1691-1701 . 百度学术
4. 茹菲娜·阿力木江,陈川,高玲玲,李顺达. 基于ASTER数据的遥感蚀变信息提取——以西天山穆龙套地区为例. 地球学报. 2022(02): 235-245 . 百度学术
5. 张弘,高鹏鑫,高卿楠. 热红外反射光谱技术在石英含量评价中的应用. 岩矿测试. 2021(05): 710-719 . 百度学术
6. 代晶晶,赵龙贤,姜琪,王海宇,刘婷玥. 热红外高光谱技术在地质找矿中的应用综述. 地质学报. 2020(08): 2520-2533 . 百度学术
7. 张元涛,余长发,潘蔚,田青林. WorldView-3影像与ASTER热红外影像在内蒙古卫境地区铀矿勘查中的应用. 铀矿地质. 2020(05): 408-417 . 百度学术
8. 王玉山,刘玉红,周勇,鲁立辉,陈鑫,许荣科,郑有业. 基于ASTER热红外数据的SiO_2及岩性类别信息提取——以青海省绿梁山—双口山地区为例. 地质找矿论丛. 2019(04): 596-600 . 百度学术
9. 郭帮杰,张杰林,武鼎. 热红外高光谱遥感回归分析定量反演石英含量. 科学技术与工程. 2018(17): 125-130 . 百度学术
其他类型引用(5)
-